Skip to main content

Machine and Deep Learning Algorithms for Wearable Health Monitoring

  • Chapter
  • First Online:
Computational Intelligence in Healthcare

Part of the book series: Health Information Science ((HIS))

Abstract

Because people desire a high quality of life, health is a vital standard of living factor that is attracting considerable attention. Thus, the development of methods that enable rapid and real-time evaluation and monitoring of the human health status has been crucial. In this study, we systematically reviewed the techniques of data mining and machine learning (ML) for wearable health monitoring (WHM) and their applications, including conventional ML methods (artificial neural networks, the Kriging model, support vector machines, and principal component analysis) and the latest advance in deep learning (DL) algorithms for WHM; specifically, the advantages of the DL-based approaches over the traditional ML methods were analyzed in line with metrics associated with data feature extraction and identification performances. Moreover, to attain an intuitive insight, this study further reviewed the developments on the classifier performance with regard to detection, monitoring, identification, and accuracy. Finally, with regard to the characteristics of time series data acquired using health condition monitoring through sensors, recommendations and advices are provided to apply DL methods to human body evaluation in specific fields. Moreover, future research trends required to improve the capability of DL algorithms further are offered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. © Polar Electro 2016. H7 Heart Rate Sensor. Available online: www.polar.com.

  2. Ahmad, N.F., Hoang, D.B., Phung, M.H. (2009) Robust Preprocessing for Health Care Monitoring Framework. In: the 11th International Conference on E-Health Networking, Applications and Services, Sydney, Australia, pp. 169–174.

    Google Scholar 

  3. Ahrens, T. (2008) The most important vital signs are not being measured. Aust. Crit Care 21:3–5.

    Google Scholar 

  4. Alaiad, A., Zhou, L. (2014) The determinants of home healthcare robots adoption: an empirical investigation. Int. J. Med. Inf. 8(3):825–840.

    Article  Google Scholar 

  5. Al-Hajji, A.A. (2012) Rule-Based Expert System for Diagnosis and Symptom of Neurological Disorders “Neurologist Expert System (NES)”. In: the 1st Taibah University International Conference on Computing and Information Technology, Al-Madinah Al-Munawwarah, Saudi Arabia, pp. 67–72.

    Google Scholar 

  6. Andreoni, G., Standoli, C.E., Perego, P. (2016) Defining requirements and related methods for designing sensorized garments. Sensors 16:769.

    Article  Google Scholar 

  7. Andreu-Perez J, Leff DR, Ip HM, Yang GZ. (2015) From wearable sensors to smart implants-–toward pervasive and personalized healthcare. IEEE Trans. on Biomed. Eng. 62(12):2750-2762.

    Article  Google Scholar 

  8. Anguita, D., Ghio, A., Oneto, L., Parra, X., & Reyes-Ortiz, J. L. (2012) Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine. In Int. Workshop on Ambient Assisted Living 216-223.

    Google Scholar 

  9. Apiletti, D., Baralis, E., Bruno, G., Cerquitelli, T. (2009) Real-time analysis of physiological data to support medical applications. Trans. Info. Tech. Biomed. 13:313–321.

    Article  Google Scholar 

  10. Appelboom, G., Camacho, E., Abraham, M.E., Bruce, S.S., Dumont, E.L., Zacharia, B.E., D’Amico, R., Slomian, J., Reginster, J.Y., Bruyere, O., et al. (2014) Smart wearable body sensors for patient self-assessment and monitoring. Arch. Public Health 72:28.

    Article  Google Scholar 

  11. Asensio, A., Marco, A., Blasco, R., Casas, R. (2014) Protocol and architecture to bring things into internet of things. Int. J. Distrib. Sens. Netw.

    Google Scholar 

  12. Ashiquzzaman A, Tushar AK, Islam MR, Shon D, Im K, Park JH et al. (2018) Reduction of Overfitting in Diabetes Prediction Using Deep Learning Neural Network. In: IT Convergence and Security 2017. Singapore: Sringer, pp. 35–43.

    Chapter  Google Scholar 

  13. Atallah, L., Lo, B., Yang, G.Z. (2012) Can pervasive sensing address current challenges in global healthcare? J. Epidemiol. Glob. Health 2:1–13.

    Article  Google Scholar 

  14. Atzori M, Cognolato M, Müller H. (2016) Deep learning with convolutional neural networks applied to electromyography data: a resource for the classification of movements for prosthetic hands. Frontiers in Neurorobotics. 10(9): 1–8.

    Google Scholar 

  15. Avci, A., Bosch, S., Marin-Perianu, M., Marin-Perianu, R., Havinga, P. (2010) Activity Recognition Using Inertial Sensing for Healthcare, Wellbeing and Sports Applications: A Survey. In: the 23th International Conference on Architecture of Computing Systems, Hannover, Germany, pp. 167–176.

    Google Scholar 

  16. B. Zhang, W. Li, J. Hao, X.-L. Li, and M. Zhang. (2018) Adversarial adaptive 1-D convolutional neural networks for bearing fault diagnosis under varying working condition eprint arXiv:1805.00778.

    Google Scholar 

  17. Bae, J., Tomizuka, M. (2011) Gait phase analysis based on a Hidden Markov Model. Mechatronics 21:961–970.

    Article  Google Scholar 

  18. Baig, M., Gholamhosseini, H. (2013) Smart health monitoring systems: An overview of design and modeling. J. Med. Syst. 37:1–14.

    Article  Google Scholar 

  19. Banaee, H., Ahmed, M.U., Loutfi, A. (2013) Data mining for wearable sensors in health monitoring systems: A review of recent trends and challenges. Sensors 13:17472–17500.

    Article  Google Scholar 

  20. BASIS. PEAK—The Ultimate Fitness and Sleep Tracker. Available online: https://www.mybasis.com/.

  21. Bellazzi, R., Zupan, B. (2008) Predictive data mining in clinical medicine: Current issues and guidelines. Int. J. Med. Inform. 77:81–97.

    Article  Google Scholar 

  22. Bellazzi, R., Ferrazzi, F., Sacchi, L. (2011) Predictive data mining in clinical medicine: A focus on selected methods and applications. Wiley. Interdiscip. Rev.: Data. Min. Knowl. Discov. 1:416–430.

    Google Scholar 

  23. Belle, A., Thiagarajan, R., Soroushmehr, S., Navidi, F., Beard, D.A., Najarian, K. (2015) Big data analytics in healthcare. BioMed Res. Int. 2015 370194.

    Article  Google Scholar 

  24. Bellos, C.C., Papadopoulos, A., Rosso, R., Fotiadis, D.I. (2010) Extraction and Analysis of Features Acquired by Wearable Sensors Network. In: the 10th IEEE International Conference on Information Technology and Applications in Biomedicine, Corfu, Greece, pp. 1–4.

    Google Scholar 

  25. Bellos, C., Papadopoulos, A., Rosso, R., Fotiadis, D.I. (2012) A Support Vector Machine Approach for Categorization of Patients Suffering from Chronic Diseases. In Wireless Mobile Communication and Healthcare, Nikita, K.S., Lin, J.C., Fotiadis, D.I., Arredondo Waldmeyer, M.T., Eds., Springer: Berlin, Germany, Volume 83, pp. 264–267.

    Chapter  Google Scholar 

  26. Bengio, Y. (2009) Learning deep architectures for AI. Foundations and trends® in Machine Learning, 2:1-127.

    MATH  Google Scholar 

  27. Bhattacharya S, Lane ND. From smart to deep: Robust activity recognition on smartwatches using deep learning. In: IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), Sydney, Australia, pp. 1–6. (2016)

    Google Scholar 

  28. Bieber, G., Haescher, M., Vahl, M. (2013) Sensor requirements for activity recognition on smart watches. the 6th Int Conf. on PErvasive Technol. Relat. to Assist. Environ. 29–31.

    Google Scholar 

  29. Biodevices, S.A. VitalJacket®. Available online: http://www.vitaljacket.com/.

  30. Blonde, L., Karter, A.J. (2005) Current evidence regarding the value of self-monitored blood glucose testing. Am. J. Med. 118:20–26.

    Article  Google Scholar 

  31. Bluetooth SIG, “Health Device Profile Specification Vol. 1.0,” http://www.bluetooth.org/.

  32. Bsoul, M., Minn, H., Tamil, L. (2011) Apnea medassist: Real-time sleep apnea monitor using single-lead ECG. IEEE Trans. Inf. Technol. Biomed. 15:416–427.

    Article  Google Scholar 

  33. Bulling, A., Blanke, U., & Schiele, B. (2014) A tutorial on human activity recognition using body-worn inertial sensors. Acm Comput. Surv. 46:1-33.

    Article  Google Scholar 

  34. Center Berkeley, Caffe, 2016. [Online]. Available: http://caffe.berkeley vision.org/

  35. Chan, M., Esteve, D., Fourniols, J.Y., Escriba, C., Campo, E. (2012) Smart wearable systems: Current status and future challenges. Artif. Intell. Med. 56:137–156.

    Article  Google Scholar 

  36. Chaovalit, P., Gangopadhyay, A., Karabatis, G., Chen, Z. (2011) Discrete Wavelet transform-based time series analysis and mining. ACM Comput. Surv. 43:6:1–6:37.

    Article  MATH  Google Scholar 

  37. Chatterjee, S., Dutta, K., Xie, H.Q., Byun, J., Pottathil, A., Moore, M. (2013) Persuasive and Pervasive Sensing: A New Frontier to Monitor, Track and Assist Older Adults Suffering from Type-2 Diabetes. In: the 46th Hawaii International Conference on System Sciences, Grand Wailea, Maui, HI, USA, pp. 2636–2645.

    Google Scholar 

  38. Cho, K., Raiko, T., & Ihler, A. T. (2011) Enhanced gradient and adaptive learning rate for training restricted Boltzmann machines. In: the 28th International Conference on Machine Learning (ICML-11) pp. 105–112.

    Google Scholar 

  39. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014) Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.

    Google Scholar 

  40. Choi, J., Ahmed, B., Gutierrez-Osuna, R. (2012) Development and evaluation of an ambulatory stress monitor based on wearable sensors. IEEE Trans. Inf. Technol. Biomed. 16:279–286.

    Article  Google Scholar 

  41. Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014) Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.

    Google Scholar 

  42. Chung, J., Gülçehre, C., Cho, K., & Bengio, Y. (2015) Gated Feedback Recurrent Neural Networks. In ICML. pp. 2067–2075.

    Google Scholar 

  43. Clifton, L., Clifton, D.A., Pimentel, M.A.F., Watkinson, P.J., Tarassenko, L. (2013) Gaussian processes for personalized e-health monitoring with wearable sensors. IEEE Trans. Biomed. Eng. 60:193–197.

    Article  Google Scholar 

  44. Continua Health Alliance, “Version2010 Design Guidelines,” http://www.continuaalliance.org/products/design-guidelines.html.

  45. Cortes, C., Vapnik, V. (1995) Support-vector networks. Mach. Learn. 20:273–297.

    Article  MATH  Google Scholar 

  46. Cunha, J.P.S., Cunha, B., Pereira, A.S., Xavier, W., Ferreira, N., Meireles, L. (2010) Vital-Jacket®: A wearable wireless vital signs monitor for patients’ mobility in cardiology and sports. 4th Int. Conf. on Pervasive Comput. Technol. for Healthc. 1–2.

    Google Scholar 

  47. Custodio, V., Herrera, F.J., Lopez, G., Moreno, J.I. (2012) A review on architectures and communications technologies for wearable health-monitoring systems. Sensors 12:13907–13946.

    Article  Google Scholar 

  48. Danie G. Krige (1951) A statistical approach to some basic mine valuation problems on the Witwatersrand, J. Chem. Metall. Min. Soc. S. Afr. 52:119–139.

    Google Scholar 

  49. Ding, H., Sun, H., mean Hou, K. (2011) Abnormal ECG Signal Detection Based on Compressed Sampling in Wearable ECG Sensor. In: the International Conference on Wireless Communications and Signal Processing, Nanjing, China, pp. 1–5.

    Google Scholar 

  50. Ding, X., Lei, H., & Rao, Y. (2016) Sparse codes fusion for context enhancement of night video surveillance. Multimed. Tools and Appli., 75:11221–11239.

    Article  Google Scholar 

  51. Dong H, Supratak A, Pan W, Wu C, Matthews PM, Guo Y. (2018) Mixed neural network approach for temporal sleep stage classification. IEEE Trans. on Neural Syst. and Rehabil. Eng. 26:324–333.

    Article  Google Scholar 

  52. Elliott, M.C.A. (2012) Critical care: The eight vital signs of patient monitoring. Br. J. Nurs. 21: 621–625.

    Article  Google Scholar 

  53. Erfani, S. M., Rajasegarar, S., Karunasekera, S., & Leckie, C. (2016) High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recognit. 58:121–134.

    Article  Google Scholar 

  54. Eskofier BM, Lee SI, Daneault JF, Golabchi FN, Ferreira-Carvalho G, Vergara-Diaz G. et al. Recent machine learning advancements in sensor-based mobility analysis: deep learning for Parkinson’s disease assessment. In: IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), Lake Buena Vista, Orlando, USA, pp. 655–658. (2016)

    Google Scholar 

  55. Fei, C.W., Bai, G.C. (2013) Wavelet correlation feature scale entropy and fuzzy support vector machine approach for aeroengine whole-body vibration fault diagnosis. Shock and Vib. 20(2):341–349.

    Article  Google Scholar 

  56. Fei, C.W., Bai, G.C., Tang, W.Z., Ma, S. (2014) Quantitative diagnosis of rotor vibration fault using process power spectrum entropy and support vector machine method. Shock and Vib. 2014:957531.

    Google Scholar 

  57. Fei CW, Lu C, Liem R.P. (2019) Decomposed-coordinated surrogate modelling strategy for compound function approximation and a turbine blisk reliability evaluation. Aerosp. Sci. Technol. 95: UNSP105466.

    Google Scholar 

  58. Figo, D., Diniz, P. C., Ferreira, D. R., & Cardoso, J. M. (2010) Preprocessing techniques for context recognition from accelerometer data. Personal and Ubiquitous Computing. 14:645–662.

    Article  Google Scholar 

  59. Fischer, A., & Igel, C. (2014) Training restricted Boltzmann machines: An introduction. Pattern Recognition. 47:25–39.

    Article  MATH  Google Scholar 

  60. Fraile, A.J., Javier, B., Corchado, J.M., Abraham, A. (2010) Applying wearable solutions in dependent environments. IEEE Trans. Inf. Technol. Biomed. 14(6):1459–1467.

    Article  Google Scholar 

  61. Frank, M. (2015) Your Head Is Better for Sensors than Your Wrist, Outside-Live Bravely: Santa Fe, NM, USA.

    Google Scholar 

  62. Franois Chollet, Keras, 2016. [Online]. Available: https://keras.io/.

  63. Frantzidis, C.A., Bratsas, C., Klados, M.A., Konstantinidis, E., Lithari, C.D., Vivas, A.B., Papadelis, C.L., Kaldoudi, E., Pappas, C., Bamidis, P.D. (2010) On the classification of emotional biosignals evoked while viewing affective pictures: An integrated data-mining-based approach for healthcare applications. Trans. Inf. Tech. Biomed. 14:309–318.

    Article  Google Scholar 

  64. G. Matheron (1963) Principles of geostatistics, Econ. Geol. 58:1246–1266.

    Article  Google Scholar 

  65. G. Matheron (1973) The intrinsic random functions and their applications, Adv. Appl. Probab. 5(3):439–468.

    Article  MathSciNet  MATH  Google Scholar 

  66. Gao, Y., & Glowacka, D. (2016) Deep Gate Recurrent Neural Network. arXiv preprint arXiv:1604.02910.

    Google Scholar 

  67. Garmin Ltd. HRM-Tri™. Available online: https://buy.garmin.com.

  68. Gialelis, J., Chondros, P., Karadimas, D., Dima, S., Serpanos, D. (2012) Identifying Chronic Disease Complications Utilizing State of the Art Data Fusion Methodologies and Signal Processing Algorithms. In Wireless Mobile Communication and Healthcare, Nikita, K.S., Lin, J.C., Fotiadis, D.I., Arredondo Waldmeyer, M.T., Eds., Springer: Berlin, Germany, Volume 83, pp. 256–263.

    Chapter  Google Scholar 

  69. Giri, D., Rajendra Acharya, U., Martis, R.J., Vinitha Sree, S., Lim, T.C., Ahamed VI, T., Suri, J.S. (2013) Automated diagnosis of Coronary Artery Disease affected patients using LDA, PCA, ICA and Discrete Wavelet Transform. Know. Based Syst. 37:274–282.

    Google Scholar 

  70. Google, Tensorflow, 2016. [Online]. Available: https://www.tensorflow.org/.

  71. Graves, A. (2013) Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850.

    Google Scholar 

  72. Gravina R, Alinia P, Ghasemzadeh H, Fortino G. (2017) Multi-sensor fusion in body sensor networks: State- of-the-art and research challenges. Inf. Fusion. 35:68–80.

    Article  Google Scholar 

  73. Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2016) Deep learning for visual understanding: A review. Neurocomputing 187:27–48.

    Google Scholar 

  74. Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.A. (2006) Feature Extraction: Foundations and Applications (Studies in Fuzziness and Soft Computing), Springer: Secaucus, NJ, USA.

    Book  MATH  Google Scholar 

  75. H. Liu, J. Zhou, Y, Xu, Y, Zheng, X. Peng, and W. Jiang (2018) Unsupervised fault diagnosis of rolling bearings using a deep neural network based on generative adversarial networks, Neuro comput. 315:412–424.

    Google Scholar 

  76. Hakonen, M., Piitulainen, H., Visala, A. (2015) Current state of digital signal processing in myoelectric interfaces and related applications. Biomed. Signal Process. Control 18:334–359.

    Article  Google Scholar 

  77. HealthWatch Technologies Ltd. Available online: http://www.personal-healthwatch.com/.

  78. Hexoskin. Available online: http://www.hexoskin.com/.

  79. Hinton, G. E., & Salakhutdinov, R. R. (2006) Reducing the dimensionality of data with neural networks. Science. 313:504-507.

    Article  MathSciNet  MATH  Google Scholar 

  80. Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006) A fast learning algorithm for deep belief nets. Neural comput. 18:1527–1554.

    Article  MathSciNet  MATH  Google Scholar 

  81. Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012) Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580.

    Google Scholar 

  82. Hjalmarson, A. (2007) Heart rate: An independent risk factor in cardiovascular disease. Eur. Heart J. Suppl. 9:F3–F7.

    Article  Google Scholar 

  83. Hochreiter, S., & Schmidhuber, J. (1997) Long short-term memory. Neural Comput. 9:1735–1780.

    Article  Google Scholar 

  84. Hongxia Li, Tao Liu, Minjie Wang, Danyang Zhao, Aike Qiao, Xue Wang, Junfeng Gu, Zheng Li, Bao Zhu (2017) Design optimization of stent and its dilatation balloon using kriging surrogate model, Biomed. Eng. Online 16(13):1–17.

    Google Scholar 

  85. http://www8.cao.go.jp/kourei/whitepaper/index-w.html

  86. Hu, F., Jiang, M., Celentano, L., Xiao, Y. (2008) Robust medical ad hoc sensor networks (MASN) with wavelet-based ECG data mining. Ad Hoc Netw. 6:986–1012.

    Article  Google Scholar 

  87. Huang, G., Zhang, Y., Cao, J., Steyn, M., Taraporewalla, K. (2013) Online mining abnormal period patterns from multiple medical sensor data streams. World Wide Web 2013, doi:https://doi.org/10.1007/s11280-013-0203-y.

  88. Hubel, D. H., & Wiesel, T. N. (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The J. of physiol. 160:106–154.

    Article  Google Scholar 

  89. I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C. Courville, Y. Bengio, Generative adversarial nets, in Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pp. 2672–2680.

    Google Scholar 

  90. Incel, O. (2015) Analysis of Movement, Orientation and Rotation-Based Sensing for Phone Placement Recognition. Sensors, 15:25474.

    Article  Google Scholar 

  91. J. Sacks, W.J. Welch, T.J. Mitchell, H.P. Wynn (1989) Design and analysis of computer experiments, Stat. Sci. 4:409–423.

    MathSciNet  MATH  Google Scholar 

  92. J. Tian, C. Morillo, M. H. Azarian and M. Pecht (2016) Motor bearing fault detection using spectral Kurtosis-based feature extraction coupled with K-nearest neighbor distance analysis. IEEE Trans. Ind. Electron. 63(3):1793–1803.

    Article  Google Scholar 

  93. Jindal V, Birjandtalab J, Pouyan MB, Nourani M, An adaptive deep learning approach for PPG-based identification. In: 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), Lake Buena Vista, Orlando, USA, pp. 6401–6404. (2016)

    Google Scholar 

  94. Jing, L., Wang, T., Zhao, M., & Wang, P. (2017) An Adaptive Multi-Sensor Data Fusion Method Based on Deep Convolutional Neural Networks for Fault Diagnosis of Planetary Gearbox. Sensors. 17:414.

    Article  Google Scholar 

  95. K. Fukushima. (1980) Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biolog. Cybernetics. 36:193–202.

    Article  MATH  Google Scholar 

  96. Kaewwichian, P., Tanwanichkul, L., Pitaksringkarn, J. (2019) Car ownership demand modeling using machine learning: decision trees and neural networks. Int. J. of Geomate. 17(62):219–230.

    Article  Google Scholar 

  97. Kalagnanam, J., Henrion, M. (2013) A comparison of decision analysis and expert rules for sequential diagnosis. arXiv:1304.2362.

    Google Scholar 

  98. Karabadji, N.E., Khelf, I., Seridi, H., Aridhi, S., Remond, D., Dhifli, W. (2019) A data sampling and attribute selection strategy for improving decision tree construction. Expert Syst. with Appli. 129:84–96

    Article  Google Scholar 

  99. Karlen, W., Mattiussi, C., Floreano, D. (2009) Sleep and wake classification with ECG and respiratory effort signals. IEEE Trans. Biomed. Circuits Syst. 3:71–78.

    Article  Google Scholar 

  100. Kautz, T., Groh, B. H., Hannink, J., Jensen, U., Strubberg, H., & Eskofier, B. M. (2017) Activity recognition in beach volleyball using a Deep Convolutional Neural Network. Data Min. and Knowl. Discov. 1–28.

    Google Scholar 

  101. Khan, Z.A., Sivakumar, S., Phillips, W., Robertson, B. (2014) ZEQoS: A New Energy and QoS-Aware Routing Protocol for Communication of Sensor Devices in Healthcare System. Int. J. Distrib. Sens. Netw. 1–18.

    Google Scholar 

  102. Khan, S., Yairi, T. (2018) A review on the application of deep learning in system health management, Mech. Syst. and Signal Process. 107:241–265.

    Article  Google Scholar 

  103. Kharel, J., Reda, H.T., Shin, S.Y. (2018) Fog Computing-Based Smart Health Monitoring System Deploying LoRa Wireless Communication. IETE Tech. Rev. 1–14.

    Google Scholar 

  104. Kim, Y., & Ling, H. (2009) Human activity classification based on micro-Doppler signatures using a support vector machine. IEEE Trans. on Geosci. and Remote Sens. 47:1328–1337.

    Article  Google Scholar 

  105. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012) Imagenet classification with deep convolutional neural networks. In Adv. in Neural Inf. Process. Syst. pp. 1097–1105.

    Google Scholar 

  106. L. A. Pastur-Romay, F. Cedrón, A. Pazos, and A. B. Porto-Pazos. (2016) Deep artificial neural networks and neuromorphic chips for big data analysis: Pharmaceutical and bioinformatics applications, Int. J. Molecular Sci., vol. 17, no. 8, Art. no. 1313.

    Google Scholar 

  107. L. Zhao, K.K. Choi, I. Lee (2011) Metamodeling method using dynamic Kriging for design optimization, AIAA J. 49(9):2034–2046.

    Article  Google Scholar 

  108. Längkvist M, Karlsson L, Loutfi A. (2012) Sleep stage classification using unsupervised feature learning. Adv. in Artif. Neural Syst. 2012:1-9.

    Article  Google Scholar 

  109. LeCun, Y., Bengio, Y., & Hinton, G. (2015) Deep learning. Nature. 521:436–444.

    Article  Google Scholar 

  110. Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2009) Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: the 26th annual international conference on machine learning, pp. 609-616. ACM.

    Google Scholar 

  111. Lee, K.H., Kung, S.Y., Verma, N. (2012) Low-energy formulations of support vector machine kernel functions for biomedical sensor applications. J. Signal Process. Syst. 69:339–349.

    Article  Google Scholar 

  112. Lee, Y.D., Chung, W.Y. (2009) Wireless sensor network based wearable smart shirt for ubiquitous health and activity monitoring. Sensor. Actuator. B 140:390–395

    Article  Google Scholar 

  113. Li, G., Deng, L., Xu, Y., Wen, C., Wang, W., Pei, J., & Shi, L. (2016) Temperature based Restricted Boltzmann Machines. Sci. Rep. 6.

    Google Scholar 

  114. Li, H., Wu, J., Gao, Y.W., Shi, Y. (2016) Examining individuals’ adoption of healthcare wearable devices: an empirical study from privacy calculus perspective. Int. J. Med. Inf. 88:8–17.

    Article  Google Scholar 

  115. Li, Q., Clifford, G.D. (2012) Dynamic time warping and machine learning for signal quality assessment of pulsatile signals. Physiol. Meas. 33:1491–1501.

    Article  Google Scholar 

  116. Li, X., Porikli, F. (2010) Human State Classification and Predication for Critical Care Monitoring by Real-Time Bio-signal Analysis. In: the 20th International Conference on Pattern Recognition, Istanbul, Turkey, pp. 2460–2463.

    Google Scholar 

  117. Liddy, C., Dusseault, J.J., Dahrouge, S., et al. (2008) Telehomecare for patients with multiple chronic illnesses: pilot study. Can. Fam. Physician 54:58–65.

    Google Scholar 

  118. Lin, L., Wang, K. Z., Zuo, W. M., Wang, M., Luo, J. B., & Zhang, L. (2016) A Deep Structured Model with Radius-Margin Bound for 3D Human Activity Recognition. Int. J. of Comput. Vis. 118:256–273.

    Article  MathSciNet  Google Scholar 

  119. Liou, C.-Y., Cheng, W.-C., Liou, J.-W., & Liou, D.-R. (2014) Autoencoder for words. Neurocomputing. 139:84–96.

    Article  Google Scholar 

  120. Liu, G., Liang, J., Lan, G., Hao, Q., & Chen, M. (2016) Convolution neutral network enhanced binary sensor network for human activity recognition. In SENSORS, 2016 IEEE (pp. 1–3): IEEE.

    Google Scholar 

  121. López-Vallverdú, J.A., Riaño, D., Bohada, J.A. (2012) Improving medical decision trees by combining relevant health-care criteria. Expert Syst. Appl. 39:11782–11791.

    Article  Google Scholar 

  122. Lu N, Li T, Ren X, Miao H. (2017) A deep learning scheme for motor imagery classification based on restricted boltzmann machines. IEEE Trans. on Neural Syst. and Rehabil. Eng. 25: 566–576.

    Article  Google Scholar 

  123. Lukowicz, P., Anliker, U., Ward, J., Troster, G., Hirt, E., Neufelt, C. (2002) AMON: A wearable medical computer for high risk patients. The 6th Int. Symp. on Wearable Comput. 133–134.

    Google Scholar 

  124. Lymberis, A.G.L. (2006) Wearable health systems: From smart technologies to real applications. In: the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, pp. 6789–6792.

    Google Scholar 

  125. M. Li, G. Li, S. Azarm (2008) A Kriging metamodel assisted multi-objective genetic algorithm for design optimization, J. Mech. Des. 130(3):031401.

    Article  Google Scholar 

  126. Ma T, Li H, Yang H, Lv X, Li P, Liu T, et al. (2017) The extraction of motion-onset VEP BCI features based on deep learning and compressed sensing. J. of Neurosci. Methods. 275: 80–92.

    Article  Google Scholar 

  127. Ma, J., Sheridan, R. P., Liaw, A., Dahl, G. E., & Svetnik, V. (2015) Deep neural nets as a method for quantitative structure–activity relationships. Journal of Chemical Information and Modeling, 55:263–274.

    Article  Google Scholar 

  128. Majumder, S., Mondal, T., Deen, M.J. (2017) Wearable sensors for remote health monitoring. Sensors 17:130.

    Article  Google Scholar 

  129. Mao, Y., Chen, W., Chen, Y., Lu, C., Kollef, M., Bailey, T. (2012) An Integrated Data Mining Approach to Real-Time Clinical Monitoring and Deterioration Warning. In: the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, pp. 1140–1148.

    Google Scholar 

  130. Marc’Aurelio Ranzato, C. P., Chopra, S., & LeCun, Y. (2007) Efficient learning of sparse representations with an energy-based model. In: NIPS.

    Google Scholar 

  131. Marco Di Rienzo, G.P., Brambilla, G., Ferratini, M., Castiglioni, P. (2005) MagIC System: A New Textile-Based Wearable Device for Biological Signal Monitoring. Applicability in Daily Life and Clinical Setting. In: the 2005 IEEE, Engineering in Medicine and Biology 27th Annual Conference 2005, Shangai, China, pp. 7167–7169.

    Google Scholar 

  132. Masci, J., Meier, U., Cirean, D., & Schmidhuber, J. (2011) Stacked convolutional auto-encoders for hierarchical feature extraction. In: International Conference on Artificial Neural Networks, pp. 52–59. Springer.

    Google Scholar 

  133. Microsoft, Cntk, 2016. [Online]. Available: https://github.com/Microsoft/CNTK.

  134. Montavon, G., & Müller, K.-R. (2012) Deep Boltzmann machines and the centering trick. In Neural Networks: Tricks of the Trade pp. 621–637: Springer.

    Google Scholar 

  135. Mukherjee, A., Pal, A., Misra, P. (2012) Data Analytics in Ubiquitous Sensor-Based Health Information Systems. In: the 2012 6th International Conference on Next Generation Mobile Applications, Services and Technologies, Paris, France, pp. 193–198.

    Google Scholar 

  136. Murnane, E.L., Cosley, D., Chang, P., Guha, S., Frank, E., Gay, G., Matthews, M. (2016) Self-monitoring practices, attitudes, and needs of individuals with bipolar disorder: implications for the design of technologies to manage mental health. J. Am. Med. Inf. Assoc. 23(3):477–484.

    Article  Google Scholar 

  137. Nair, V., & Hinton, G. E. (2010) Rectified linear units improve restricted boltzmann machines. In: the 27th international conference on machine learning (ICML-10) pp. 807–814.

    Google Scholar 

  138. Nangalia, V., Prytherch, D., Smith, G. (2010) Health technology assessment review: Remote monitoring of vital signs—current status and future challenges. Crit. Care 14:1–8.

    Article  Google Scholar 

  139. Naraharisetti, K.V.P., Bawa, M, Tahernezhadi, M. (2011) Comparison of Different Signal Processing Methods for Reducing Artifacts from Photoplethysmograph Signal. In: the IEEE International Conference on Electro/Information Technology, Mankato, MN, USA, pp. 1–8.

    Google Scholar 

  140. Nervana Systems, Neon, 2016. [Online]. Available: https://github.com/NervanaSystems/neon.

  141. Niemela, M., Fuentetaja, R.G., Kaasinen, E., Gallardo, J.L. (2007) Supporting independent living of the elderly with mobile-centric ambient intelligence: user evaluation of three scenarios. Lect. Notes Comput. Sci. 4794:91–107.

    Article  Google Scholar 

  142. NVIDIA Corp., Nvidia dgx-1, 2016. [Online]. Available: http://www.nvidia.com/object/deep-learning-system.html.

  143. Nweke, H.F., Teh, Y.W., Ai-garadi, M.A., & Aio, U.R. (2018) Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges. Expert Syst. with Appli. 105:233–261.

    Article  Google Scholar 

  144. Olshausen, B. A., & Field, D. J. (1997) Sparse coding with an overcomplete basis set: A strategy employed by V1? Vis. Res. 37:3311–3325.

    Article  Google Scholar 

  145. OM Signal Inc. OM Smart Shirt. Available online: http://omsignal.com.

  146. Ordóñez, F. J., & Roggen, D. (2016) Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition. Sensors. 16:115.

    Article  Google Scholar 

  147. Ordonez, P., Armstrong, T., Oates, T., Fackler, J. (2011) Classification of Patients Using Novel Multivariate Time Series Representations of Physiological Data. In: the 10th International Conference on Machine Learning and Applications, Honolulu, HI, USA, pp. 172–179.

    Google Scholar 

  148. Oyedotun, O. K., & Khashman, A. (2016) Deep learning in vision-based static hand gesture recognition. Neural Comput. and Appli. 1–11.

    Google Scholar 

  149. Page A, Kulkarni, A, Mohsenin T. (2015) Utilizing deep neural nets for an embedded ECG-based biometric authentication system. In: Biomedical Circuits and Systems Conference (BioCAS), Atlanta, GA, USA, pp. 1–4.

    Google Scholar 

  150. Paliwal, M., Kumar, U.A. (2009) Neural networks and statistical techniques: A review of applications. Expert. Syst. Appl. 36:2–17.

    Article  Google Scholar 

  151. Pantelopoulos, A., Bourbakis, N.G. (2010) A Survey on Wearable Sensor-Based Systems for Health Monitoring and Prognosis. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 40:1–12.

    Article  Google Scholar 

  152. Podgorelec, V., Kokol, P., Stiglic, B., Rozman, I. (2002) Decision trees: An overview and their use in medicine. J. Med. Syst. 26:445–463.

    Article  Google Scholar 

  153. Postema, T., Peeters, J.M., Friele, R.D. (2012) Key factors influencing the implementation success of a home telecare application. Int. J. Med. Inf. 8(5):415–423.

    Article  Google Scholar 

  154. Poultney, C., et al., (2006) Efficient learning of sparse representations with an energy-based model, in Proc. Adv. Neural Inf. Process. Syst., pp. 1137–1144.

    Google Scholar 

  155. R. Collobert, K. Kavukcuoglu, and C. Farabet, Torch, 2016. [Online]. Available: http://torch.ch/.

  156. Rabiner, L., Juang, B.H. (1986) An introduction to hidden Markov models. IEEE ASSP Mag. 3:4–16.

    Article  Google Scholar 

  157. Rahhal, M. M. A., Bazi, Y., AlHichri, H., Alajlan, N., Melgani, F., & Yager, R. R. (2016) Deep learning approach for active classification of electrocardiogram signals. Inf. Sci. 345:340–354.

    Article  Google Scholar 

  158. Rault, T., Bouabdallah, A., Challal, Y., Marin, F. (2017) A survey of energy-efficient context recognition systems using wearable sensors for healthcare applications. Pervasive Mob. Comput. 37:23–44.

    Article  Google Scholar 

  159. Ravi D, Wong C, Lo B, Yang GZ. cs. In: 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN), San Francisco, CA, USA, pp. 71–76. (2016)

    Google Scholar 

  160. Ravì, D., Wong, C., Deligianni, F., Berthelot, M., Andreu-Perez, J., Lo, B., & Yang, G. Z. (2017) Deep Learning for Health Informatics. IEEE J. of Biomed. and Health Inf. 21:4–21.

    Article  Google Scholar 

  161. Rhea P. Liem, Charles A. Mader, Joaquim R.R.A. Martins (2015) Surrogate models and mixtures of experts in aerodynamic performance prediction for mission analysis, Aerosp. Sci. Technol. 43:126–151.

    Article  Google Scholar 

  162. Rifai, S., Vincent, P., Muller, X., Glorot, X., & Bengio, Y. (2011) Contractive auto-encoders: Explicit invariance during feature extraction. In: the 28th international conference on machine learning (ICML-11), pp. 833–840.

    Google Scholar 

  163. Ripoll VJR, Wojdel A, Romero E, Ramos P, Brugada J. (2016) ECG assessment based on neural networks with pretraining. Appli. Soft Comput. 49: 399–406.

    Article  Google Scholar 

  164. Rita Paradiso, G.L., Taccini, N. (2005) A Wearable Health Care System Based on Knitted Integrated Sensors. IEEE Trans. Inf. Technol. Biomed. 337–344.

    Google Scholar 

  165. Rodriguez, M., Orrite, C., Medrano, C., & Makris, D. (2016) One-Shot Learning of Human Activity With an MAP Adapted GMM and Simplex-HMM. IEEE Trans. Cybern. 1–12.

    Google Scholar 

  166. Ronao, C. A., & Cho, S.-B. (2015) Evaluation of deep convolutional neural network architectures for human activity recognition with smartphone sensors. In Proc. of the KIISE Korea Computer Congress 858–860.

    Google Scholar 

  167. Ronao, C. A., & Cho, S.-B. (2016) Human activity recognition with smartphone sensors using deep learning neural networks. Expert Syst. with Appli. 59:235–244.

    Article  Google Scholar 

  168. Rosenbloom, S.T. (2016) Person-generated health and wellness data for health care. J. Am. Med. Inf. Assoc. 23(3):438–439.

    Article  Google Scholar 

  169. Ruiz-Rodríguez JC, Ruiz-Sanmartín A, Ribas V, Caballero J, García-Roche A, Riera J et al. (2013) Innovative continuous non-invasive cuffless blood pressure monitoring based on photoplethysmography technology. Intensive Care Med. 39(9): 1618–1625.

    Article  Google Scholar 

  170. S. Lu and X. Wang (2004) PCA-based feature selection scheme for machine defect classification. IEEE Trans. Instrum. Mea., 53(6):1517–1525.

    Article  Google Scholar 

  171. Saeedi R, Norgaard S, Gebremedhin AH. A closed-loop deep learning architecture for robust activity recognition using wearable sensors. In: IEEE International Conference on Big Data. Boston, MA, USA, pp. 473–479. (2017)

    Google Scholar 

  172. Safi, K., Mohammed, S., Attal, F., Khalil, M., & Amirat, Y. (2016) Recognition of different daily living activities using hidden Markov model regression. In Biomedical Engineering (MECBME) 16–19.

    Google Scholar 

  173. Salakhutdinov, R., & Larochelle, H. (2010) Efficient Learning of Deep Boltzmann Machines. In AISTATs 693–700.

    Google Scholar 

  174. Salakhutdinov, R., & Hinton, G. (2012) An efficient learning procedure for deep Boltzmann machines. Neural comput. 24:1967–2006.

    Article  MathSciNet  MATH  Google Scholar 

  175. Sarkar S, Reddy K, Dorgan A, Fidopiastis C, Giering M. (2016) Wearable EEG-based activity recognition in PHM-related service environment via deep learning. Int. J. Progn. Health Manag. 7:1–10.

    Google Scholar 

  176. Sathyanarayana, A., Joty, S., Fernandez-Luque, L., Ofli, F., Srivastava, J., Elmagarmid, A., Taheri, S., & Arora, T. (2016) Impact of Physical Activity on Sleep: A Deep Learning Based Exploration. arXiv preprint arXiv:1607.07034.

    Google Scholar 

  177. Schmidhuber, J. (2015) Deep learning in neural networks: An overview. Neural Netw. 61:85–117.

    Article  Google Scholar 

  178. Scully, C., Lee, J., Meyer, J., Gorbach, A.M., Granquist-Fraser, D., Mendelson, Y., Chon, K.H. (2012) Physiological parameter monitoring from optical recordings with a mobile phone. IEEE Trans. Biomed. Eng. 59:303–306.

    Article  Google Scholar 

  179. Seoane, F., Mohino-Herranz, I., Ferreira, J., Alvarez, L., Buendia, R., Ayllon, D., Llerena, C., Gil-Pita, R. (2014) Wearable biomedical measurement systems for assessment of mental stress of combatants in real time. Sensors. 14:7120–7141.

    Article  Google Scholar 

  180. Shao, H., Jiang, H., Zhao, H. and Wang, F. (2017) A novel deep autoencoder feature learning method for rotating machinery fault diagnosis, Mech. Syst. Signal Process. 95:187–204.

    Article  Google Scholar 

  181. Shashikumar SP, Shah AJ, Li Q, Clifford GD, Nemati S, A deep learning approach to monitoring and detecting atrial fibrillation using wearable technology. In: IEEE EMBS International Conference of Biomedical & Health Informatics (BHI), 4–7 March, Las Vegas, Nevada, USA, pp. 141–144.

    Google Scholar 

  182. Shoaib, M., Bosch, S., Incel, O. D., Scholten, H., & Havinga, P. J. (2016) Complex human activity recognition using smartphone and wrist-worn motion sensors. Sensors 16:426.

    Article  Google Scholar 

  183. Simpao AF, Ahumada LM, Gálvez JA, Rehman MA. (2014) A review of analytics and clinical informatics in healthcare. J. Med. Syst. 38(4):1–7.

    Article  Google Scholar 

  184. Skymind, Deeplearning4j, 2016. [Online]. Available: http://deeplearning4j.org/.

  185. Solmitech. Pacth-type SHC-U7. Available online: http://www.solmitech.com/.

  186. Song, Q., Zheng, Y. J., Xue, Y., Sheng, W. G., & Zhao, M. R. (2017) An evolutionary deep neural network for predicting morbidity of gastrointestinal infections by food contamination. Neurocomputing 226:16–22.

    Article  Google Scholar 

  187. Sow, D., Turaga, D., Schmidt, M. (2013) Mining of Sensor Data in Healthcare: A Survey. In Managing and Mining Sensor Data, Aggarwal, C.C., Ed., Springer: Berlin, Germany, 459–504.

    Chapter  Google Scholar 

  188. Stacey, M., McGregor, C. (2007) Temporal abstraction in intelligent clinical data analysis: A survey. Artif. Intell. Med. 39:1–24.

    Article  Google Scholar 

  189. Stowe, S., Harding, S. (2010) Telecare, telehealth and telemedicine. Eur. Geriatr. Med. 1:193–197.

    Article  Google Scholar 

  190. Sun, F.T., Kuo, C., Cheng, H.T., Buthpitiya, S., Collins, P., Griss, M. (2012) Activity-Aware Mental Stress Detection Using Physiological Sensors. In Mobile Computing, Applications, and Services, Gris, M., Yang, G., Eds., Springer: Berlin, Germany, Volume 76, pp. 211–230.

    Chapter  Google Scholar 

  191. Sutskever, I., Vinyals, O., & Le, Q. V. (2014) Sequence to sequence learning with neural networks. In Adv. Neural Inf. Process. Syst. pp. 3104–3112

    Google Scholar 

  192. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015) Going deeper with convolutions. In: the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9

    Google Scholar 

  193. T.W. Simpson, T.M. Mauery, J.J. Korte, F. Mistree (2001) Kriging metamodels for global approximation in simulation-based multidisciplinary design optimization, AIAA J. 39(12):2233–2241.

    Article  Google Scholar 

  194. Tabar YR, Halici U. (2016) A novel deep learning approach for classification of EEG motor imagery signals. J. Neural Eng. 14:016003.

    Article  Google Scholar 

  195. Taylor, G. W., Hinton, G. E., & Roweis, S. T. (2007) Modeling human motion using binary latent variables. Adv. Neural Inf. Process. Syst. 19:1345.

    Google Scholar 

  196. Tennina, S., Di Renzo, M., Kartsakli, E., Graziosi, F., Lalos, A.S., Antonopoulos, A., Mekikis, P.V., Alonso, L. (2014) WSN4QoL: A WSN-Oriented Healthcare System Architecture. Int. J. Distrib. Sens. Netw. 503417.

    Google Scholar 

  197. Thakker, B., Vyas, A.L. (2011) Support vector machine for abnormal pulse classification. Int. J. Comput. Appl. 22:13–19.

    Google Scholar 

  198. Thomas, O., Sunehag, P., Dror, G., Yun, S., Kim, S., Robards, M., Smola, A., Green, D., Saunders, P. (2010) Wearable sensor activity analysis using semi-Markov models with a grammar. Pervasive Mob. Comput. 6:342–350.

    Article  Google Scholar 

  199. Universite de Montreal, Theano, 2016. [Online]. Available: http://deeplearning.net/software/theano/.

  200. Valipour, S., Siam, M., Jagersand, M., & Ray, N. (2016) Recurrent Fully Convolutional Networks for Video Segmentation. arXiv preprint arXiv:1606.00487.

    Google Scholar 

  201. Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008) Extracting and composing robust features with denoising autoencoders. In: the 25th international conference on Machine learning, pp. 1096–1103.

    Google Scholar 

  202. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P.-A. (2010) Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. of Mach. Learn. Res. 11:3371–3408.

    MathSciNet  MATH  Google Scholar 

  203. Vital Connect. HealthPatch® MD. Available online: http://www.vitalconnect.com/.

  204. Vivonoetics. ActiWave Cardio. Available online: http://vivonoetics.com/.

  205. Vivonoetics. Smartex WWS. Available online: http://vivonoetics.com/.

  206. VPMS Asia Pacific. V-Patch. Available online: http://www.vpatchmedical.com/.

  207. Vu, T.H.N., Park, N., Lee, Y.K., Lee, Y., Lee, J.Y., Ryu, K.H. (2010) Online discovery of Heart Rate Variability patterns in mobile healthcare services. J. Syst. Softw. 83:1930–1940.

    Article  Google Scholar 

  208. Wang, L. (2016) Recognition of human activities using continuous autoencoders with wearable sensors. Sensors. 16:189.

    Article  Google Scholar 

  209. Wang, W., Wang, H., Hempel, M., Peng, D., Sharif, H., Chen, H.H. (2011) Secure stochastic ECG signals based on gaussian mixture model for e-healthcare systems. IEEE Syst. J. 5:564–573.

    Article  Google Scholar 

  210. Widodo, A., Yang, B.S. (2007) Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors. Expert Syst. Appl. 33:241–250.

    Article  Google Scholar 

  211. Withings—Inspire Health. Pulse Ox—Track. Improve. Available online: http://www.withings.com/eu/withings-pulse.html.

  212. Wolfram Research, Wolfram math, 2016. [Online]. Available: https://www.wolfram.com/mathematica/.

  213. Wulsin D, Gupta J, Mani R, Blanco J, Litt B. (2011) Modeling electroencephalography waveforms with semi-super- vised deep belief nets: fast classification and anomaly measurement. J. Neural Eng. 8(3):1–28.

    Article  Google Scholar 

  214. X. Xue and J. Zhou (2017) A hybrid fault diagnosis approach based on mixed-domain state features for rotating machinery. ISA Trans. 66:284–295.

    Article  Google Scholar 

  215. Xu, P.J., Zhang, H., Tao, X.M. (2008) Textile-structured electrodes for electrocardiogram. Text. Prog. 40:183–213.

    Article  Google Scholar 

  216. Yalçın, H. (2016) Human activity recognition using deep belief networks. In 2016 24th Signal Processing and Communication Application Conference (SIU) pp. 1649–1652.

    Google Scholar 

  217. Yan Y, Qin X, Wu Y, Zhang N, Fan J, Wang L. (2015) A restricted Boltzmann machine based two-lead electrocardiography classification. In: 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Cambridge, Massachusetts, pp. 1–9.

    Google Scholar 

  218. Yang, J. B., Nguyen, M. N., San, P. P., Li, X. L., & Krishnaswamy, S. (2015) Deep convolutional neural networks on multichannel time series for human activity recognition. In: the 24th International Joint Conference on Artificial Intelligence (IJCAI), Buenos Aires, Argentina, pp. 25–31.

    Google Scholar 

  219. Yeh, J.Y., Wu, T.H., Tsao, C.W. (2011) Using data mining techniques to predict hospitalization of hemodialysis patients. Decis. Support Syst. 50:439–448.

    Article  Google Scholar 

  220. Yilmaz, T., Foster, R., Hao, Y. (2010) Detecting vital signs with wearable wireless sensors. Sensors 10837–10862.

    Google Scholar 

  221. Yin, W., Yang, X., Zhang, L., & Oki, E. (2016) ECG Monitoring System Integrated With IR-UWB Radar Based on CNN. IEEE Access, 4:6344–6351.

    Google Scholar 

  222. Yoo, I., Alafaireet, P., Marinov, M., Pena-Hernandez, K., Gopidi, R., Chang, J.F., Hua, L. (2012) Data mining in healthcare and biomedicine: A survey of the literature. J. Med. Syst. 36:2431–2448.

    Article  Google Scholar 

  223. Yoon, J. (2013) Three-Tiered Data Mining for Big Data Patterns of Wireless Sensor Networks in Medical and Healthcare Domains. In: the 8th International Conference on Internet and Web Applications and Services, Rome, Italy, pp. 18–24.

    Google Scholar 

  224. Younes, L. (1999) On the convergence of Markovian stochastic algorithms with rapidly decreasing ergodicity rates. Stochastics: An Int. J. Probab. Stoch. Process. 65:177–228.

    MathSciNet  MATH  Google Scholar 

  225. Zeiler, M. D., and Fergus, R. (2014) Visualizing and understanding convolutional networks, in Proc. Eur. Conf. Comput. Vision, pp. 818–833.

    Google Scholar 

  226. Zephyr Performance Systems. BioHarness™ 3. Available online: http://www.zephyranywhere.com/products/bioharness-3.

  227. Zephyr Technology Corp. Available online: http://zephyranywhere.com/.

  228. Zhang J, Wu Y, Bai J, Chen F. (2016) Automatic sleep stage classification based on sparse deep belief net and combination of multiple classifiers. Trans. of the Institute of Meas. and Control. 38: 435–451.

    Article  Google Scholar 

  229. Zhang, M., & Sawchuk, A. A. (2013) Human daily activity recognition with sparse representation using wearable sensors. IEEE J. Biomed. Health Inf. 17: 553-560.

    Article  Google Scholar 

  230. Zhang, S., Zhang, S., Wang, B., Habetler, T.C., Machine Learning and Deep Learning Algorithms for Bearing Fault Diagnostics – A Comprehensive Review, https://arxiv.org/pdf/1901.08247.pdf.

  231. Zheng, Y.-J., Ling, H.-F., & Xue, J.-Y. (2014) Ecogeography-based optimization: enhancing biogeography-based optimization with ecogeographic barriers and differentiations. Comput. & Oper. Res. 50:115-127.

    Article  MATH  Google Scholar 

  232. Zhou, X., Guo, J., & Wang, S. (2015) Motion recognition by using a stacked autoencoder-based deep learning algorithm with smart phones. In Int. Conf. on Wirel. Algorithm., Syst., and Appli., pp. 778–787: Springer.

    Google Scholar 

  233. Zhu, Y. (2011) Automatic detection of anomalies in blood glucose using a machine learning approach. J. Commun. Netw. 13:125–131.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Innovation and Technology Fund of the Hong Kong SAR government (Grant no. ITP/097/18TP), University Grants Committee of the Hong Kong SAR government (Grant no. UGC-UAHB), the National Natural Science Foundation of China (Grant no. 51975127), Shanghai International Cooperation Project of One Belt and One Road of China (Grant No. 20110741700), Aerospace Science and Technology Fund of China (Grant no. AERO201937), and Fudan Research Start-up Fund (Grant no. FDU38341). The authors would like to thank them.

Conflicts of Interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fei, C., Liu, R., Li, Z., Wang, T., Baig, F.N. (2021). Machine and Deep Learning Algorithms for Wearable Health Monitoring. In: Manocha, A.K., Jain, S., Singh, M., Paul, S. (eds) Computational Intelligence in Healthcare. Health Information Science. Springer, Cham. https://doi.org/10.1007/978-3-030-68723-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68723-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68722-9

  • Online ISBN: 978-3-030-68723-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics