Skip to main content

Redox Role of ROS and Inflammation in Pulmonary Diseases

  • Chapter
  • First Online:
Lung Inflammation in Health and Disease, Volume II

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1304))

Abstract

Reactive oxygen species (ROS), either derived from exogenous sources or overproduced endogenously, can disrupt the body’s antioxidant defenses leading to compromised redox homeostasis. The lungs are highly susceptible to ROS-mediated damage. Oxidative stress (OS) caused by this redox imbalance leads to the pathogenesis of multiple pulmonary diseases such as asthma, chronic obstructive pulmonary disease (COPD), and acute respiratory distress syndrome (ARDS). OS causes damage to important cellular components in terms of lipid peroxidation, protein oxidation, and DNA histone modification. Inflammation further enhances ROS production inducing changes in transcriptional factors which mediate cellular stress response pathways. This deviation from normal cell function contributes to the detrimental pathological characteristics often seen in pulmonary diseases. Although antioxidant therapies are feasible approaches in alleviating OS-related lung impairment, a comprehensive understanding of the updated role of ROS in pulmonary inflammation is vital for the development of optimal treatments. In this chapter, we review the major pulmonary diseases—including COPD, asthma, ARDS, COVID-19, and lung cancer—as well as their association with ROS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Filaire E, Dupuis C, Galvaing G, Aubreton S, Laurent H, Richard R, Filaire M. Lung cancer: what are the links with oxidative stress, physical activity and nutrition. Lung Cancer. 2013;82(3):383–9.

    Article  PubMed  Google Scholar 

  2. Leone A, Roca MS, Ciardiello C, Costantini S, Budillon A. Oxidative stress gene expression profile correlates with cancer patient poor prognosis: identification of crucial pathways might select novel therapeutic approaches. Oxidative Med Cell Longev. 2017;2017:2597581.

    Article  CAS  Google Scholar 

  3. Kirkinezos IG, Moraes CT. Reactive oxygen species and mitochondrial diseases. Semin Cell Dev Biol. 2001;12(6):449–57.

    Article  CAS  PubMed  Google Scholar 

  4. Azad N, Rojanasakul Y, Vallyathan V. Inflammation and lung cancer: roles of reactive oxygen/nitrogen species. J Toxicol Environ Health B Crit Rev. 2008;11(1):1–15.

    Article  CAS  PubMed  Google Scholar 

  5. Gayathri L, Akbarsha MA, Ruckmani K. In vitro study on aspects of molecular mechanisms underlying invasive aspergillosis caused by gliotoxin and fumagillin, alone and in combination. Sci Rep. 2020;10(1):14473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015;4:180–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rosanna DP, Salvatore C. Reactive oxygen species, inflammation, and lung diseases. Curr Pharm Des. 2012;18(26):3889–900; Agusti A, Hogg JC. Update on the pathogenesis of chronic obstructive pulmonary disease. N Engl J Med. 2019;381(13):1248–56.

    Google Scholar 

  8. Liu Z, Ren Z, Zhang J, Chuang CC, Kandaswamy E, Zhou T, Zuo L. Role of ROS and nutritional antioxidants in human diseases. Front Physiol. 2018;9:477.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Henricks PA, Nijkamp FP. Reactive oxygen species as mediators in asthma. Pulm Pharmacol Ther. 2001;14(6):409–20; Tong L, Chuang CC, Wu S, Zuo L. Reactive oxygen species in redox cancer therapy. Cancer Lett. 2015;367(1):18–25.

    CAS  Google Scholar 

  10. Zuo L, Rose BA, Roberts WJ, He F, Banes-Berceli AK. Molecular characterization of reactive oxygen species in systemic and pulmonary hypertension. Am J Hypertens. 2014;27(5):643–50.

    Article  CAS  PubMed  Google Scholar 

  11. Pahwa R, Goyal A, Bansal P, Jialal I. Chronic inflammation. In: StatPearls (Internet). Treasure Island: StatPearls Publishing; 2020.

    Google Scholar 

  12. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. He F, Zuo L. Redox roles of reactive oxygen species in cardiovascular diseases. Int J Mol Sci. 2015;16(11):27770–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hussain SP, Harris CC. Inflammation and cancer: an ancient link with novel potentials. Int J Cancer. 2007;121(11):2373–80; Song HK, Noh EM, Kim JM, You YO, Kwon KB, Lee YR. Reversine inhibits MMP-3, IL-6 and IL-8 expression through suppression of ROS and JNK/AP-1 activation in interleukin-1beta-stimulated human gingival fibroblasts. Arch Oral Biol. 2019;108:104530.

    Google Scholar 

  15. Federico A, Morgillo F, Tuccillo C, Ciardiello F, Loguercio C. Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cancer. 2007;121(11):2381–6.

    Article  CAS  PubMed  Google Scholar 

  16. Salminen A, Huuskonen J, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T. Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res Rev. 2008;7(2):83–105.

    Article  CAS  PubMed  Google Scholar 

  17. Baltimore D. Discovering NF-kappaB. Cold Spring Harb Perspect Biol. 2009;1(1):a000026.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Sen R, Smale ST. Selectivity of the NF-{kappa}B response. Cold Spring Harb Perspect Biol. 2010;2(4):a000257.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Baldwin AS Jr. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol. 1996;14:649–83.

    Article  CAS  PubMed  Google Scholar 

  20. Muri J, Thut H, Feng Q, Kopf M. Thioredoxin-1 distinctly promotes NF-kappaB target DNA binding and NLRP3 inflammasome activation independently of Txnip. elife. 2020;9:e53627.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gilmore TD, Herscovitch M. Inhibitors of NF-kappaB signaling: 785 and counting. Oncogene. 2006;25(51):6887–99.

    Article  CAS  PubMed  Google Scholar 

  22. Li F, Xu M, Wang M, Wang L, Wang H, Zhang H, Chen Y, Gong J, Zhang JJ, Adcock IM, Chung KF, Zhou X. Roles of mitochondrial ROS and NLRP3 inflammasome in multiple ozone-induced lung inflammation and emphysema. Respir Res. 2018;19(1):230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shimoda LA, Semenza GL. HIF and the lung: role of hypoxia-inducible factors in pulmonary development and disease. Am J Respir Crit Care Med. 2011;183(2):152–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292(5516):464–8.

    Article  CAS  PubMed  Google Scholar 

  25. Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, Ratcliffe PJ, Gleadle JM. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem. 2004;279(37):38458–65.

    Article  CAS  PubMed  Google Scholar 

  26. Lee HY, Min KH, Lee SM, Lee JE, Rhee CK. Clinical significance of serum vascular endothelial growth factor in young male asthma patients. Korean J Intern Med. 2017;32(2):295–301.

    Article  CAS  PubMed  Google Scholar 

  27. Becker PM, Alcasabas A, Yu AY, Semenza GL, Bunton TE. Oxygen-independent upregulation of vascular endothelial growth factor and vascular barrier dysfunction during ventilated pulmonary ischemia in isolated ferret lungs. Am J Respir Cell Mol Biol. 2000;22(3):272–9.

    Article  CAS  PubMed  Google Scholar 

  28. Bonello S, Zahringer C, BelAiba RS, Djordjevic T, Hess J, Michiels C, Kietzmann T, Gorlach A. Reactive oxygen species activate the HIF-1alpha promoter via a functional NFkappaB site. Arterioscler Thromb Vasc Biol. 2007;27(4):755–61.

    Article  CAS  PubMed  Google Scholar 

  29. Triner D, Shah YM. Hypoxia-inducible factors: a central link between inflammation and cancer. J Clin Invest. 2016;126(10):3689–98.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Krick S, Eul BG, Hanze J, Savai R, Grimminger F, Seeger W, Rose F. Role of hypoxia-inducible factor-1alpha in hypoxia-induced apoptosis of primary alveolar epithelial type II cells. Am J Respir Cell Mol Biol. 2005;32(5):395–403.

    Article  CAS  PubMed  Google Scholar 

  31. McClendon J, Jansing NL, Redente EF, Gandjeva A, Ito Y, Colgan SP, Ahmad A, Riches DWH, Chapman HA, Mason RJ, Tuder RM, Zemans RL. Hypoxia-inducible factor 1alpha signaling promotes repair of the alveolar epithelium after acute lung injury. Am J Pathol. 2017;187(8):1772–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bove PF, Hristova M, Wesley UV, Olson N, Lounsbury KM, van der Vliet A. Inflammatory levels of nitric oxide inhibit airway epithelial cell migration by inhibition of the kinase ERK1/2 and activation of hypoxia-inducible factor-1 alpha. J Biol Chem. 2008;283(26):17919–28; Watts ER, Walmsley SR. Inflammation and hypoxia: HIF and PHD isoform selectivity. Trends Mol Med. 2019;25(1):33–46.

    Google Scholar 

  33. Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG, Brumwell AN, Sheppard D, Chapman HA. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci U S A. 2006;103(35):13180–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Uzunhan Y, Bernard O, Marchant D, Dard N, Vanneaux V, Larghero J, Gille T, Clerici C, Valeyre D, Nunes H, Boncoeur E, Planes C. Mesenchymal stem cells protect from hypoxia-induced alveolar epithelial-mesenchymal transition. Am J Physiol Lung Cell Mol Physiol. 2016;310(5):L439–51.

    Article  PubMed  Google Scholar 

  35. Zhao T, Zhu Y, Morinibu A, Kobayashi M, Shinomiya K, Itasaka S, Yoshimura M, Guo G, Hiraoka M, Harada H. HIF-1-mediated metabolic reprogramming reduces ROS levels and facilitates the metastatic colonization of cancers in lungs. Sci Rep. 2014;4:3793; Wang M, Zhao X, Zhu D, Liu T, Liang X, Liu F, Zhang Y, Dong X, Sun B. HIF-1alpha promoted vasculogenic mimicry formation in hepatocellular carcinoma through LOXL2 up-regulation in hypoxic tumor microenvironment. J Exp Clin Cancer Res. 2017;36(1):60.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Garces de Los Fayos Alonso I, Liang HC, Turner SD, Lagger S, Merkel O, Kenner L. The role of activator protein-1 (AP-1) family members in CD30-positive lymphomas. Cancers (Basel). 2018;10(4):93.

    Article  CAS  Google Scholar 

  37. Sullivan DE, Ferris M, Nguyen H, Abboud E, Brody AR. TNF-alpha induces TGF-beta1 expression in lung fibroblasts at the transcriptional level via AP-1 activation. J Cell Mol Med. 2009;13(8B):1866–76.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wernig G, Chen SY, Cui L, Van Neste C, Tsai JM, Kambham N, Vogel H, Natkunam Y, Gilliland DG, Nolan G, Weissman IL. Unifying mechanism for different fibrotic diseases. Proc Natl Acad Sci U S A. 2017;114(18):4757–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mishra DK, Kim MP. SR 11302, an AP-1 inhibitor, reduces metastatic lesion formation in ex vivo 4D lung cancer model. Cancer Microenviron. 2017;10(1–3):95–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Riera H, Afonso V, Collin P, Lomri A. A central role for JNK/AP-1 pathway in the pro-oxidant effect of pyrrolidine dithiocarbamate through superoxide dismutase 1 gene repression and reactive oxygen species generation in hematopoietic human cancer cell line U937. PLoS One. 2015;10(5):e0127571.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Aharoni-Simon M, Reifen R, Tirosh O. ROS-production-mediated activation of AP-1 but not NFkappaB inhibits glutamate-induced HT4 neuronal cell death. Antioxid Redox Signal. 2006;8(7–8):1339–49.

    Article  CAS  PubMed  Google Scholar 

  42. Huang Y, Liu H, Zuo L, Tao A. Key genes and co-expression modules involved in asthma pathogenesis. Peer J. 2020;8:e8456.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zuo L, Otenbaker NP, Rose BA, Salisbury KS. Molecular mechanisms of reactive oxygen species-related pulmonary inflammation and asthma. Mol Immunol. 2013;56(1–2):57–63.

    Article  CAS  PubMed  Google Scholar 

  44. Trivedi M, Denton E. Asthma in children and adults-what are the differences and what can they tell us about asthma? Front Pediatr. 2019;7:256.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zuo L, Pannell BK, Liu Z. Characterization and redox mechanism of asthma in the elderly. Oncotarget. 2016;7(18):25010–21.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Horak F, Doberer D, Eber E, Horak E, Pohl W, Riedler J, Szepfalusi Z, Wantke F, Zacharasiewicz A, Studnicka M. Diagnosis and management of asthma – statement on the 2015 GINA guidelines. Wien Klin Wochenschr. 2016;128(15–16):541–54.

    Google Scholar 

  47. Jiang L, Diaz PT, Best TM, Stimpfl JN, He F, Zuo L. Molecular characterization of redox mechanisms in allergic asthma. Ann Allergy Asthma Immunol. 2014;113(2):137–42.

    Article  CAS  PubMed  Google Scholar 

  48. Reddel HK, Bateman ED, Becker A, Boulet LP, Cruz AA, Drazen JM, Haahtela T, Hurd SS, Inoue H, de Jongste JC, Lemanske RF Jr, Levy ML, O’Byrne PM, Paggiaro P, Pedersen SE, Pizzichini E, Soto-Quiroz M, Szefler SJ, Wong GW, FitzGerald JM. A summary of the new GINA strategy: a roadmap to asthma control. Eur Respir J. 2015;46(3):622–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brown DI, Griendling KK. Nox proteins in signal transduction. Free Radic Biol Med. 2009;47(9):1239–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Upton RL, Chen Y, Mumby S, Gutteridge JM, Anning PB, Nicholson AG, Evans TW, Quinlan GJ. Variable tissue expression of transferrin receptors: relevance to acute respiratory distress syndrome. Eur Respir J. 2003;22(2):335–41.

    Article  CAS  PubMed  Google Scholar 

  51. Riedl MA, Nel AE. Importance of oxidative stress in the pathogenesis and treatment of asthma. Curr Opin Allergy Clin Immunol. 2008;8(1):49–56.

    Article  CAS  PubMed  Google Scholar 

  52. Hough KP, Curtiss ML, Blain TJ, Liu RM, Trevor J, Deshane JS, Thannickal VJ. Airway remodeling in asthma. Front Med (Lausanne). 2020;7:191.

    Article  Google Scholar 

  53. Phipps S, Lam CE, Foster PS, Matthaei KI. The contribution of toll-like receptors to the pathogenesis of asthma. Immunol Cell Biol. 2007;85(6):463–70.

    Article  CAS  PubMed  Google Scholar 

  54. Wallet SM, Puri V, Gibson FC. Linkage of infection to adverse systemic complications: periodontal disease, toll-like receptors, and other pattern recognition systems. Vaccines (Basel). 2018;6(2):21.

    Article  CAS  Google Scholar 

  55. Lafferty EI, Qureshi ST, Schnare M. The role of toll-like receptors in acute and chronic lung inflammation. J Inflamm (Lond). 2010;7:57.

    Article  CAS  Google Scholar 

  56. Piras V, Selvarajoo K. Beyond MyD88 and TRIF pathways in toll-like receptor signaling. Front Immunol. 2014;5:70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Zuo L, Lucas K, Fortuna CA, Chuang CC, Best TM. Molecular regulation of toll-like receptors in asthma and COPD. Front Physiol. 2015;6:312.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Beier J, Beeh KM, Semmler D, Beike N, Buhl R. Increased concentrations of glutathione in induced sputum of patients with mild or moderate allergic asthma. Ann Allergy Asthma Immunol. 2004;92(4):459–63.

    Article  CAS  PubMed  Google Scholar 

  59. Zuo L, Koozechian MS, Chen LL. Characterization of reactive nitrogen species in allergic asthma. Ann Allergy Asthma Immunol. 2014;112(1):18–22.

    Article  CAS  PubMed  Google Scholar 

  60. Nguyen VN, Chavannes NH. Correlation between fractional exhaled nitric oxide and Asthma Control Test score and spirometry parameters in on-treatment-asthmatics in Ho Chi Minh City. J Thorac Dis. 2020;12(5):2197–209.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Riccioni G, Barbara M, Bucciarelli T, di Ilio C, D’Orazio N. Antioxidant vitamin supplementation in asthma. Ann Clin Lab Sci. 2007;37(1):96–101.

    CAS  PubMed  Google Scholar 

  62. Silveira JS, Antunes GL, Kaiber DB, da Costa MS, Marques EP, Ferreira FS, Gassen RB, Breda RV, Wyse ATS, Pitrez P, da Cunha AA. Reactive oxygen species are involved in eosinophil extracellular traps release and in airway inflammation in asthma. J Cell Physiol. 2019;234(12):23633–46.

    Article  CAS  PubMed  Google Scholar 

  63. Comhair SA, Erzurum SC. Redox control of asthma: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal. 2010;12(1):93–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sahiner UM, Birben E, Erzurum S, Sackesen C, Kalayci O. Oxidative stress in asthma. World Allergy Organ J. 2011;4(10):151–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Farkhutdinov UR, Farkhutdinov SU. Efficacy of ceruloplasmin in patients with asthma. Ter Arkh. 2012;84(12):45–8.

    CAS  PubMed  Google Scholar 

  66. Zhang J, Zhu Z, Zuo X, Pan H, Gu Y, Yuan Y, Wang G, Wang S, Zheng R, Liu Z, Wang F, Zheng J. The role of NTHi colonization and infection in the pathogenesis of neutrophilic asthma. Respir Res. 2020;21(1):170.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bezemer GF, Sagar S, van Bergenhenegouwen J, Georgiou NA, Garssen J, Kraneveld AD, Folkerts G. Dual role of toll-like receptors in asthma and chronic obstructive pulmonary disease. Pharmacol Rev. 2012;64(2):337–58.

    Article  CAS  PubMed  Google Scholar 

  68. Church DF, Pryor WA. Free-radical chemistry of cigarette smoke and its toxicological implications. Environ Health Perspect. 1985;64:111–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zuo L, He F, Sergakis GG, Koozehchian MS, Stimpfl JN, Rong Y, Diaz PT, Best TM. Interrelated role of cigarette smoking, oxidative stress, and immune response in COPD and corresponding treatments. Am J Physiol Lung Cell Mol Physiol. 2014;307(3):L205–18.

    Article  CAS  PubMed  Google Scholar 

  70. Dekhuijzen PN, Aben KK, Dekker I, Aarts LP, Wielders PL, van Herwaarden CL, Bast A. Increased exhalation of hydrogen peroxide in patients with stable and unstable chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1996;154(3 Pt 1):813–6.

    Article  CAS  PubMed  Google Scholar 

  71. Fischer BM, Pavlisko E, Voynow JA. Pathogenic triad in COPD: oxidative stress, protease-antiprotease imbalance, and inflammation. Int J Chron Obstruct Pulmon Dis. 2011;6:413–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Boukhenouna S, Wilson MA, Bahmed K, Kosmider B. Reactive oxygen species in chronic obstructive pulmonary disease. Oxidative Med Cell Longev. 2018;2018:5730395.

    Article  CAS  Google Scholar 

  73. Kirkham PA, Barnes PJ. Oxidative stress in COPD. Chest. 2013;144(1):266–73.

    Article  CAS  PubMed  Google Scholar 

  74. Zhang J, Bai C. The significance of serum interleukin-8 in acute exacerbations of chronic obstructive pulmonary disease. Tanaffos. 2018;17(1):13–21.

    PubMed  PubMed Central  Google Scholar 

  75. Park HS, Kim SR, Lee YC. Impact of oxidative stress on lung diseases. Respirology. 2009;14(1):27–38.

    Article  PubMed  Google Scholar 

  76. Li Zuo AHH, Marvin K, Yousif MT. Chien Oxidative stress, respiratory muscle dysfunction, and potential therapeutics in chronic obstructive pulmonary disease. Front Biol. 2012;7:506–13.

    Article  CAS  Google Scholar 

  77. Zuo L, Chuang CC, Clark AD, Garrison DE, Kuhlman JL, Sypert DC. Reactive oxygen species in COPD-related vascular remodeling. Adv Exp Med Biol. 2017;967:399–411.

    Article  CAS  PubMed  Google Scholar 

  78. Zuo L, Prather ER, Stetskiv M, Garrison DE, Meade JR, Peace TI, Zhou T. Inflammaging and oxidative stress in human diseases: from molecular mechanisms to novel treatments. Int J Mol Sci. 2019;20(18):4472.

    Article  CAS  PubMed Central  Google Scholar 

  79. Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Choudhury G, MacNee W. Role of inflammation and oxidative stress in the pathology of ageing in COPD: potential therapeutic interventions. COPD. 2017;14(1):122–35.

    Article  PubMed  Google Scholar 

  81. Xia S, Zhou C, Kalionis B, Shuang X, Ge H, Gao W. Combined antioxidant, anti-inflammaging and mesenchymal stem cell treatment: a possible therapeutic direction in elderly patients with chronic obstructive pulmonary disease. Aging Dis. 2020;11(1):129–40.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Messier EM, Day BJ, Bahmed K, Kleeberger SR, Tuder RM, Bowler RP, Chu HW, Mason RJ, Kosmider B. N-acetylcysteine protects murine alveolar type II cells from cigarette smoke injury in a nuclear erythroid 2-related factor-2-independent manner. Am J Respir Cell Mol Biol. 2013;48(5):559–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Vlahos R, Bozinovski S. Glutathione peroxidase-1 as a novel therapeutic target for COPD. Redox Rep. 2013;18(4):142–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M, Biswal S. Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res. 2002;62(18):5196–203.

    CAS  PubMed  Google Scholar 

  85. Wu TC, Huang YC, Hsu SY, Wang YC, Yeh SL. Vitamin E and vitamin C supplementation in patients with chronic obstructive pulmonary disease. Int J Vitam Nutr Res. 2007;77(4):272–9.

    Article  CAS  PubMed  Google Scholar 

  86. Wheeler AP, Bernard GR. Acute lung injury and the acute respiratory distress syndrome: a clinical review. Lancet. 2007;369(9572):1553–64.

    Article  PubMed  Google Scholar 

  87. Zuo L, Zhou T, Pannell BK, Ziegler AC, Best TM. Biological and physiological role of reactive oxygen species--the good, the bad and the ugly. Acta Physiol (Oxf). 2015;214(3):329–48.

    Article  CAS  Google Scholar 

  88. Kellner M, Noonepalle S, Lu Q, Srivastava A, Zemskov E, Black SM. ROS signaling in the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Adv Exp Med Biol. 2017;967:105–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mohananey D, Sethi J, Villablanca PA, Ali MS, Kumar R, Baruah A, Bhatia N, Agrawal S, Hussain Z, Shamoun FE, Augoustides JT, Ramakrishna H. Effect of antiplatelet therapy on mortality and acute lung injury in critically ill patients: a systematic review and meta-analysis. Ann Card Anaesth. 2016;19(4):626–37.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Jin W, Chuang CC, Jin H, Ye J, Kandaswamy E, Wang L, Zuo L. Effects of pre-hospital antiplatelet therapy on the incidence of ARDS. Respir Care. 2020;65(7):1039–45.

    Article  PubMed  Google Scholar 

  91. Chow CW, Herrera Abreu MT, Suzuki T, Downey GP. Oxidative stress and acute lung injury. Am J Respir Cell Mol Biol. 2003;29(4):427–31.

    Article  CAS  PubMed  Google Scholar 

  92. Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK. Reactive oxygen species in metabolic and inflammatory signaling. Circ Res. 2018;122(6):877–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fink MP. Role of reactive oxygen and nitrogen species in acute respiratory distress syndrome. Curr Opin Crit Care. 2002;8(1):6–11.

    Article  PubMed  Google Scholar 

  94. Puri G, Naura AS. Critical role of mitochondrial oxidative stress in acid aspiration induced ALI in mice. Toxicol Mech Methods. 2020;30(4):266–74.

    Article  CAS  PubMed  Google Scholar 

  95. Angelova PR, Horrocks MH, Klenerman D, Gandhi S, Abramov AY, Shchepinov MS. Lipid peroxidation is essential for alpha-synuclein-induced cell death. J Neurochem. 2015;133(4):582–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Patten DA, Germain M, Kelly MA, Slack RS. Reactive oxygen species: stuck in the middle of neurodegeneration. J Alzheimers Dis. 2010;20(Suppl 2):S357–67.

    Article  PubMed  CAS  Google Scholar 

  97. Zhong H, Yin H. Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: focusing on mitochondria. Redox Biol. 2015;4:193–9.

    Article  CAS  PubMed  Google Scholar 

  98. McGrath LT, McGleenon BM, Brennan S, McColl D, McIlroy S, Passmore AP. Increased oxidative stress in Alzheimer’s disease as assessed with 4-hydroxynonenal but not malondialdehyde. QJM. 2001;94(9):485–90.

    Article  CAS  PubMed  Google Scholar 

  99. Andersen JK. Oxidative stress in neurodegeneration: cause or consequence? Nat Med. 2004;10(Suppl):S18–25.

    Article  PubMed  CAS  Google Scholar 

  100. Yan LJ. Positive oxidative stress in aging and aging-related disease tolerance. Redox Biol. 2014;2:165–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ayala A, Munoz MF, Arguelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med Cell Longev. 2014;2014:360438.

    Article  CAS  Google Scholar 

  102. Kotha SR. Mitochondrial lipid peroxidation in lung damage and disease. In: Parinandi NL, Natarajan V, editors. Mitochondrial function in lung health and disease. New York: Humana Press; 2014.

    Google Scholar 

  103. Mukherjee S, Kapp EA, Lothian A, Roberts AM, Vasil’ev YV, Boughton BA, Barnham KJ, Kok WM, Hutton CA, Masters CL, Bush AI, Beckman JS, Dey SG, Roberts BR. Characterization and identification of dityrosine cross-linked peptides using tandem mass spectrometry. Anal Chem. 2017;89(11):6136–45.

    Article  CAS  PubMed  Google Scholar 

  104. Jammes Y, Steinberg JG, Bregeon F, Delliaux S. The oxidative stress in response to routine incremental cycling exercise in healthy sedentary subjects. Respir Physiol Neurobiol. 2004;144(1):81–90.

    Article  CAS  PubMed  Google Scholar 

  105. Barshishat-Kupper M, McCart EA, Freedy JG, Tipton AJ, Nagy V, Kim SY, Landauer MR, Mueller GP, Day RM. Protein oxidation in the lungs of C57BL/6 J mice following X-irradiation. Proteomes. 2015;3(3):249–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ciencewicki J, Trivedi S, Kleeberger SR. Oxidants and the pathogenesis of lung diseases. J Allergy Clin Immunol. 2008;122(3):456–68; quiz 469–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Poetsch AR. The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput Struct Biotechnol J. 2020;18:207–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N, Marsden CD, Jenner P, Halliwell B. Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem. 1997;69(3):1196–203.

    Article  CAS  PubMed  Google Scholar 

  109. Gmitterova K, Gawinecka J, Heinemann U, Valkovic P, Zerr I. DNA versus RNA oxidation in Parkinson’s disease: Which is more important? Neurosci Lett. 2018;662:22–8.

    Article  CAS  PubMed  Google Scholar 

  110. Surmeier DJ, Guzman JN, Sanchez-Padilla J, Goldberg JA. The origins of oxidant stress in Parkinson’s disease and therapeutic strategies. Antioxid Redox Signal. 2011;14(7):1289–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, Tan KS, Wang DY, Yan Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Mil Med Res. 2020;7(1):11.

    Google Scholar 

  112. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML, Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC, Zhang YZ. Author correction: a new coronavirus associated with human respiratory disease in China. Nature. 2020;580(7803):E7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hui DS, Azhar EI, Madani TA, Ntoumi F, Kock R, Dar O, Ippolito G, Mchugh TD, Memish ZA, Drosten C, Zumla A. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health – The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 2020;91:264–6.

    Google Scholar 

  114. Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, evaluation, and treatment of coronavirus (COVID-19). In: StatPearls (Internet). Treasure Island: StatPearls Publishing; 2020.

    Google Scholar 

  115. Lotfi M, Hamblin MR, Rezaei N. COVID-19: transmission, prevention, and potential therapeutic opportunities. Clin Chim Acta. 2020;508:254–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Capettini LS, Montecucco F, Mach F, Stergiopulos N, Santos RA, da Silva RF. Role of renin-angiotensin system in inflammation, immunity and aging. Curr Pharm Des. 2012;18(7):963–70.

    Article  CAS  PubMed  Google Scholar 

  117. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, Huan Y, Yang P, Zhang Y, Deng W, Bao L, Zhang B, Liu G, Wang Z, Chappell M, Liu Y, Zheng D, Leibbrandt A, Wada T, Slutsky AS, Liu D, Qin C, Jiang C, Penninger JM. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11(8):875–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Forman HJ, Zhang H, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Asp Med. 2009;30(1–2):1–12.

    Article  CAS  Google Scholar 

  119. Cheng ML, Weng SF, Kuo CH, Ho HY. Enterovirus 71 induces mitochondrial reactive oxygen species generation that is required for efficient replication. PLoS One. 2014;9(11):e113234.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Lin CW, Lin KH, Hsieh TH, Shiu SY, Li JY. Severe acute respiratory syndrome coronavirus 3C-like protease-induced apoptosis. FEMS Immunol Med Microbiol. 2006;46(3):375–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Chen IY, Moriyama M, Chang MF, Ichinohe T. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Front Microbiol. 2019;10:50.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Bauernfeind F, Ablasser A, Bartok E, Kim S, Schmid-Burgk J, Cavlar T, Hornung V. Inflammasomes: current understanding and open questions. Cell Mol Life Sci. 2011;68(5):765–83.

    Article  CAS  PubMed  Google Scholar 

  123. Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, Lam HC, Englert JA, Rabinovitch M, Cernadas M, Kim HP, Fitzgerald KA, Ryter SW, Choi AM. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol. 2011;12(3):222–30.

    Article  CAS  PubMed  Google Scholar 

  124. Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, Ramanujan VK, Wolf AJ, Vergnes L, Ojcius DM, Rentsendorj A, Vargas M, Guerrero C, Wang Y, Fitzgerald KA, Underhill DM, Town T, Arditi M. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 2012;36(3):401–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Liu Q, Zhang D, Hu D, Zhou X, Zhou Y. The role of mitochondria in NLRP3 inflammasome activation. Mol Immunol. 2018;103:115–24.

    Article  CAS  PubMed  Google Scholar 

  126. La Marca A, Capuzzo M, Paglia T, Roli L, Trenti T, Nelson SM. Testing for SARS-CoV-2 (COVID-19): a systematic review and clinical guide to molecular and serological in-vitro diagnostic assays. Reprod Biomed Online. 2020;41(3):483–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Tse GM, Hui PK, Ma TK, Lo AW, To KF, Chan WY, Chow LT, Ng HK. Sputum cytology of patients with severe acute respiratory syndrome (SARS). J Clin Pathol. 2004;57(3):256–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Miripour ZS, Sarrami-Forooshani R, Sanati H, Makarem J, Taheri MS, Shojaeian F, Eskafi AH, Abbasvandi F, Namdar N, Ghafari H, Aghaee P, Zandi A, Faramarzpour M, Hoseinyazdi M, Tayebi M, Abdolahad M. Real-time diagnosis of reactive oxygen species (ROS) in fresh sputum by electrochemical tracing; correlation between COVID-19 and viral-induced ROS in lung/respiratory epithelium during this pandemic. Biosens Bioelectron. 2020;165:112435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  130. Inamura K. Lung cancer: understanding its molecular pathology and the 2015 WHO classification. Front Oncol. 2017;7:193.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Shiels MS, Pfeiffer RM, Hildesheim A, Engels EA, Kemp TJ, Park JH, Katki HA, Koshiol J, Shelton G, Caporaso NE, Pinto LA, Chaturvedi AK. Circulating inflammation markers and prospective risk for lung cancer. J Natl Cancer Inst. 2013;105(24):1871–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5(1):9–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Keil AP, Richardson DB. Quantifying cancer risk from radiation. Risk Anal. 2018;38(7):1474–89.

    Article  PubMed  Google Scholar 

  134. Harris IS, DeNicola GM. The complex interplay between antioxidants and ROS in cancer. Trends Cell Biol. 2020;30(6):440–51.

    Article  CAS  PubMed  Google Scholar 

  135. Tsuchiya Y, Zhyvoloup A, Bakovic J, Thomas N, Yu BYK, Das S, Orengo C, Newell C, Ward J, Saladino G, Comitani F, Gervasio FL, Malanchuk OM, Khoruzhenko AI, Filonenko V, Peak-Chew SY, Skehel M, Gout I. Protein CoAlation and antioxidant function of coenzyme A in prokaryotic cells. Biochem J. 2018;475(11):1909–37.

    Article  CAS  PubMed  Google Scholar 

  136. Matsui R, Ferran B, Oh A, Croteau D, Shao D, Han J, Pimentel DR, Bachschmid MM. Redox regulation via glutaredoxin-1 and protein S-glutathionylation. Antioxid Redox Signal. 2020;32(10):677–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gupta SC, Hevia D, Patchva S, Park B, Koh W, Aggarwal BB. Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid Redox Signal. 2012;16(11):1295–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Deshpande SS, Angkeow P, Huang J, Ozaki M, Irani K. Rac1 inhibits TNF-alpha-induced endothelial cell apoptosis: dual regulation by reactive oxygen species. FASEB J. 2000;14(12):1705–14.

    Article  CAS  PubMed  Google Scholar 

  139. Walton EL. The dual role of ROS, antioxidants and autophagy in cancer. Biom J. 2016;39(2):89–92.

    Google Scholar 

  140. Seyfried TN, Huysentruyt LC. On the origin of cancer metastasis. Crit Rev Oncog. 2013;18(1–2):43–73.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Brooks SA, Lomax-Browne HJ, Carter TM, Kinch CE, Hall DM. Molecular interactions in cancer cell metastasis. Acta Histochem. 2010;112(1):3–25.

    Article  CAS  PubMed  Google Scholar 

  142. Chitty JL, Filipe EC, Lucas MC, Herrmann D, Cox TR, Timpson P. Recent advances in understanding the complexities of metastasis. F1000Res. 2018;7.

    Google Scholar 

  143. Kamiya T, Goto A, Kurokawa E, Hara H, Adachi T. Cross talk mechanism among EMT, ROS, and histone acetylation in phorbol ester-treated human breast cancer MCF-7 cells. Oxidative Med Cell Longev. 2016;2016:1284372.

    Article  Google Scholar 

  144. Liao Z, Chua D, Tan NS. Reactive oxygen species: a volatile driver of field cancerization and metastasis. Mol Cancer. 2019;18(1):65.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Pelicano H, Lu W, Zhou Y, Zhang W, Chen Z, Hu Y, Huang P. Mitochondrial dysfunction and reactive oxygen species imbalance promote breast cancer cell motility through a CXCL14-mediated mechanism. Cancer Res. 2009;69(6):2375–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bagati A, Moparthy S, Fink EE, Bianchi-Smiraglia A, Yun DH, Kolesnikova M, Udartseva OO, Wolff DW, Roll MV, Lipchick BC, Han Z, Kozlova NI, Jowdy P, Berman AE, Box NF, Rodriguez C, Bshara W, Kandel ES, Soengas MS, Paragh G, Nikiforov MA. KLF9-dependent ROS regulate melanoma progression in stage-specific manner. Oncogene. 2019;38(19):3585–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Jin M, Wang J, Ji X, Cao H, Zhu J, Chen Y, Yang J, Zhao Z, Ren T, Xing J. MCUR1 facilitates epithelial-mesenchymal transition and metastasis via the mitochondrial calcium dependent ROS/Nrf2/Notch pathway in hepatocellular carcinoma. J Exp Clin Cancer Res. 2019;38(1):136.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Aydin E, Johansson J, Nazir FH, Hellstrand K, Martner A. Role of NOX2-derived reactive oxygen species in NK cell-mediated control of murine melanoma metastasis. Cancer Immunol Res. 2017;5(9):804–11.

    Article  CAS  PubMed  Google Scholar 

  149. Kidd ME, Shumaker DK, Ridge KM. The role of vimentin intermediate filaments in the progression of lung cancer. Am J Respir Cell Mol Biol. 2014;50(1):1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Paccione RJ, Miyazaki H, Patel V, Waseem A, Gutkind JS, Zehner ZE, Yeudall WA. Keratin down-regulation in vimentin-positive cancer cells is reversible by vimentin RNA interference, which inhibits growth and motility. Mol Cancer Ther. 2008;7(9):2894–903.

    Article  CAS  PubMed  Google Scholar 

  151. Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, Varol M, Jain A, Khan MA, Sethi G. Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomol Ther. 2019;9(11):735.

    CAS  Google Scholar 

  152. Cheng H, Wang L, Mollica M, Re AT, Wu S, Zuo L. Nitric oxide in cancer metastasis. Cancer Lett. 2014;353(1):1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of Interest

The authors confirm that this chapter content has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zuo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zuo, L., Wijegunawardana, D. (2021). Redox Role of ROS and Inflammation in Pulmonary Diseases. In: Wang, YX. (eds) Lung Inflammation in Health and Disease, Volume II. Advances in Experimental Medicine and Biology, vol 1304. Springer, Cham. https://doi.org/10.1007/978-3-030-68748-9_11

Download citation

Publish with us

Policies and ethics