Skip to main content

Sex Hormones and Lung Inflammation

  • Chapter
  • First Online:
Lung Inflammation in Health and Disease, Volume II

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1304))

Abstract

Inflammation is a characteristic marker in numerous lung disorders. Several immune cells, such as macrophages, dendritic cells, eosinophils, as well as T and B lymphocytes, synthetize and release cytokines involved in the inflammatory process. Gender differences in the incidence and severity of inflammatory lung ailments including asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), lung cancer (LC), and infectious related illnesses have been reported. Moreover, the effects of sex hormones on both androgens and estrogens, such as testosterone (TES) and 17β-estradiol (E2), driving characteristic inflammatory patterns in those lung inflammatory diseases have been investigated. In general, androgens seem to display anti-inflammatory actions, whereas estrogens produce pro-inflammatory effects. For instance, androgens regulate negatively inflammation in asthma by targeting type 2 innate lymphoid cells (ILC2s) and T-helper (Th)-2 cells to attenuate interleukin (IL)-17A-mediated responses and leukotriene (LT) biosynthesis pathway. Estrogens may promote neutrophilic inflammation in subjects with asthma and COPD. Moreover, the activation of estrogen receptors might induce tumorigenesis. In this chapter, we summarize the most recent advances in the functional roles and associated signaling pathways of inflammatory cellular responses in asthma, COPD, PF, LC, and newly occurring COVID-19 disease. We also meticulously deliberate the influence of sex steroids on the development and progress of these common and severe lung diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Arachidonic acid

AC:

Adenylate cyclase

AECs:

Airway epithelial cells

AHR:

Airway hyperresponsiveness

AP-1:

Activator protein 1

AR:

Androgen receptor

ASM:

Airway smooth muscle

ASMCs:

Airway smooth muscle cells

BALF:

Bronchoalveolar lavage fluid

cAMP:

Cyclic adenosine monophosphate

CCL C-C:

chemokine ligand

CCR C-C:

chemokine receptor

CD:

Cluster of differentiation

cGMP:

Cyclic guanosine monophosphate

COPD:

Chronic obstructive pulmonary disease

CYP11A1:

P450 side chain cleavage enzyme

CYP17A1:

P450 17α-hydroxylase

DAMPs:

Danger-associated molecular patterns

DCs:

Dendritic cells

DHEA:

Dehydroepiandrosterone

E2:

17β-Estradiol

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

EMT:

Epithelial-mesenchymal transition

eNOS:

Endothelial nitric oxide synthase

ERK:

Extracellular signal-regulated kinase

ERα:

Estrogen receptor alpha

ERβ:

Estrogen receptor beta

ET:

Endothelin

FEV1:

Forced expiratory volume in 1 second

FVC:

Forced vital capacity

G-CSF:

Granulocyte colony-stimulating factor

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

HDM:

House dust mite

IFN-γ:

Interferon gamma

Ig:

Immunoglobulin

IL:

Interleukin

ILC2:

Type 2innate lymphoid cell

IPF:

Idiopathic pulmonary fibrosis

JNK:

Jun N-terminal kinase

LC:

Lung cancer

LTs:

Leukotrienes

MAPK:

Mitogen-activated protein kinase

MCP-1:

Monocyte chemoattractant protein-1

MMP:

Matrix metalloproteinase

NF-κB:

Nuclear factor kappa B

NO:

Nitric oxide

OC:

Oral contraceptives

OVA:

Ovalbumin

P4:

Progesterone

PAMPs:

Pathogen-associated molecular patterns

PBMCs:

Peripheral blood mononuclear cells

PEFR:

Peak expiratory flow rate

PF:

Pulmonary fibrosis

PI3K:

Phosphoinositide 3-kinase

PMA:

Perimenstrual asthma

PR:

Progesterone receptor

PRRs:

Pattern recognition receptors

ROS:

Reactive oxygen species

STAR:

Steroidogenic acute regulatory protein

TAM:

Tumor-associated macrophages

TES:

Testosterone

TGF-β1:

Transforming growth factor beta 1

Th:

T-helper cell

TLR:

Toll-like receptor

TNF-α:

Tumor necrosis factor alpha

TSPO:

Translocator protein

References

  1. Aghasafari P, George U, Pidaparti R. A review of inflammatory mechanism in airway diseases. Inflamm Res. 2019;68(1):59–74.

    Article  CAS  PubMed  Google Scholar 

  2. Germolec DR, Shipkowski KA, Frawley RP, Evans E. Markers of inflammation. Methods Mol Biol. 1803;2018:57–79.

    Google Scholar 

  3. Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21(7):677–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Wong J, Magun BE, Wood LJ. Lung inflammation caused by inhaled toxicants: a review. Int J Chron Obstruct Pulmon Dis. 2016;11:1391–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9(6):7204–18.

    Article  PubMed  Google Scholar 

  6. Dallacasagrande V, Hajjar KA. Annexin A2 in inflammation and host defense. Cell. 2020;9(6)

    Google Scholar 

  7. Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodriguez L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020;

    Google Scholar 

  8. Lee IT, Yang CM. Inflammatory signalings involved in airway and pulmonary diseases. Mediat Inflamm. 2013;2013:791231.

    Article  Google Scholar 

  9. Netea MG, Balkwill F, Chonchol M, Cominelli F, Donath MY, Giamarellos-Bourboulis EJ, et al. A guiding map for inflammation. Nat Immunol. 2017;18(8):826–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moldoveanu B, Otmishi P, Jani P, Walker J, Sarmiento X, Guardiola J, et al. Inflammatory mechanisms in the lung. J Inflamm Res. 2009;2:1–11.

    CAS  PubMed  Google Scholar 

  11. Zhang Q, Zhu S, Cheng X, Lu C, Tao W, Zhang Y, et al. Euphorbia factor L2 alleviates lipopolysaccharide-induced acute lung injury and inflammation in mice through the suppression of NF-kappaB activation. Biochem Pharmacol. 2018;155:444–54.

    Article  CAS  PubMed  Google Scholar 

  12. Hagimoto N, Kuwano K, Kawasaki M, Yoshimi M, Kaneko Y, Kunitake R, et al. Induction of interleukin-8 secretion and apoptosis in bronchiolar epithelial cells by Fas ligation. Am J Respir Cell Mol Biol. 1999;21(3):436–45.

    Article  CAS  PubMed  Google Scholar 

  13. Peteranderl C, Sznajder JI, Herold S, Lecuona E. Inflammatory responses regulating alveolar ion transport during pulmonary infections. Front Immunol. 2017;8:446.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kirkpatrick CT, Wang Y, Leiva Juarez MM, Shivshankar P, Pantaleon Garcia J, Plumer AK, et al. Inducible lung epithelial resistance requires multisource reactive oxygen species generation to protect against viral infections. MBio. 2018;9(3)

    Google Scholar 

  15. Shimbashi R, Chang B, Tanabe Y, Takeda H, Watanabe H, Kubota T, et al. Epidemiological and clinical features of invasive pneumococcal disease caused by serotype 12F in adults. Japan PLoS One. 2019;14(2):e0212418.

    Article  CAS  PubMed  Google Scholar 

  16. Vrolyk V, Wobeser BK, Al-Dissi AN, Carr A, Singh B. Lung inflammation associated with clinical acute necrotizing pancreatitis in dogs. Vet Pathol. 2017;54(1):129–40.

    Article  CAS  PubMed  Google Scholar 

  17. Nagashima R, Kosai H, Masuo M, Izumiyama K, Noshikawaji T, Morimoto M, et al. Nrf2 suppresses allergic lung inflammation by attenuating the type 2 innate lymphoid cell response. J Immunol. 2019;202(5):1331–9.

    Article  CAS  PubMed  Google Scholar 

  18. McCall AL, Salemi J, Bhanap P, Strickland LM, Elmallah MK. The impact of Pompe disease on smooth muscle: a review. J Smooth Muscle Res. 2018;54:100–18.

    Article  CAS  PubMed  Google Scholar 

  19. Weidner J, Jogdand P, Jarenback L, Aberg I, Helihel D, Ankerst J, et al. Expression, activity and localization of lysosomal sulfatases in chronic obstructive pulmonary disease. Sci Rep. 2019;9(1):1991.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Yang L, Wang L, Zhang Y. Immunotherapy for lung cancer: advances and prospects. Am J Clin Exp Immunol. 2016;5(1):1–20.

    PubMed  PubMed Central  Google Scholar 

  21. Gomes M, Teixeira AL, Coelho A, Araujo A, Medeiros R. The role of inflammation in lung cancer. Adv Exp Med Biol. 2014;816:1-23.

    Google Scholar 

  22. Charavaryamath C, Janardhan KS, Townsend HG, Willson P, Singh B. Multiple exposures to swine barn air induce lung inflammation and airway hyper-responsiveness. Respir Res. 2005;6:50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Wang H, Song L, Ju W, Wang X, Dong L, Zhang Y, et al. The acute airway inflammation induced by PM2.5 exposure and the treatment of essential oils in Balb/c mice. Sci Rep. 2017;7:44256.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Suratt BT, Parsons PE. Mechanisms of acute lung injury/acute respiratory distress syndrome. Clin Chest Med. 2006;27(4):579–89; abstract viii.

    Article  PubMed  Google Scholar 

  25. Fuentes N, Silveyra P. Endocrine regulation of lung disease and inflammation. Exp Biol Med (Maywood). 2018;243(17–18):1313–22.

    Article  CAS  Google Scholar 

  26. Carey MA, Card JW, Voltz JW, Arbes SJ Jr, Germolec DR, Korach KS, et al. It’s all about sex: gender, lung development and lung disease. Trends Endocrinol Metab. 2007;18(8):308–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carey MA, Card JW, Voltz JW, Germolec DR, Korach KS, Zeldin DC. The impact of sex and sex hormones on lung physiology and disease: lessons from animal studies. Am J Physiol Lung Cell Mol Physiol. 2007;293(2):L272–8.

    Article  CAS  PubMed  Google Scholar 

  28. DeBoer MD, Phillips BR, Mauger DT, Zein J, Erzurum SC, Fitzpatrick AM, et al. Effects of endogenous sex hormones on lung function and symptom control in adolescents with asthma. BMC Pulm Med. 2018;18(1):58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Han MK, Arteaga-Solis E, Blenis J, Bourjeily G, Clegg DJ, DeMeo D, et al. Female sex and gender in lung/sleep health and disease. Increased understanding of basic biological, pathophysiological, and behavioral mechanisms leading to better health for female patients with lung disease. Am J Respir Crit Care Med. 2018;198(7):850–8.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Seaborn T, Simard M, Provost PR, Piedboeuf B, Tremblay Y. Sex hormone metabolism in lung development and maturation. Trends Endocrinol Metab. 2010;21(12):729–38.

    Article  CAS  PubMed  Google Scholar 

  31. Townsend EA, Miller VM, Prakash YS. Sex differences and sex steroids in lung health and disease. Endocr Rev. 2012;33(1):1–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Traglia M, Bseiso D, Gusev A, Adviento B, Park DS, Mefford JA, et al. Genetic mechanisms leading to sex differences across common diseases and anthropometric traits. Genetics. 2017;205(2):979–92.

    Article  CAS  PubMed  Google Scholar 

  33. Barnes PJ. Sex differences in chronic obstructive pulmonary disease mechanisms. Am J Respir Crit Care Med. 2016;193(8):813–4.

    Article  CAS  PubMed  Google Scholar 

  34. Gonzalez AV, Suissa S, Ernst P. Gender differences in survival following hospitalisation for COPD. Thorax. 2011;66(1):38–42.

    Article  PubMed  Google Scholar 

  35. Raherison C, Tillie-Leblond I, Prudhomme A, Taille C, Biron E, Nocent-Ejnaini C, et al. Clinical characteristics and quality of life in women with COPD: an observational study. BMC Womens Health. 2014;14(1):31.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tam A, Morrish D, Wadsworth S, Dorscheid D, Man SF, Sin DD. The role of female hormones on lung function in chronic lung diseases. BMC Womens Health. 2011;11:24.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tam A, Tanabe N, Churg A, Wright JL, Hogg JC, Sin DD. Sex differences in lymphoid follicles in COPD airways. Respir Res. 2020;21(1):46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fuseini H, Newcomb DC. Mechanisms Driving Gender Differences in Asthma. Curr Allergy Asthma Rep. 2017;17(3):19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Holguin F. Sex hormones and asthma. Am J Respir Crit Care Med. 2020;201(2):127–8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Naeem A, Silveyra P. Sex differences in Paediatric and adult asthma. Eur Med J (Chelmsf). 2019;4(2):27–35.

    Article  Google Scholar 

  41. Shah R, Newcomb DC. Sex Bias in asthma prevalence and pathogenesis. Front Immunol. 2018;9:2997.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yung JA, Fuseini H, Newcomb DC. Hormones, sex, and asthma. Ann Allergy Asthma Immunol. 2018;120(5):488–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baldacara RP, Silva I. Association between asthma and female sex hormones. Sao Paulo Med J. 2017;135(1):4–14.

    Article  PubMed  Google Scholar 

  44. Han YY, Forno E, Celedon JC. Sex steroid hormones and asthma in a Nationwide study of U.S. adults. Am J Respir Crit Care Med. 2020;201(2):158–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Meltzer EB, Noble PW. Idiopathic pulmonary fibrosis. Orphanet J Rare Dis. 2008;3:8.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Salisbury ML, Xia M, Zhou Y, Murray S, Tayob N, Brown KK, et al. Idiopathic pulmonary fibrosis: gender-age-physiology index stage for predicting future lung function decline. Chest. 2016;149(2):491–8.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zaman T, Moua T, Vittinghoff E, Ryu JH, Collard HR, Lee JS. Differences in clinical characteristics and outcomes between men and women with idiopathic pulmonary fibrosis: a multicenter retrospective cohort study. Chest. 2020;

    Google Scholar 

  48. Gharaee-Kermani M, Hatano K, Nozaki Y, Phan SH. Gender-based differences in bleomycin-induced pulmonary fibrosis. Am J Pathol. 2005;166(6):1593–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Voltz JW, Card JW, Carey MA, Degraff LM, Ferguson CD, Flake GP, et al. Male sex hormones exacerbate lung function impairment after bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol. 2008;39(1):45–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Harness-Brumley CL, Elliott AC, Rosenbluth DB, Raghavan D, Jain R. Gender differences in outcomes of patients with cystic fibrosis. J Womens Health (Larchmt). 2014;23(12):1012–20.

    Article  Google Scholar 

  51. Johannesson M, Ludviksdottir D, Janson C. Lung function changes in relation to menstrual cycle in females with cystic fibrosis. Respir Med. 2000;94(11):1043–6.

    Article  CAS  PubMed  Google Scholar 

  52. Batton KA, Austin CO, Bruno KA, Burger CD, Shapiro BP, Fairweather D. Sex differences in pulmonary arterial hypertension: role of infection and autoimmunity in the pathogenesis of disease. Biol Sex Differ. 2018;9(1):15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Lahm T, Tuder RM, Petrache I. Progress in solving the sex hormone paradox in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2014;307(1):L7–26.

    Article  CAS  PubMed  Google Scholar 

  54. Li C, Zhang Z, Xu Q, Wu T, Shi R. Potential mechanisms and serum biomarkers involved in sex differences in pulmonary arterial hypertension. Medicine (Baltimore). 2020;99(13):e19612.

    Article  CAS  Google Scholar 

  55. Mair KM, Johansen AK, Wright AF, Wallace E, MacLean MR. Pulmonary arterial hypertension: basis of sex differences in incidence and treatment response. Br J Pharmacol. 2014;171(3):567–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lahm T, Kawut SM. Inhibiting oestrogen signalling in pulmonary arterial hypertension: sex, drugs and research. Eur Respir J. 2017;50(2)

    Google Scholar 

  57. Wright AF, Ewart MA, Mair K, Nilsen M, Dempsie Y, Loughlin L, et al. Oestrogen receptor alpha in pulmonary hypertension. Cardiovasc Res. 2015;106(2):206–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dou M, Zhu K, Fan Z, Zhang Y, Chen X, Zhou X, et al. Reproductive hormones and their receptors may affect lung Cancer. Cell Physiol Biochem. 2017;44(4):1425–34.

    Article  CAS  PubMed  Google Scholar 

  59. Slowikowski BK, Lianeri M, Jagodzinski PP. Exploring estrogenic activity in lung cancer. Mol Biol Rep. 2017;44(1):35–50.

    Article  CAS  PubMed  Google Scholar 

  60. Jin JM, Bai P, He W, Wu F, Liu XF, Han DM, et al. Gender differences in patients with COVID-19: focus on severity and mortality. Front Public Health. 2020;8:152.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Uwamino Y, Nishimura T, Sato Y, Tamizu E, Asakura T, Uno S, et al. Low serum estradiol levels are related to Mycobacterium avium complex lung disease: a cross-sectional study. BMC Infect Dis. 2019;19(1):1055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cole TJ, Short KL, Hooper SB. The science of steroids. Semin Fetal Neonatal Med. 2019;24(3):170–5.

    Article  PubMed  Google Scholar 

  63. Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev. 2011;32(1):81–151.

    Article  CAS  PubMed  Google Scholar 

  64. Taraborrelli S. Physiology, production and action of progesterone. Acta Obstet Gynecol Scand. 2015;94 Suppl 161:8–16.

    Article  PubMed  CAS  Google Scholar 

  65. Wang Y, Li H, Zhu Q, Li X, Lin Z, Ge RS. The cross talk of adrenal and Leydig cell steroids in Leydig cells. J Steroid Biochem Mol Biol. 2019;192:105386.

    Article  CAS  PubMed  Google Scholar 

  66. Barakat R, Oakley O, Kim H, Jin J, Ko CJ. Extra-gonadal sites of estrogen biosynthesis and function. BMB Rep. 2016;49(9):488–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Baburski AZ, Andric SA, Kostic TS. Luteinizing hormone signaling is involved in synchronization of Leydig cell’s clock and is crucial for rhythm robustness of testosterone productiondagger. Biol Reprod. 2019;100(5):1406–15.

    Article  PubMed  Google Scholar 

  68. Talamillo A, Ajuria L, Grillo M, Barroso-Gomila O, Mayor U, Barrio R. SUMOylation in the control of cholesterol homeostasis. Open Biol. 2020;10(5):200054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Brown MS, Radhakrishnan A, Goldstein JL. Retrospective on cholesterol homeostasis: The central role of Scap. Annu Rev Biochem. 2018;87:783–807.

    Article  CAS  PubMed  Google Scholar 

  70. Chen H, Li Z, Dong L, Wu Y, Shen H, Chen Z. Lipid metabolism in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2019;14:1009–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Spann NJ, Glass CK. Sterols and oxysterols in immune cell function. Nat Immunol. 2013;14(9):893–900.

    Article  CAS  PubMed  Google Scholar 

  72. Papadopoulos V, Miller WL. Role of mitochondria in steroidogenesis. Best Pract Res Clin Endocrinol Metab. 2012;26(6):771–90.

    Article  CAS  PubMed  Google Scholar 

  73. Hu J, Zhang Z, Shen WJ, Azhar S. Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr Metab (Lond). 2010;7:47.

    Article  CAS  Google Scholar 

  74. Venugopal S, Martinez-Arguelles DB, Chebbi S, Hullin-Matsuda F, Kobayashi T, Papadopoulos V. Plasma membrane origin of the Steroidogenic Pool of cholesterol used in hormone-induced acute steroid formation in Leydig cells. J Biol Chem. 2016;291(50):26109–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dufau ML, Catt KJ. Gonadotropin receptors and regulation of steroidogenesis in the testis and ovary. Vitam Horm. 1978;36:461–592.

    Article  CAS  PubMed  Google Scholar 

  76. Montaño LM, Flores-Soto E, Sommer B, Solis-Chagoyan H, Perusquia M. Androgens are effective bronchodilators with anti-inflammatory properties: a potential alternative for asthma therapy. Steroids. 2020;153:108509. 

    Google Scholar 

  77. van Rooyen D, Yadav R, Scott EE, Swart AC. CYP17A1 exhibits 17alphahydroxylase/17,20-lyase activity towards 11beta-hydroxyprogesterone and 11-ketoprogesterone metabolites in the C11-oxy backdoor pathway. J Steroid Biochem Mol Biol. 2020;199:105614.

    Article  PubMed  CAS  Google Scholar 

  78. Zirkin BR, Papadopoulos V. Leydig cells: formation, function, and regulation. Biol Reprod. 2018;99(1):101–11.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Faienza MF, Baldinotti F, Marrocco G, TyuTyusheva N, Peroni D, Baroncelli GI, et al. 17beta-hydroxysteroid dehydrogenase type 3 deficiency: female sex assignment and follow-up. J Endocrinol Investig. 2020;

    Google Scholar 

  80. Vinklarova L, Schmidt M, Benek O, Kuca K, Gunn-Moore F, Musilek K. Friend or enemy? Review of 17beta-HSD10 and its role in human health or disease. J Neurochem. 2020;

    Google Scholar 

  81. Endo S, Morikawa Y, Kudo Y, Suenami K, Matsunaga T, Ikari A, et al. Human dehydrogenase/reductase SDR family member 11 (DHRS11) and aldo-keto reductase 1C isoforms in comparison: substrate and reaction specificity in the reduction of 11-keto-C19-steroids. J Steroid Biochem Mol Biol. 2020;199:105586.

    Article  CAS  PubMed  Google Scholar 

  82. Swerdloff RS, Dudley RE, Page ST, Wang C, Salameh WA. Dihydrotestosterone: biochemistry, physiology, and clinical implications of elevated blood levels. Endocr Rev. 2017;38(3):220–54.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Traish AM. Negative impact of testosterone deficiency and 5alpha-reductase inhibitors therapy on metabolic and sexual function in men. Adv Exp Med Biol. 2017;1043:473–526.

    Article  CAS  PubMed  Google Scholar 

  84. DeWitt NA, Whirledge S, Kallen AN. Updates on molecular and environmental determinants of luteal progesterone production. Mol Cell Endocrinol. 2020;110930

    Google Scholar 

  85. Cui J, Shen Y, Li R. Estrogen synthesis and signaling pathways during aging: from periphery to brain. Trends Mol Med. 2013;19(3):197–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Labrie F. Extragonadal synthesis of sex steroids: intracrinology. Ann Endocrinol (Paris). 2003;64(2):95–107.

    CAS  Google Scholar 

  87. Labrie F. Each tissue becomes master of its sex steroid environment at menopause. Climacteric. 2015;18(5):764–5.

    Article  PubMed  Google Scholar 

  88. Luu-The V, Labrie F. The intracrine sex steroid biosynthesis pathways. Prog Brain Res. 2010;181:177–92.

    Article  CAS  PubMed  Google Scholar 

  89. Guercio G, Saraco N, Costanzo M, Marino R, Ramirez P, Berensztein E, et al. Estrogens in human male gonadotropin secretion and testicular physiology from infancy to late puberty. Front Endocrinol (Lausanne). 2020;11:72.

    Article  Google Scholar 

  90. Tian Y, Shen W, Lai Z, Shi L, Yang S, Ding T, et al. Isolation and identification of ovarian theca-interstitial cells and granulose cells of immature female mice. Cell Biol Int. 2015;39(5):584–90.

    Article  CAS  PubMed  Google Scholar 

  91. Havelock JC, Rainey WE, Carr BR. Ovarian granulosa cell lines. Mol Cell Endocrinol. 2004;228(1–2):67–78.

    Article  CAS  PubMed  Google Scholar 

  92. Leung PC, Steele GL. Intracellular signaling in the gonads. Endocr Rev. 1992;13(3):476–98.

    CAS  PubMed  Google Scholar 

  93. Wood JR, Strauss JF 3rd. Multiple signal transduction pathways regulate ovarian steroidogenesis. Rev Endocr Metab Disord. 2002;3(1):33–46.

    Article  CAS  PubMed  Google Scholar 

  94. Andersen CY, Ezcurra D. Human steroidogenesis: implications for controlled ovarian stimulation with exogenous gonadotropins. Reprod Biol Endocrinol. 2014;12:128.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Sathish V, Martin YN, Prakash YS. Sex steroid signaling: implications for lung diseases. Pharmacol Ther. 2015;150:94–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Carreau S, Bouraima-Lelong H, Delalande C. Estrogens in male germ cells. Spermatogenesis. 2011;1(2):90–4.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Hammes SR, Levin ER. Impact of estrogens in males and androgens in females. J Clin Invest. 2019;129(5):1818–26.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Petra PH. The plasma sex steroid binding protein (SBP or SHBG). A critical review of recent developments on the structure, molecular biology and function. J Steroid Biochem Mol Biol. 1991;40(4–6):735–53.

    Article  CAS  PubMed  Google Scholar 

  99. Ramachandran S, Hackett GI, Strange RC. Sex hormone binding globulin: a review of its interactions with testosterone and age, and its impact on mortality in men with type 2 diabetes. Sex Med Rev. 2019;7(4):669–78.

    Article  PubMed  Google Scholar 

  100. Grishkovskaya I, Avvakumov GV, Sklenar G, Dales D, Hammond GL, Muller YA. Crystal structure of human sex hormone-binding globulin: steroid transport by a laminin G-like domain. EMBO J. 2000;19(4):504–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dunn JF, Nisula BC, Rodbard D. Transport of steroid hormones: binding of 21 endogenous steroids to both testosterone-binding globulin and corticosteroid-binding globulin in human plasma. J Clin Endocrinol Metab. 1981;53(1):58–68.

    Article  CAS  PubMed  Google Scholar 

  102. Heinrich-Balard L, Zeinyeh W, Dechaud H, Rivory P, Roux A, Pugeat M, et al. Inverse relationship between hSHBG affinity for testosterone and hSHBG concentration revealed by surface plasmon resonance. Mol Cell Endocrinol. 2015;399:201–7.

    Article  CAS  PubMed  Google Scholar 

  103. de Ronde W, van der Schouw YT, Pierik FH, Pols HA, Muller M, Grobbee DE, et al. Serum levels of sex hormone-binding globulin (SHBG) are not associated with lower levels of non-SHBG-bound testosterone in male newborns and healthy adult men. Clin Endocrinol. 2005;62(4):498–503.

    Article  CAS  Google Scholar 

  104. Mendel CM. The free hormone hypothesis. Distinction from the free hormone transport hypothesis. J Androl. 1992;13(2):107–16.

    CAS  PubMed  Google Scholar 

  105. de Marco R, Locatelli F, Sunyer J, Burney P. Differences in incidence of reported asthma related to age in men and women. A retrospective analysis of the data of the European respiratory health survey. Am J Respir Crit Care Med. 2000;162(1):68–74.

    Article  PubMed  Google Scholar 

  106. Laffont S, Blanquart E, Guery JC. Sex differences in asthma: a key role of androgen-signaling in group 2 innate lymphoid cells. Front Immunol. 2017;8:1069.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Traish A, Bolanos J, Nair S, Saad F, Morgentaler A. Do androgens modulate the pathophysiological pathways of inflammation? Appraising the contemporary evidence. J Clin Med. 2018;7(12)

    Google Scholar 

  108. Guiochon-Mantel A. Regulation of the differentiation and proliferation of smooth muscle cells by the sex hormones. Rev Mal Respir. 2000;17(2 Pt 2):604–8.

    CAS  PubMed  Google Scholar 

  109. Hanley K, Rassner U, Jiang Y, Vansomphone D, Crumrine D, Komuves L, et al. Hormonal basis for the gender difference in epidermal barrier formation in the fetal rat. Acceleration by estrogen and delay by testosterone. J Clin Invest. 1996;97(11):2576–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kimura Y, Suzuki T, Kaneko C, Darnel AD, Akahira J, Ebina M, et al. Expression of androgen receptor and 5alpha-reductase types 1 and 2 in early gestation fetal lung: a possible correlation with branching morphogenesis. Clin Sci (Lond). 2003;105(6):709–13.

    Article  CAS  Google Scholar 

  111. Zarazua A, Gonzalez-Arenas A, Ramirez-Velez G, Bazan-Perkins B, Guerra-Araiza C, Campos-Lara MG. Sexual dimorphism in the regulation of estrogen, progesterone, and androgen receptors by sex steroids in the rat airway smooth muscle cells. Int J Endocrinol. 2016;2016:8423192.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Liu QH, Zheng YM, Wang YX. Two distinct signaling pathways for regulation of spontaneous local Ca2+ release by phospholipase C in airway smooth muscle cells. Pflugers Arch. 2007;453(4):531–41.

    Article  CAS  PubMed  Google Scholar 

  113. Mikkonen L, Pihlajamaa P, Sahu B, Zhang FP, Janne OA. Androgen receptor and androgen-dependent gene expression in lung. Mol Cell Endocrinol. 2010;317(1–2):14–24.

    Article  CAS  PubMed  Google Scholar 

  114. Butts CL, Bowers E, Horn JC, Shukair SA, Belyavskaya E, Tonelli L, et al. Inhibitory effects of progesterone differ in dendritic cells from female and male rodents. Gend Med. 2008;5(4):434–47.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Rubinow KB, Houston B, Wang S, Goodspeed L, Ogimoto K, Morton GJ, et al. Androgen receptor deficiency in monocytes/macrophages does not alter adiposity or glucose homeostasis in male mice. Asian J Androl. 2018;20(3):276–83.

    Article  CAS  PubMed  Google Scholar 

  116. Trigunaite A, Dimo J, Jorgensen TN. Suppressive effects of androgens on the immune system. Cell Immunol. 2015;294(2):87–94.

    Article  CAS  PubMed  Google Scholar 

  117. Mantalaris A, Panoskaltsis N, Sakai Y, Bourne P, Chang C, Messing EM, et al. Localization of androgen receptor expression in human bone marrow. J Pathol. 2001;193(3):361–6.

    Article  CAS  PubMed  Google Scholar 

  118. Viselli SM, Olsen NJ, Shults K, Steizer G, Kovacs WJ. Immunochemical and flow cytometric analysis of androgen receptor expression in thymocytes. Mol Cell Endocrinol. 1995;109(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  119. Heinlein CA, Chang C. The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions. Mol Endocrinol. 2002;16(10):2181–7.

    Article  CAS  PubMed  Google Scholar 

  120. Heinlein CA, Chang C. Androgen receptor (AR) coregulators: an overview. Endocr Rev. 2002;23(2):175–200.

    Article  CAS  PubMed  Google Scholar 

  121. Fang H, Tong W, Branham WS, Moland CL, Dial SL, Hong H, et al. Study of 202 natural, synthetic, and environmental chemicals for binding to the androgen receptor. Chem Res Toxicol. 2003;16(10):1338–58.

    Article  CAS  PubMed  Google Scholar 

  122. Berg AH, Rice CD, Rahman MS, Dong J, Thomas P. Identification and characterization of membrane androgen receptors in the ZIP9 zinc transporter subfamily: I. discovery in female Atlantic croaker and evidence ZIP9 mediates testosterone-induced apoptosis of ovarian follicle cells. Endocrinology. 2014;155(11):4237–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Thomas P, Converse A, Berg HA. ZIP9, a novel membrane androgen receptor and zinc transporter protein. Gen Comp Endocrinol. 2018;257:130–6.

    Article  CAS  PubMed  Google Scholar 

  124. Jorgensen CV, Brauner-Osborne H. Pharmacology and physiological function of the orphan GPRC6A receptor. Basic Clin Pharmacol Toxicol. 2020;126 Suppl 6:77–87.

    Article  PubMed  CAS  Google Scholar 

  125. Lucas-Herald AK, Alves-Lopes R, Montezano AC, Ahmed SF, Touyz RM. Genomic and non-genomic effects of androgens in the cardiovascular system: clinical implications. Clin Sci (Lond). 2017;131(13):1405–18.

    Article  CAS  Google Scholar 

  126. Clemmensen C, Smajilovic S, Wellendorph P, Brauner-Osborne H. The GPCR, class C, group 6, subtype a (GPRC6A) receptor: from cloning to physiological function. Br J Pharmacol. 2014;171(5):1129–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Pi M, Kapoor K, Wu Y, Ye R, Senogles SE, Nishimoto SK, et al. Structural and functional evidence for testosterone activation of GPRC6A in peripheral tissues. Mol Endocrinol. 2015;29(12):1759–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Thomas P, Pang Y, Dong J, Berg AH. Identification and characterization of membrane androgen receptors in the ZIP9 zinc transporter subfamily: II. Role of human ZIP9 in testosterone-induced prostate and breast cancer cell apoptosis. Endocrinology. 2014;155(11):4250–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Filardo EJ, Quinn JA, Frackelton AR Jr, Bland KI. Estrogen action via the G protein-coupled receptor, GPR30: stimulation of adenylyl cyclase and cAMP-mediated attenuation of the epidermal growth factor receptor-to-MAPK signaling axis. Mol Endocrinol. 2002;16(1):70–84.

    Article  CAS  PubMed  Google Scholar 

  130. Paterni I, Granchi C, Katzenellenbogen JA, Minutolo F. Estrogen receptors alpha (ERalpha) and beta (ERbeta): subtype-selective ligands and clinical potential. Steroids. 2014;90:13–29.

    Article  CAS  PubMed  Google Scholar 

  131. Prossnitz ER, Arterburn JB, Smith HO, Oprea TI, Sklar LA, Hathaway HJ. Estrogen signaling through the transmembrane G protein-coupled receptor GPR30. Annu Rev Physiol. 2008;70:165–90.

    Article  CAS  PubMed  Google Scholar 

  132. Prossnitz ER, Barton M. The G-protein-coupled estrogen receptor GPER in health and disease. Nat Rev Endocrinol. 2011;7(12):715–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, et al. Estrogen receptors: how do they signal and what are their targets. Physiol Rev. 2007;87(3):905–31.

    Article  CAS  PubMed  Google Scholar 

  134. Lai YJ, Yu D, Zhang JH, Chen GJ. Cooperation of genomic and rapid nongenomic actions of estrogens in synaptic plasticity. Mol Neurobiol. 2017;54(6):4113–26.

    Article  CAS  PubMed  Google Scholar 

  135. Saczko J, Michel O, Chwilkowska A, Sawicka E, Maczynska J, Kulbacka J. Estrogen receptors in cell membranes: regulation and signaling. Adv Anat Embryol Cell Biol. 2017;227:93–105.

    Article  PubMed  Google Scholar 

  136. Bjornstrom L, Sjoberg M. Estrogen receptor-dependent activation of AP-1 via non-genomic signalling. Nucl Recept. 2004;2(1):3.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Bjornstrom L, Sjoberg M. Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol. 2005;19(4):833–42.

    Article  PubMed  CAS  Google Scholar 

  138. Madak-Erdogan Z, Lupien M, Stossi F, Brown M, Katzenellenbogen BS. Genomic collaboration of estrogen receptor alpha and extracellular signal-regulated kinase 2 in regulating gene and proliferation programs. Mol Cell Biol. 2011;31(1):226–36.

    Article  CAS  PubMed  Google Scholar 

  139. Yu L, Moore AB, Castro L, Gao X, Huynh HL, Klippel M, et al. Estrogen regulates MAPK-related genes through genomic and nongenomic interactions between IGF-I receptor tyrosine kinase and estrogen receptor-alpha signaling pathways in human uterine leiomyoma cells. J Signal Transduct. 2012;2012:204236.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Adamski J, Benveniste EN. 17beta-estradiol activation of the c-Jun N-terminal kinase pathway leads to down-regulation of class II major histocompatibility complex expression. Mol Endocrinol. 2005;19(1):113–24.

    Article  CAS  PubMed  Google Scholar 

  141. Ambhore NS, Kalidhindi RSR, Loganathan J, Sathish V. Role of differential estrogen receptor activation in airway Hyperreactivity and remodeling in a murine model of asthma. Am J Respir Cell Mol Biol. 2019;61(4):469–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ambhore NS, Kalidhindi RSR, Pabelick CM, Hawse JR, Prakash YS, Sathish V. Differential estrogen-receptor activation regulates extracellular matrix deposition in human airway smooth muscle remodeling via NF-kappaB pathway. FASEB J. 2019;33(12):13935–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cunningham M, Gilkeson G. Estrogen receptors in immunity and autoimmunity. Clin Rev Allergy Immunol. 2011;40(1):66–73.

    Article  CAS  PubMed  Google Scholar 

  144. Ivanova MM, Mazhawidza W, Dougherty SM, Minna JD, Klinge CM. Activity and intracellular location of estrogen receptors alpha and beta in human bronchial epithelial cells. Mol Cell Endocrinol. 2009;305(1–2):12–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kalidhindi RSR, Ambhore NS, Bhallamudi S, Loganathan J, Sathish V. Role of estrogen receptors alpha and beta in a murine model of asthma: exacerbated airway Hyperresponsiveness and remodeling in ERbeta knockout mice. Front Pharmacol. 2019;10:1499.

    Article  CAS  PubMed  Google Scholar 

  146. Ladikou EE, Kassi E. The emerging role of estrogen in B cell malignancies. Leuk Lymphoma. 2017;58(3):528–39.

    Article  CAS  PubMed  Google Scholar 

  147. Beyer C, Kuppers E, Karolczak M, Trotter A. Ontogenetic expression of estrogen and progesterone receptors in the mouse lung. Biol Neonate. 2003;84(1):59–63.

    Article  CAS  PubMed  Google Scholar 

  148. Massaro D, Massaro GD. Estrogen receptor regulation of pulmonary alveolar dimensions: alveolar sexual dimorphism in mice. Am J Physiol Lung Cell Mol Physiol. 2006;290(5):L866–70.

    Article  CAS  PubMed  Google Scholar 

  149. Massaro GD, Mortola JP, Massaro D. Estrogen modulates the dimensions of the lung’s gas-exchange surface area and alveoli in female rats. Am J Phys. 1996;270(1 Pt 1):L110–4.

    CAS  Google Scholar 

  150. Flouriot G, Brand H, Denger S, Metivier R, Kos M, Reid G, et al. Identification of a new isoform of the human estrogen receptor-alpha (hER-alpha) that is encoded by distinct transcripts and that is able to repress hER-alpha activation function 1. EMBO J. 2000;19(17):4688–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wang Z, Zhang X, Shen P, Loggie BW, Chang Y, Deuel TF. Identification, cloning, and expression of human estrogen receptor-alpha36, a novel variant of human estrogen receptor-alpha66. Biochem Biophys Res Commun. 2005;336(4):1023–7.

    Article  CAS  PubMed  Google Scholar 

  152. Acconcia F, Ascenzi P, Bocedi A, Spisni E, Tomasi V, Trentalance A, et al. Palmitoylation-dependent estrogen receptor alpha membrane localization: regulation by 17beta-estradiol. Mol Biol Cell. 2005;16(1):231–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Acconcia F, Ascenzi P, Fabozzi G, Visca P, Marino M. S-palmitoylation modulates human estrogen receptor-alpha functions. Biochem Biophys Res Commun. 2004;316(3):878–83.

    Article  CAS  PubMed  Google Scholar 

  154. Marino M, Ascenzi P, Acconcia F. S-palmitoylation modulates estrogen receptor alpha localization and functions. Steroids. 2006;71(4):298–303.

    Article  CAS  PubMed  Google Scholar 

  155. Razandi M, Oh P, Pedram A, Schnitzer J, Levin ER. ERs associate with and regulate the production of caveolin: implications for signaling and cellular actions. Mol Endocrinol. 2002;16(1):100–15.

    Article  CAS  PubMed  Google Scholar 

  156. Billon-Gales A, Fontaine C, Filipe C, Douin-Echinard V, Fouque MJ, Flouriot G, et al. The transactivating function 1 of estrogen receptor alpha is dispensable for the vasculoprotective actions of 17beta-estradiol. Proc Natl Acad Sci U S A. 2009;106(6):2053–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Warnmark A, Treuter E, Wright AP, Gustafsson JA. Activation functions 1 and 2 of nuclear receptors: molecular strategies for transcriptional activation. Mol Endocrinol. 2003;17(10):1901–9.

    Article  PubMed  CAS  Google Scholar 

  158. Li L, Haynes MP, Bender JR. Plasma membrane localization and function of the estrogen receptor alpha variant (ER46) in human endothelial cells. Proc Natl Acad Sci U S A. 2003;100(8):4807–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wang Z, Zhang X, Shen P, Loggie BW, Chang Y, Deuel TF. A variant of estrogen receptor-{alpha}, hER-{alpha}36: transduction of estrogen- and antiestrogen-dependent membrane-initiated mitogenic signaling. Proc Natl Acad Sci U S A. 2006;103(24):9063–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lin AH, Li RW, Ho EY, Leung GP, Leung SW, Vanhoutte PM, et al. Differential ligand binding affinities of human estrogen receptor-alpha isoforms. PLoS One. 2013;8(4):e63199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Aravamudan B, Goorhouse KJ, Unnikrishnan G, Thompson MA, Pabelick CM, Hawse JR, et al. Differential expression of estrogen receptor variants in response to inflammation signals in human airway smooth muscle. J Cell Physiol. 2017;232(7):1754–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Arias-Pulido H, Royce M, Gong Y, Joste N, Lomo L, Lee SJ, et al. GPR30 and estrogen receptor expression: new insights into hormone dependence of inflammatory breast cancer. Breast Cancer Res Treat. 2010;123(1):51–8.

    Article  CAS  PubMed  Google Scholar 

  163. Prossnitz ER, Maggiolini M. Mechanisms of estrogen signaling and gene expression via GPR30. Mol Cell Endocrinol. 2009;308(1–2):32–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Prossnitz ER, Oprea TI, Sklar LA, Arterburn JB. The ins and outs of GPR30: a transmembrane estrogen receptor. J Steroid Biochem Mol Biol. 2008;109(3–5):350–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Thomas P, Pang Y, Filardo EJ, Dong J. Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology. 2005;146(2):624–32.

    Article  CAS  PubMed  Google Scholar 

  166. Jala VR, Radde BN, Haribabu B, Klinge CM. Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer. BMC Cancer. 2012;12:624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Townsend EA, Thompson MA, Pabelick CM, Prakash YS. Rapid effects of estrogen on intracellular Ca2+ regulation in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2010;298(4):L521–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Merlino AA, Welsh TN, Tan H, Yi LJ, Cannon V, Mercer BM, et al. Nuclear progesterone receptors in the human pregnancy myometrium: evidence that parturition involves functional progesterone withdrawal mediated by increased expression of progesterone receptor-a. J Clin Endocrinol Metab. 2007;92(5):1927–33.

    Article  CAS  PubMed  Google Scholar 

  169. Piette PCM. The pharmacodynamics and safety of progesterone. Best Pract Res Clin Obstet Gynaecol. 2020;

    Google Scholar 

  170. Shao R, Egecioglu E, Weijdegard B, Ljungstrom K, Ling C, Fernandez-Rodriguez J, et al. Developmental and hormonal regulation of progesterone receptor A-form expression in female mouse lung in vivo: interaction with glucocorticoid receptors. J Endocrinol. 2006;190(3):857–70.

    Article  CAS  PubMed  Google Scholar 

  171. Shao R, Weijdegard B, Ljungstrom K, Friberg A, Zhu C, Wang X, et al. Nuclear progesterone receptor a and B isoforms in mouse fallopian tube and uterus: implications for expression, regulation, and cellular function. Am J Physiol Endocrinol Metab. 2006;291(1):E59–72.

    Article  CAS  PubMed  Google Scholar 

  172. Giangrande PH, DP MD. The a and B isoforms of the human progesterone receptor: two functionally different transcription factors encoded by a single gene. Recent Prog Horm Res. 1999;54:291–313; discussion -4.

    CAS  PubMed  Google Scholar 

  173. Tetel MJ, Giangrande PH, Leonhardt SA, McDonnell DP, Edwards DP. Hormone-dependent interaction between the amino- and carboxyl-terminal domains of progesterone receptor in vitro and in vivo. Mol Endocrinol. 1999;13(6):910–24.

    Article  CAS  PubMed  Google Scholar 

  174. McKenna NJ, Lanz RB, O’Malley BW. Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev. 1999;20(3):321–44.

    CAS  PubMed  Google Scholar 

  175. Onate SA, Tsai SY, Tsai MJ, O’Malley BW. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science. 1995;270(5240):1354–7.

    Article  CAS  PubMed  Google Scholar 

  176. Migliaccio A, Piccolo D, Castoria G, Di Domenico M, Bilancio A, Lombardi M, et al. Activation of the Src/p21ras/Erk pathway by progesterone receptor via cross-talk with estrogen receptor. EMBO J. 1998;17(7):2008–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Jain R, Ray JM, Pan JH, Brody SL. Sex hormone-dependent regulation of cilia beat frequency in airway epithelium. Am J Respir Cell Mol Biol. 2012;46(4):446–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Barberis MC, Veronese S, Bauer D, De Juli E, Harari S. Immunocytochemical detection of progesterone receptors. A study in a patient with primary pulmonary hypertension. Chest. 1995;107(3):869–72.

    Article  CAS  PubMed  Google Scholar 

  179. Welter BH, Hansen EL, Saner KJ, Wei Y, Price TM. Membrane-bound progesterone receptor expression in human aortic endothelial cells. J Histochem Cytochem. 2003;51(8):1049–55.

    Article  CAS  PubMed  Google Scholar 

  180. Gilliver SC. Sex steroids as inflammatory regulators. J Steroid Biochem Mol Biol. 2010;120(2–3):105–15.

    Article  CAS  PubMed  Google Scholar 

  181. Dressing GE, Goldberg JE, Charles NJ, Schwertfeger KL, Lange CA. Membrane progesterone receptor expression in mammalian tissues: a review of regulation and physiological implications. Steroids. 2011;76(1–2):11–7.

    Article  CAS  PubMed  Google Scholar 

  182. Shah NM, Lai PF, Imami N, Johnson MR. Progesterone-related immune modulation of pregnancy and labor. Front Endocrinol (Lausanne). 2019;10:198.

    Article  Google Scholar 

  183. Zhu Y, Rice CD, Pang Y, Pace M, Thomas P. Cloning, expression, and characterization of a membrane progestin receptor and evidence it is an intermediary in meiotic maturation of fish oocytes. Proc Natl Acad Sci U S A. 2003;100(5):2231–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Tokumoto T, Hossain MB, Wang J. Establishment of procedures for studying mPR-interacting agents and physiological roles of mPR. Steroids. 2016;111:79–83.

    Article  CAS  PubMed  Google Scholar 

  185. Zhu Y, Bond J, Thomas P. Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progestin receptor. Proc Natl Acad Sci U S A. 2003;100(5):2237–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Areia A, Vale-Pereira S, Alves V, Rodrigues-Santos P, Moura P, Mota-Pinto A. Membrane progesterone receptors in human regulatory T cells: a reality in pregnancy. BJOG. 2015;122(11):1544–50.

    Article  CAS  PubMed  Google Scholar 

  187. Areia A, Vale-Pereira S, Alves V, Rodrigues-Santos P, Santos-Rosa M, Moura P, et al. Can membrane progesterone receptor alpha on T regulatory cells explain the ensuing human labour? J Reprod Immunol. 2016;113:22–6.

    Article  CAS  PubMed  Google Scholar 

  188. Dosiou C, Hamilton AE, Pang Y, Overgaard MT, Tulac S, Dong J, et al. Expression of membrane progesterone receptors on human T lymphocytes and Jurkat cells and activation of G-proteins by progesterone. J Endocrinol. 2008;196(1):67–77.

    Article  CAS  PubMed  Google Scholar 

  189. Feng L, Ransom CE, Nazzal MK, Allen TK, Li YJ, Truong T, et al. The role of progesterone and a novel progesterone receptor, progesterone receptor membrane component 1, in the inflammatory response of fetal membranes to Ureaplasma parvum infection. PLoS One. 2016;11(12):e0168102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Ndiaye K, Poole DH, Walusimbi S, Cannon MJ, Toyokawa K, Maalouf SW, et al. Progesterone effects on lymphocytes may be mediated by membrane progesterone receptors. J Reprod Immunol. 2012;95(1–2):15–26.

    Article  CAS  PubMed  Google Scholar 

  191. Jasper AE, McIver WJ, Sapey E, Walton GM. Understanding the role of neutrophils in chronic inflammatory airway disease. F1000Res. 2019:8.

    Google Scholar 

  192. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5(12):953–64.

    Article  CAS  PubMed  Google Scholar 

  193. Chuang KH, Altuwaijri S, Li G, Lai JJ, Chu CY, Lai KP, et al. Neutropenia with impaired host defense against microbial infection in mice lacking androgen receptor. J Exp Med. 2009;206(5):1181–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Marin DP, Bolin AP, dos Santos RC, Curi R, Otton R. Testosterone suppresses oxidative stress in human neutrophils. Cell Biochem Funct. 2010;28(5):394–402.

    Article  CAS  PubMed  Google Scholar 

  195. Cabello N, Mishra V, Sinha U, DiAngelo SL, Chroneos ZC, Ekpa NA, et al. Sex differences in the expression of lung inflammatory mediators in response to ozone. Am J Physiol Lung Cell Mol Physiol. 2015;309(10):L1150–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Hu G, Christman JW. Editorial: alveolar macrophages in lung inflammation and resolution. Front Immunol. 2019;10:2275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Yamasaki K, Eeden SFV. Lung macrophage phenotypes and functional responses: role in the pathogenesis of COPD. Int J Mol Sci. 2018;19(2)

    Google Scholar 

  198. Kapellos TS, Bassler K, Aschenbrenner AC, Fujii W, Schultze JL. Dysregulated functions of lung macrophage populations in COPD. J Immunol Res. 2018;2018:2349045.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Schyns J, Bureau F, Marichal T. Lung interstitial macrophages: past, present, and future. J Immunol Res. 2018;2018:5160794.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Olsen HH, Grunewald J, Tornling G, Skold CM, Eklund A. Bronchoalveolar lavage results are independent of season, age, gender and collection site. PLoS One. 2012;7(8):e43644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Guilliams M, De Kleer I, Henri S, Post S, Vanhoutte L, De Prijck S, et al. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J Exp Med. 2013;210(10):1977–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32(5):593–604.

    Article  CAS  PubMed  Google Scholar 

  203. Rettew JA, Huet-Hudson YM, Marriott I. Testosterone reduces macrophage expression in the mouse of toll-like receptor 4, a trigger for inflammation and innate immunity. Biol Reprod. 2008;78(3):432–7.

    Article  CAS  PubMed  Google Scholar 

  204. Malkin CJ, Pugh PJ, Jones RD, Kapoor D, Channer KS, Jones TH. The effect of testosterone replacement on endogenous inflammatory cytokines and lipid profiles in hypogonadal men. J Clin Endocrinol Metab. 2004;89(7):3313–8.

    Article  CAS  PubMed  Google Scholar 

  205. D’Agostino P, Milano S, Barbera C, Di Bella G, La Rosa M, Ferlazzo V, et al. Sex hormones modulate inflammatory mediators produced by macrophages. Ann N Y Acad Sci. 1999;876:426–9.

    Article  PubMed  Google Scholar 

  206. Melgert BN, Oriss TB, Qi Z, Dixon-McCarthy B, Geerlings M, Hylkema MN, et al. Macrophages: regulators of sex differences in asthma? Am J Respir Cell Mol Biol. 2010;42(5):595–603.

    Article  CAS  PubMed  Google Scholar 

  207. Villa A, Rizzi N, Vegeto E, Ciana P, Maggi A. Estrogen accelerates the resolution of inflammation in macrophagic cells. Sci Rep. 2015;5:15224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Pisetsky DS, Spencer DM. Effects of progesterone and estradiol sex hormones on the release of microparticles by RAW 264.7 macrophages stimulated by poly(I:C). Clin Vaccine Immunol. 2011;18(9):1420–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Nelson RK, Bush A, Stokes J, Nair P, Akuthota P. Eosinophilic asthma. J Allergy Clin Immunol Pract. 2020;8(2):465–73.

    Article  PubMed  Google Scholar 

  210. Hogan SP, Rosenberg HF, Moqbel R, Phipps S, Foster PS, Lacy P, et al. Eosinophils: biological properties and role in health and disease. Clin Exp Allergy. 2008;38(5):709–50.

    Article  CAS  PubMed  Google Scholar 

  211. Hallstrand TS, Henderson WR Jr. An update on the role of leukotrienes in asthma. Curr Opin Allergy Clin Immunol. 2010;10(1):60–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Nakanishi H, Horii Y, Fujita K. Effect of testosterone on the eosinophil response of C57BL/6 mice to infection with Brugia pahangi. Immunopharmacology. 1992;23(2):75–9.

    Article  CAS  PubMed  Google Scholar 

  213. Hamano N, Terada N, Maesako K, Numata T, Konno A. Effect of sex hormones on eosinophilic inflammation in nasal mucosa. Allergy Asthma Proc. 1998;19(5):263–9.

    Article  CAS  PubMed  Google Scholar 

  214. Riffo-Vasquez Y, Ligeiro de Oliveira AP, Page CP, Spina D, Tavares-de-Lima W. Role of sex hormones in allergic inflammation in mice. Clin Exp Allergy. 2007;37(3):459–70.

    Article  CAS  PubMed  Google Scholar 

  215. Hellings PW, Vandekerckhove P, Claeys R, Billen J, Kasran A, Ceuppens JL. Progesterone increases airway eosinophilia and hyper-responsiveness in a murine model of allergic asthma. Clin Exp Allergy. 2003;33(10):1457–63.

    Article  CAS  PubMed  Google Scholar 

  216. Amin K. The role of mast cells in allergic inflammation. Respir Med. 2012;106(1):9–14.

    Article  PubMed  Google Scholar 

  217. da Silva EZ, Jamur MC, Oliver C. Mast cell function: a new vision of an old cell. J Histochem Cytochem. 2014;62(10):698–738.

    Article  PubMed  CAS  Google Scholar 

  218. Chen W, Beck I, Schober W, Brockow K, Effner R, Buters JT, et al. Human mast cells express androgen receptors but treatment with testosterone exerts no influence on IgE-independent mast cell degranulation elicited by neuromuscular blocking agents. Exp Dermatol. 2010;19(3):302–4.

    Article  CAS  PubMed  Google Scholar 

  219. Sinha-Hikim I, Taylor WE, Gonzalez-Cadavid NF, Zheng W, Bhasin S. Androgen receptor in human skeletal muscle and cultured muscle satellite cells: up-regulation by androgen treatment. J Clin Endocrinol Metab. 2004;89(10):5245–55.

    Article  CAS  PubMed  Google Scholar 

  220. Guhl S, Artuc M, Zuberbier T, Babina M. Testosterone exerts selective anti-inflammatory effects on human skin mast cells in a cell subset dependent manner. Exp Dermatol. 2012;21(11):878–80.

    Article  CAS  PubMed  Google Scholar 

  221. Russi AE, Ebel ME, Yang Y, Brown MA. Male-specific IL-33 expression regulates sex-dimorphic EAE susceptibility. Proc Natl Acad Sci U S A. 2018;115(7):E1520–E9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Boberg E, Johansson K, Malmhall C, Weidner J, Radinger M. House dust mite induces bone marrow IL-33-responsive ILC2s and TH cells. Int J Mol Sci. 2020;21(11)

    Google Scholar 

  223. Vellutini M, Viegi G, Parrini D, Pedreschi M, Baldacci S, Modena P, et al. Serum immunoglobulins E are related to menstrual cycle. Eur J Epidemiol. 1997;13(8):931–5.

    Article  CAS  PubMed  Google Scholar 

  224. Narita S, Goldblum RM, Watson CS, Brooks EG, Estes DM, Curran EM, et al. Environmental estrogens induce mast cell degranulation and enhance IgE-mediated release of allergic mediators. Environ Health Perspect. 2007;115(1):48–52.

    Article  CAS  PubMed  Google Scholar 

  225. Vliagoftis H. Thrombin induces mast cell adhesion to fibronectin: evidence for involvement of protease-activated receptor-1. J Immunol. 2002;169(8):4551–8.

    Article  CAS  PubMed  Google Scholar 

  226. Zaitsu M, Narita S, Lambert KC, Grady JJ, Estes DM, Curran EM, et al. Estradiol activates mast cells via a non-genomic estrogen receptor-alpha and calcium influx. Mol Immunol. 2007;44(8):1977–85.

    Article  CAS  PubMed  Google Scholar 

  227. Belot MP, Abdennebi-Najar L, Gaudin F, Lieberherr M, Godot V, Taieb J, et al. Progesterone reduces the migration of mast cells toward the chemokine stromal cell-derived factor-1/CXCL12 with an accompanying decrease in CXCR4 receptors. Am J Physiol Endocrinol Metab. 2007;292(5):E1410–7.

    Article  CAS  PubMed  Google Scholar 

  228. Vasiadi M, Kempuraj D, Boucher W, Kalogeromitros D, Theoharides TC. Progesterone inhibits mast cell secretion. Int J Immunopathol Pharmacol. 2006;19(4):787–94.

    Article  CAS  PubMed  Google Scholar 

  229. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Development of monocytes, macrophages, and dendritic cells. Science. 2010;327(5966):656–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. O’Keeffe M, Mok WH, Radford KJ. Human dendritic cell subsets and function in health and disease. Cell Mol Life Sci. 2015;72(22):4309–25.

    Article  PubMed  CAS  Google Scholar 

  231. Patente TA, Pinho MP, Oliveira AA, Evangelista GCM, Bergami-Santos PC, Barbuto JAM. Human dendritic cells: their heterogeneity and clinical application potential in Cancer immunotherapy. Front Immunol. 2018;9:3176.

    Article  CAS  PubMed  Google Scholar 

  232. Tai Y, Wang Q, Korner H, Zhang L, Wei W. Molecular mechanisms of T cells activation by dendritic cells in autoimmune diseases. Front Pharmacol. 2018;9:642.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Hepworth MR, Hardman MJ, Grencis RK. The role of sex hormones in the development of Th2 immunity in a gender-biased model of Trichuris muris infection. Eur J Immunol. 2010;40(2):406–16.

    Article  CAS  PubMed  Google Scholar 

  234. Paharkova-Vatchkova V, Maldonado R, Kovats S. Estrogen preferentially promotes the differentiation of CD11c+ CD11b(intermediate) dendritic cells from bone marrow precursors. J Immunol. 2004;172(3):1426–36.

    Article  CAS  PubMed  Google Scholar 

  235. Laffont S, Seillet C, Guery JC. Estrogen receptor-dependent regulation of dendritic cell development and function. Front Immunol. 2017;8:108.

    Article  PubMed  PubMed Central  Google Scholar 

  236. Chaplin DD. Overview of the immune response. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S3–23.

    Article  PubMed  PubMed Central  Google Scholar 

  237. Hoffman W, Lakkis FG, Chalasani G. B cells, antibodies, and more. Clin J Am Soc Nephrol. 2016;11(1):137–54.

    Article  CAS  PubMed  Google Scholar 

  238. Nicholson LB. The immune system. Essays Biochem. 2016;60(3):275–301.

    Article  PubMed  PubMed Central  Google Scholar 

  239. Famili F, Wiekmeijer AS, Staal FJ. The development of T cells from stem cells in mice and humans. Future Sci OA. 2017;3(3):FSO186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol. 2010;28:445–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Fitzpatrick F, Lepault F, Homo-Delarche F, Bach JF, Dardenne M. Influence of castration, alone or combined with thymectomy, on the development of diabetes in the nonobese diabetic mouse. Endocrinology. 1991;129(3):1382–90.

    Article  CAS  PubMed  Google Scholar 

  242. Viselli SM, Reese KR, Fan J, Kovacs WJ, Olsen NJ. Androgens alter B cell development in normal male mice. Cell Immunol. 1997;182(2):99–104.

    Article  CAS  PubMed  Google Scholar 

  243. Altuwaijri S, Chuang KH, Lai KP, Lai JJ, Lin HY, Young FM, et al. Susceptibility to autoimmunity and B cell resistance to apoptosis in mice lacking androgen receptor in B cells. Mol Endocrinol. 2009;23(4):444–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Erlandsson MC, Jonsson CA, Islander U, Ohlsson C, Carlsten H. Oestrogen receptor specificity in oestradiol-mediated effects on B lymphopoiesis and immunoglobulin production in male mice. Immunology. 2003;108(3):346–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Fu Y, Li L, Liu X, Ma C, Zhang J, Jiao Y, et al. Estrogen promotes B cell activation in vitro through down-regulating CD80 molecule expression. Gynecol Endocrinol. 2011;27(8):593–6.

    Article  CAS  PubMed  Google Scholar 

  246. Yao G, Liang J, Han X, Hou Y. In vivo modulation of the circulating lymphocyte subsets and monocytes by androgen. Int Immunopharmacol. 2003;3(13–14):1853–60.

    Article  CAS  PubMed  Google Scholar 

  247. Bebo BF Jr, Schuster JC, Vandenbark AA, Offner H. Androgens alter the cytokine profile and reduce encephalitogenicity of myelin-reactive T cells. J Immunol. 1999;162(1):35–40.

    Article  CAS  PubMed  Google Scholar 

  248. Liva SM, Voskuhl RR. Testosterone acts directly on CD4+ T lymphocytes to increase IL-10 production. J Immunol. 2001;167(4):2060–7.

    Article  CAS  PubMed  Google Scholar 

  249. Freeman BM, Mountain DJ, Brock TC, Chapman JR, Kirkpatrick SS, Freeman MB, et al. Low testosterone elevates interleukin family cytokines in a rodent model: a possible mechanism for the potentiation of vascular disease in androgen-deficient males. J Surg Res. 2014;190(1):319–27.

    Article  CAS  PubMed  Google Scholar 

  250. Lelu K, Laffont S, Delpy L, Paulet PE, Perinat T, Tschanz SA, et al. Estrogen receptor alpha signaling in T lymphocytes is required for estradiol-mediated inhibition of Th1 and Th17 cell differentiation and protection against experimental autoimmune encephalomyelitis. J Immunol. 2011;187(5):2386–93.

    Article  CAS  PubMed  Google Scholar 

  251. Priyanka HP, Krishnan HC, Singh RV, Hima L, Thyagarajan S. Estrogen modulates in vitro T cell responses in a concentration- and receptor-dependent manner: effects on intracellular molecular targets and antioxidant enzymes. Mol Immunol. 2013;56(4):328–39.

    Article  CAS  PubMed  Google Scholar 

  252. Lambert KC, Curran EM, Judy BM, Milligan GN, Lubahn DB, Estes DM. Estrogen receptor alpha (ERalpha) deficiency in macrophages results in increased stimulation of CD4+ T cells while 17beta-estradiol acts through ERalpha to increase IL-4 and GATA-3 expression in CD4+ T cells independent of antigen presentation. J Immunol. 2005;175(9):5716–23.

    Article  CAS  PubMed  Google Scholar 

  253. Fuseini H, Yung JA, Cephus JY, Zhang J, Goleniewska K, Polosukhin VV, et al. Testosterone decreases house dust mite-induced type 2 and IL-17A-mediated airway inflammation. J Immunol. 2018;201(7):1843–54.

    Article  CAS  PubMed  Google Scholar 

  254. Wang Y, Cela E, Gagnon S, Sweezey NB. Estrogen aggravates inflammation in Pseudomonas aeruginosa pneumonia in cystic fibrosis mice. Respir Res. 2010;11:166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Chang J, Mosenifar Z. Differentiating COPD from asthma in clinical practice. J Intensive Care Med. 2007;22(5):300–9.

    Article  PubMed  Google Scholar 

  256. Peltola L, Patsi H, Harju T. COPD comorbidities predict high mortality – asthma-COPD-overlap has better prognosis. COPD. 2020:1–7.

    Google Scholar 

  257. Tommola M, Won HK, Ilmarinen P, Jung H, Tuomisto LE, Lehtimaki L, et al. Relationship between age and bronchodilator response at diagnosis in adult-onset asthma. Respir Res. 2020;21(1):179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Zhou A, Luo L, Liu N, Zhang C, Chen Y, Yin Y, et al. Prospective development of practical screening strategies for diagnosis of asthma-COPD overlap. Respirology. 2020;25(7):735–42.

    Article  PubMed  Google Scholar 

  259. Ober C, Yao TC. The genetics of asthma and allergic disease: a 21st century perspective. Immunol Rev. 2011;242(1):10–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Smit LA, Lenters V, Hoyer BB, Lindh CH, Pedersen HS, Liermontova I, et al. Prenatal exposure to environmental chemical contaminants and asthma and eczema in school-age children. Allergy. 2015;70(6):653–60.

    Article  CAS  PubMed  Google Scholar 

  261. DeChristopher LR. Excess free fructose and childhood asthma. Eur J Clin Nutr. 2015;69(12):1371.

    Article  CAS  PubMed  Google Scholar 

  262. Chhabra SK. Clinical application of spirometry in asthma: why, when and how often? Lung India. 2015;32(6):635–7.

    Article  PubMed  PubMed Central  Google Scholar 

  263. Langley RJ, Dryden C, Westwood J, Anderson E, Thompson A, Urquhart D. Once daily combined inhaled steroid and ultra long-acting bronchodilator prescribing in pediatric asthma: a dual center retrospective cohort study. J Asthma. 2019:1–2.

    Google Scholar 

  264. Vink NM, Postma DS, Schouten JP, Rosmalen JG, Boezen HM. Gender differences in asthma development and remission during transition through puberty: the TRacking Adolescents’ individual lives survey (TRAILS) study. J Allergy Clin Immunol. 2010;126(3):498–504 e1–6.

    Article  Google Scholar 

  265. Melgert BN, Ray A, Hylkema MN, Timens W, Postma DS. Are there reasons why adult asthma is more common in females? Curr Allergy Asthma Rep. 2007;7(2):143–50.

    Article  CAS  PubMed  Google Scholar 

  266. Holgate ST, Wenzel S, Postma DS, Weiss ST, Renz H, Sly PD. Asthma. Nat Rev Dis Primers. 2015;1:15025.

    Article  PubMed  PubMed Central  Google Scholar 

  267. de Oliveira AP, Peron JP, Damazo AS, Franco AL, Domingos HV, Oliani SM, et al. Female sex hormones mediate the allergic lung reaction by regulating the release of inflammatory mediators and the expression of lung E-selectin in rats. Respir Res. 2010;11:115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  268. Stanford KI, Mickleborough TD, Ray S, Lindley MR, Koceja DM, Stager JM. Influence of menstrual cycle phase on pulmonary function in asthmatic athletes. Eur J Appl Physiol. 2006;96(6):703–10.

    Article  PubMed  Google Scholar 

  269. Vrieze A, Postma DS, Kerstjens HA. Perimenstrual asthma: a syndrome without known cause or cure. J Allergy Clin Immunol. 2003;112(2):271–82.

    Article  PubMed  Google Scholar 

  270. Chhabra SK. Premenstrual asthma. Indian J Chest Dis Allied Sci. 2005;47(2):109–16.

    CAS  PubMed  Google Scholar 

  271. Farha S, Asosingh K, Laskowski D, Hammel J, Dweik RA, Wiedemann HP, et al. Effects of the menstrual cycle on lung function variables in women with asthma. Am J Respir Crit Care Med. 2009;180(4):304–10.

    Article  PubMed  PubMed Central  Google Scholar 

  272. Eid RC, Palumbo ML, Cahill KN. Perimenstrual asthma in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol Pract. 2020;8(2):573–8. e4

    Article  PubMed  Google Scholar 

  273. Graziottin A, Serafini A. Perimenstrual asthma: from pathophysiology to treatment strategies. Multidiscip Respir Med. 2016;11:30.

    Article  PubMed  PubMed Central  Google Scholar 

  274. Marques-Mejias MA, Barranco P, Laorden D, Romero D, Quirce S. Worsening of severe asthma due to menstruation and sensitization to albumins. J Investig Allergol Clin Immunol. 2018;28(5):330–2.

    Article  CAS  PubMed  Google Scholar 

  275. Semik-Orzech A, Skoczynski S, Pierzchala W. Serum estradiol concentration, estradiol-to-progesterone ratio and sputum IL-5 and IL-8 concentrations are increased in luteal phase of the menstrual cycle in perimenstrual asthma patients. Eur Ann Allergy Clin Immunol. 2017;49(4):161–70.

    Article  CAS  PubMed  Google Scholar 

  276. Koper I, Hufnagl K, Ehmann R. Gender aspects and influence of hormones on bronchial asthma - secondary publication and update. World Allergy Organ J. 2017;10(1):46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  277. Rao CK, Moore CG, Bleecker E, Busse WW, Calhoun W, Castro M, et al. Characteristics of perimenstrual asthma and its relation to asthma severity and control: data from the severe asthma research program. Chest. 2013;143(4):984–92.

    Article  PubMed  Google Scholar 

  278. Forbes L, Jarvis D, Burney P. Do hormonal contraceptives influence asthma severity? Eur Respir J. 1999;14(5):1028–33.

    Article  CAS  PubMed  Google Scholar 

  279. Dratva J, Schindler C, Curjuric I, Stolz D, Macsali F, Gomez FR, et al. Perimenstrual increase in bronchial hyperreactivity in premenopausal women: results from the population-based SAPALDIA 2 cohort. J Allergy Clin Immunol. 2010;125(4):823–9.

    Article  PubMed  Google Scholar 

  280. Kwon HL, Belanger K, Bracken MB. Asthma prevalence among pregnant and childbearing-aged women in the United States: estimates from national health surveys. Ann Epidemiol. 2003;13(5):317–24.

    Article  PubMed  Google Scholar 

  281. Namazy JA, Schatz M. Update in the treatment of asthma during pregnancy. Clin Rev Allergy Immunol. 2004;26(3):139–48.

    Article  CAS  PubMed  Google Scholar 

  282. Virchow JC. Asthma and pregnancy. Semin Respir Crit Care Med. 2012;33(6):630–44.

    Article  PubMed  Google Scholar 

  283. Schatz M, Dombrowski MP. Clinical practice. Asthma in pregnancy. N Engl J Med. 2009;360(18):1862–9.

    Article  CAS  PubMed  Google Scholar 

  284. Balzano G, Fuschillo S, Melillo G, Bonini S. Asthma and sex hormones. Allergy. 2001;56(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  285. Scioscia G, Carpagnano GE, Lacedonia D, Soccio P, Quarato CMI, Trabace L, et al. The role of airways 17beta-estradiol as a biomarker of severity in postmenopausal asthma: a pilot study. J Clin Med. 2020;9(7)

    Google Scholar 

  286. Balzano G, Fuschillo S, De Angelis E, Gaudiosi C, Mancini A, Caputi M. Persistent airway inflammation and high exacerbation rate in asthma that starts at menopause. Monaldi Arch Chest Dis. 2007;67(3):135–41.

    CAS  PubMed  Google Scholar 

  287. Farina F, Colombi S, Cantone R, Pastore M, Centanni S, Galimberti M. Study of hypophyseal and gonadal hormones and cases of postmenopausal occurrence of bronchial asthma. Minerva Med. 1986;77(7–8):243–7.

    CAS  PubMed  Google Scholar 

  288. Troisi RJ, Speizer FE, Willett WC, Trichopoulos D, Rosner B. Menopause, postmenopausal estrogen preparations, and the risk of adult-onset asthma. A prospective cohort study. Am J Respir Crit Care Med. 1995;152(4 Pt 1):1183–8.

    Article  CAS  PubMed  Google Scholar 

  289. Romieu I, Fabre A, Fournier A, Kauffmann F, Varraso R, Mesrine S, et al. Postmenopausal hormone therapy and asthma onset in the E3N cohort. Thorax. 2010;65(4):292–7.

    Article  PubMed  Google Scholar 

  290. Hoffstein V. Relationship between lung volume, maximal expiratory flow, forced expiratory volume in one second, and tracheal area in normal men and women. Am Rev Respir Dis. 1986;134(5):956–61.

    Article  CAS  PubMed  Google Scholar 

  291. Pagtakhan RD, Bjelland JC, Landau LI, Loughlin G, Kaltenborn W, Seeley G, et al. Sex differences in growth patterns of the airways and lung parenchyma in children. J Appl Physiol Respir Environ Exerc Physiol. 1984;56(5):1204–10.

    CAS  PubMed  Google Scholar 

  292. Tantisira KG, Colvin R, Tonascia J, Strunk RC, Weiss ST, Fuhlbrigge AL, et al. Airway responsiveness in mild to moderate childhood asthma: sex influences on the natural history. Am J Respir Crit Care Med. 2008;178(4):325–31.

    Article  PubMed  PubMed Central  Google Scholar 

  293. Carbajal-Garcia A, Reyes-Garcia J, Casas-Hernandez MF, Flores-Soto E, Diaz-Hernandez V, Solis-Chagoyan H, et al. Testosterone augments beta2 adrenergic receptor genomic transcription increasing salbutamol relaxation in airway smooth muscle. Mol Cell Endocrinol. 2020;110801

    Google Scholar 

  294. Espinoza J, Montaño LM, Perusquia M. Nongenomic bronchodilating action elicited by dehydroepiandrosterone (DHEA) in a Guinea pig asthma model. J Steroid Biochem Mol Biol. 2013;138:174–82.

    Google Scholar 

  295. Flores-Soto E, Reyes-Garcia J, Carbajal-Garcia A, Campuzano-Gonzalez E, Perusquia M, Sommer B, et al. Sex steroids effects on Guinea pig airway smooth muscle tone and intracellular ca(2+) basal levels. Mol Cell Endocrinol. 2017;439:444–56.

    Article  CAS  PubMed  Google Scholar 

  296. Montaño LM, Flores-Soto E, Reyes-Garcia J, Diaz-Hernandez V, Carbajal-Garcia A, Campuzano-Gonzalez E, et al. Testosterone induces hyporesponsiveness by interfering with IP3 receptors in Guinea pig airway smooth muscle. Mol Cell Endocrinol. 2018;473:17–30.

    Google Scholar 

  297. Perusquia M, Flores-Soto E, Sommer B, Campuzano-Gonzalez E, Martinez-Villa I, Martinez-Banderas AI, et al. Testosterone-induced relaxation involves L-type and store-operated Ca2+ channels blockade, and PGE 2 in Guinea pig airway smooth muscle. Pflugers Arch. 2015;467(4):767–77.

    Article  CAS  PubMed  Google Scholar 

  298. Cephus JY, Stier MT, Fuseini H, Yung JA, Toki S, Bloodworth MH, et al. Testosterone attenuates group 2 innate lymphoid cell-mediated airway inflammation. Cell Rep. 2017;21(9):2487–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Laffont S, Blanquart E, Savignac M, Cenac C, Laverny G, Metzger D, et al. Androgen signaling negatively controls group 2 innate lymphoid cells. J Exp Med. 2017;214(6):1581–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Kjellman B, Gustafsson PM. Asthma from childhood to adulthood: asthma severity, allergies, sensitization, living conditions, gender influence and social consequences. Respir Med. 2000;94(5):454–65.

    Article  CAS  PubMed  Google Scholar 

  301. Zannolli R, Morgese G. Does puberty interfere with asthma? Med Hypotheses. 1997;48(1):27–32.

    Article  CAS  PubMed  Google Scholar 

  302. Mileva Z, Maleeva A. The serum testosterone level of patients with bronchial asthma treated with corticosteroids and untreated. Vutr Boles. 1988;27(4):29–32.

    PubMed  Google Scholar 

  303. Kwon HL, Belanger K, Holford TR, Bracken MB. Effect of fetal sex on airway lability in pregnant women with asthma. Am J Epidemiol. 2006;163(3):217–21.

    Article  PubMed  Google Scholar 

  304. Guiedem E, Ikomey GM, Nkenfou C, Walter PE, Mesembe M, Chegou NN, et al. Chronic obstructive pulmonary disease (COPD): neutrophils, macrophages and lymphocytes in patients with anterior tuberculosis compared to tobacco related COPD. BMC Res Notes. 2018;11(1):192.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  305. Vogelmeier CF, Criner GJ, Martinez FJ, Anzueto A, Barnes PJ, Bourbeau J, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. Am J Respir Crit Care Med. 2017;195(5):557–82.

    Article  CAS  PubMed  Google Scholar 

  306. Davis RM, Novotny TE. The epidemiology of cigarette smoking and its impact on chronic obstructive pulmonary disease. Am Rev Respir Dis. 1989;140(3 Pt 2):S82–4.

    Article  CAS  PubMed  Google Scholar 

  307. Vozoris NT. Opioid utility for dyspnea in chronic obstructive pulmonary disease: a complicated and controversial story. Ann Palliat Med. 2020;9(2):571–8.

    Article  PubMed  Google Scholar 

  308. Varmaghani M, Dehghani M, Heidari E, Sharifi F, Moghaddam SS, Farzadfar F. Global prevalence of chronic obstructive pulmonary disease: systematic review and meta-analysis. East Mediterr Health J. 2019;25(1):47–57.

    Article  PubMed  Google Scholar 

  309. Chapman KR. Chronic obstructive pulmonary disease: are women more susceptible than men? Clin Chest Med. 2004;25(2):331–41.

    Article  PubMed  Google Scholar 

  310. Afonso AS, Verhamme KM, Sturkenboom MC, Brusselle GG. COPD in the general population: prevalence, incidence and survival. Respir Med. 2011;105(12):1872–84.

    Article  PubMed  Google Scholar 

  311. Artyukhov IP, Arshukova IL, Dobretsova EA, Dugina TA, Shulmin AV, Demko IV. Epidemiology of chronic obstructive pulmonary disease: a population-based study in Krasnoyarsk region, Russia. Int J Chron Obstruct Pulmon Dis. 2015;10:1781–6.

    PubMed  PubMed Central  Google Scholar 

  312. Ng M, Freeman MK, Fleming TD, Robinson M, Dwyer-Lindgren L, Thomson B, et al. Smoking prevalence and cigarette consumption in 187 countries, 1980-2012. JAMA. 2014;311(2):183–92.

    Article  CAS  PubMed  Google Scholar 

  313. Barnes PJ, Burney PG, Silverman EK, Celli BR, Vestbo J, Wedzicha JA, et al. Chronic obstructive pulmonary disease. Nat Rev Dis Primers. 2015;1:15076.

    Article  PubMed  Google Scholar 

  314. Birring SS, Brightling CE, Bradding P, Entwisle JJ, Vara DD, Grigg J, et al. Clinical, radiologic, and induced sputum features of chronic obstructive pulmonary disease in nonsmokers: a descriptive study. Am J Respir Crit Care Med. 2002;166(8):1078–83.

    Article  PubMed  Google Scholar 

  315. Silverman EK, Weiss ST, Drazen JM, Chapman HA, Carey V, Campbell EJ, et al. Gender-related differences in severe, early-onset chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2000;162(6):2152–8.

    Article  CAS  PubMed  Google Scholar 

  316. Gan WQ, Man SF, Postma DS, Camp P, Sin DD. Female smokers beyond the perimenopausal period are at increased risk of chronic obstructive pulmonary disease: a systematic review and meta-analysis. Respir Res. 2006;7:52.

    Article  PubMed  PubMed Central  Google Scholar 

  317. Terzikhan N, Verhamme KM, Hofman A, Stricker BH, Brusselle GG, Lahousse L. Prevalence and incidence of COPD in smokers and non-smokers: the Rotterdam study. Eur J Epidemiol. 2016;31(8):785–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Camp PG, Coxson HO, Levy RD, Pillai SG, Anderson W, Vestbo J, et al. Sex differences in emphysema and airway disease in smokers. Chest. 2009;136(6):1480–8.

    Article  PubMed  Google Scholar 

  319. Martinez FJ, Curtis JL, Sciurba F, Mumford J, Giardino ND, Weinmann G, et al. Sex differences in severe pulmonary emphysema. Am J Respir Crit Care Med. 2007;176(3):243–52.

    Article  PubMed  PubMed Central  Google Scholar 

  320. Moll M, Regan EA, Hokanson JE, Lutz SM, Silverman EK, Crapo JD, et al. The Association of Multiparity with lung function and chronic obstructive pulmonary disease-related phenotypes. Chronic Obstr Pulm Dis. 2020;7(2):86–98.

    PubMed  PubMed Central  Google Scholar 

  321. Agache I, Beltran J, Akdis C, Akdis M, Canelo-Aybar C, Canonica GW, et al. Efficacy and safety of treatment with biologicals (benralizumab, dupilumab, mepolizumab, omalizumab and reslizumab) for severe eosinophilic asthma. A systematic review for the EAACI guidelines - recommendations on the use of biologicals in severe asthma. Allergy. 2020;75(5):1023–42.

    Article  CAS  PubMed  Google Scholar 

  322. Barnes PJ. Targeting cytokines to treat asthma and chronic obstructive pulmonary disease. Nat Rev Immunol. 2018;18(7):454–66.

    Article  CAS  PubMed  Google Scholar 

  323. Fahy JV. Type 2 inflammation in asthma--present in most, absent in many. Nat Rev Immunol. 2015;15(1):57–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol. 2015;16(1):45–56.

    Article  CAS  PubMed  Google Scholar 

  325. Nagata M, Nakagome K, Soma T. Mechanisms of eosinophilic inflammation. Asia Pac Allergy. 2020;10(2):e14.

    Article  PubMed  PubMed Central  Google Scholar 

  326. Upham JW, Xi Y. Dendritic cells in human lung disease: recent advances. Chest. 2017;151(3):668–73.

    Article  PubMed  Google Scholar 

  327. Scanlon ST, McKenzie AN. Type 2 innate lymphoid cells: new players in asthma and allergy. Curr Opin Immunol. 2012;24(6):707–12.

    Article  CAS  PubMed  Google Scholar 

  328. Rosenberg HF, Dyer KD, Foster PS. Eosinophils: changing perspectives in health and disease. Nat Rev Immunol. 2013;13(1):9–22.

    Article  CAS  PubMed  Google Scholar 

  329. Taskar VS, Coultas DB. Is idiopathic pulmonary fibrosis an environmental disease? Proc Am Thorac Soc. 2006;3(4):293–8.

    Article  PubMed  Google Scholar 

  330. Galli SJ, Tsai M. IgE and mast cells in allergic disease. Nat Med. 2012;18(5):693–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Brightling CE, Bradding P, Symon FA, Holgate ST, Wardlaw AJ, Pavord ID. Mast-cell infiltration of airway smooth muscle in asthma. N Engl J Med. 2002;346(22):1699–705.

    Article  PubMed  Google Scholar 

  332. Arthur G, Bradding P. New developments in mast cell biology: clinical implications. Chest. 2016;150(3):680–93.

    Article  PubMed  Google Scholar 

  333. Barnes PJ. The cytokine network in asthma and chronic obstructive pulmonary disease. J Clin Invest. 2008;118(11):3546–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Brightling C, Berry M, Amrani Y. Targeting TNF-alpha: a novel therapeutic approach for asthma. J Allergy Clin Immunol. 2008;121(1):5–10. quiz 1-2

    Article  CAS  PubMed  Google Scholar 

  335. Amrani Y, Panettieri RA Jr, Frossard N, Bronner C. Activation of the TNF alpha-p55 receptor induces myocyte proliferation and modulates agonist-evoked calcium transients in cultured human tracheal smooth muscle cells. Am J Respir Cell Mol Biol. 1996;15(1):55–63.

    Article  CAS  PubMed  Google Scholar 

  336. Guedes AG, Jude JA, Paulin J, Kita H, Lund FE, Kannan MS. Role of CD38 in TNF-alpha-induced airway hyperresponsiveness. Am J Physiol Lung Cell Mol Physiol. 2008;294(2):L290–9.

    Article  CAS  PubMed  Google Scholar 

  337. Makwana R, Gozzard N, Spina D, Page C. TNF-alpha-induces airway hyperresponsiveness to cholinergic stimulation in Guinea pig airways. Br J Pharmacol. 2012;165(6):1978–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Sathish V, Thompson MA, Bailey JP, Pabelick CM, Prakash YS, Sieck GC. Effect of proinflammatory cytokines on regulation of sarcoplasmic reticulum Ca2+ reuptake in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2009;297(1):L26–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Stober VP, Johnson CG, Majors A, Lauer ME, Cali V, Midura RJ, et al. TNF-stimulated gene 6 promotes formation of hyaluronan-inter-alpha-inhibitor heavy chain complexes necessary for ozone-induced airway hyperresponsiveness. J Biol Chem. 2017;292(51):20845–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Nagase H, Ueki S, Fujieda S. The roles of IL-5 and anti-IL-5 treatment in eosinophilic diseases: asthma, eosinophilic granulomatosis with polyangiitis, and eosinophilic chronic rhinosinusitis. Allergol Int. 2020;69(2):178–86.

    Article  CAS  PubMed  Google Scholar 

  341. Brode S, Farahi N, Cowburn AS, Juss JK, Condliffe AM, Chilvers ER. Interleukin-5 inhibits glucocorticoid-mediated apoptosis in human eosinophils. Thorax. 2010;65(12):1116–7.

    Article  PubMed  Google Scholar 

  342. Wallen N, Kita H, Weiler D, Gleich GJ. Glucocorticoids inhibit cytokine-mediated eosinophil survival. J Immunol. 1991;147(10):3490–5.

    Article  CAS  PubMed  Google Scholar 

  343. Halim TY, Steer CA, Matha L, Gold MJ, Martinez-Gonzalez I, McNagny KM, et al. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity. 2014;40(3):425–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Laffont S, Guery JC. Deconstructing the sex bias in allergy and autoimmunity: from sex hormones and beyond. Adv Immunol. 2019;142:35–64.

    Article  CAS  PubMed  Google Scholar 

  345. Marone G, Granata F, Pucino V, Pecoraro A, Heffler E, Loffredo S, et al. The intriguing role of interleukin 13 in the pathophysiology of asthma. Front Pharmacol. 2019;10:1387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Rael EL, Lockey RF. Interleukin-13 signaling and its role in asthma. World Allergy Organ J. 2011;4(3):54–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Townley RG, Sapkota M, Sapkota K. IL-13 and its genetic variants: effect on current asthma treatments. Discov Med. 2011;12(67):513–23.

    PubMed  Google Scholar 

  348. Corren J, Lemanske RF, Hanania NA, Korenblat PE, Parsey MV, Arron JR, et al. Lebrikizumab treatment in adults with asthma. N Engl J Med. 2011;365(12):1088–98.

    Article  CAS  PubMed  Google Scholar 

  349. Zhou T, Huang X, Zhou Y, Ma J, Zhou M, Liu Y, et al. Associations between Th17-related inflammatory cytokines and asthma in adults: a case-control study. Sci Rep. 2017;7(1):15502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  350. Newcomb DC, Peebles RS Jr. Th17-mediated inflammation in asthma. Curr Opin Immunol. 2013;25(6):755–60.

    Article  CAS  PubMed  Google Scholar 

  351. Zhao ST, Wang CZ. Regulatory T cells and asthma. J Zhejiang Univ Sci B. 2018;19(9):663–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Aujla SJ, Alcorn JF. T(H)17 cells in asthma and inflammation. Biochim Biophys Acta. 2011;1810(11):1066–79.

    Article  CAS  PubMed  Google Scholar 

  353. Seys SF, Lokwani R, Simpson JL, Bullens DMA. New insights in neutrophilic asthma. Curr Opin Pulm Med. 2019;25(1):113–20.

    Article  CAS  PubMed  Google Scholar 

  354. McKinley L, Alcorn JF, Peterson A, Dupont RB, Kapadia S, Logar A, et al. TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. J Immunol. 2008;181(6):4089–97.

    Article  CAS  PubMed  Google Scholar 

  355. Ling SH, McDonough JE, Gosselink JV, Elliott WM, Hayashi S, Hogg JC, et al. Patterns of retention of particulate matter in lung tissues of patients with COPD: potential role in disease progression. Chest. 2011;140(6):1540–9.

    Article  PubMed  Google Scholar 

  356. Lange P, Celli B, Agusti A. Lung-function trajectories and chronic obstructive pulmonary disease. N Engl J Med. 2015;373(16):1575.

    PubMed  Google Scholar 

  357. Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2016;138(1):16–27.

    Article  CAS  PubMed  Google Scholar 

  358. Caramori G, Adcock IM, Di Stefano A, Chung KF. Cytokine inhibition in the treatment of COPD. Int J Chron Obstruct Pulmon Dis. 2014;9:397–412.

    PubMed  PubMed Central  Google Scholar 

  359. Forsslund H, Yang M, Mikko M, Karimi R, Nyren S, Engvall B, et al. Gender differences in the T-cell profiles of the airways in COPD patients associated with clinical phenotypes. Int J Chron Obstruct Pulmon Dis. 2017;12:35–48.

    Article  CAS  PubMed  Google Scholar 

  360. Paats MS, Bergen IM, Hoogsteden HC, van der Eerden MM, Hendriks RW. Systemic CD4+ and CD8+ T-cell cytokine profiles correlate with GOLD stage in stable COPD. Eur Respir J. 2012;40(2):330–7.

    Article  CAS  PubMed  Google Scholar 

  361. Di Stefano A, Caramori G, Gnemmi I, Contoli M, Vicari C, Capelli A, et al. T helper type 17-related cytokine expression is increased in the bronchial mucosa of stable chronic obstructive pulmonary disease patients. Clin Exp Immunol. 2009;157(2):316–24.

    Article  PubMed  PubMed Central  Google Scholar 

  362. Pridgeon C, Bugeon L, Donnelly L, Straschil U, Tudhope SJ, Fenwick P, et al. Regulation of IL-17 in chronic inflammation in the human lung. Clin Sci (Lond). 2011;120(12):515–24.

    Article  Google Scholar 

  363. Hiemstra PS. Altered macrophage function in chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2013;10(Suppl):S180–5.

    Article  PubMed  Google Scholar 

  364. Barnes PJ. Alveolar macrophages in chronic obstructive pulmonary disease (COPD). Cell Mol Biol (Noisy-le-Grand). 2004;50 Online Pub:OL627–37.

    CAS  Google Scholar 

  365. Culpitt SV, Rogers DF, Shah P, De Matos C, Russell RE, Donnelly LE, et al. Impaired inhibition by dexamethasone of cytokine release by alveolar macrophages from patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;167(1):24–31.

    Article  PubMed  Google Scholar 

  366. Barnes PJ. Cellular and molecular mechanisms of asthma and COPD. Clin Sci (Lond). 2017;131(13):1541–58.

    Article  CAS  Google Scholar 

  367. Vlahos R, Bozinovski S, Chan SP, Ivanov S, Linden A, Hamilton JA, et al. Neutralizing granulocyte/macrophage colony-stimulating factor inhibits cigarette smoke-induced lung inflammation. Am J Respir Crit Care Med. 2010;182(1):34–40.

    Article  CAS  PubMed  Google Scholar 

  368. Saetta M, Mariani M, Panina-Bordignon P, Turato G, Buonsanti C, Baraldo S, et al. Increased expression of the chemokine receptor CXCR3 and its ligand CXCL10 in peripheral airways of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2002;165(10):1404–9.

    Article  PubMed  Google Scholar 

  369. Majo J, Ghezzo H, Cosio MG. Lymphocyte population and apoptosis in the lungs of smokers and their relation to emphysema. Eur Respir J. 2001;17(5):946–53.

    Article  CAS  PubMed  Google Scholar 

  370. Churg A, Zhou S, Wright JL. Series "matrix metalloproteinases in lung health and disease": matrix metalloproteinases in COPD. Eur Respir J. 2012;39(1):197–209.

    Article  CAS  PubMed  Google Scholar 

  371. Papi A, Bellettato CM, Braccioni F, Romagnoli M, Casolari P, Caramori G, et al. Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. Am J Respir Crit Care Med. 2006;173(10):1114–21.

    Article  PubMed  Google Scholar 

  372. Byers DE, Alexander-Brett J, Patel AC, Agapov E, Dang-Vu G, Jin X, et al. Long-term IL-33-producing epithelial progenitor cells in chronic obstructive lung disease. J Clin Invest. 2013;123(9):3967–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Bafadhel M, Saha S, Siva R, McCormick M, Monteiro W, Rugman P, et al. Sputum IL-5 concentration is associated with a sputum eosinophilia and attenuated by corticosteroid therapy in COPD. Respiration. 2009;78(3):256–62.

    Article  CAS  PubMed  Google Scholar 

  374. Reyes-Garcia J, Flores-Soto E, Carbajal-Garcia A, Sommer B, Montaño LM. Maintenance of intracellular Ca2+ basal concentration in airway smooth muscle (review). Int J Mol Med. 2018;42(6):2998–3008.

    Google Scholar 

  375. An SS, Bai TR, Bates JH, Black JL, Brown RH, Brusasco V, et al. Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma. Eur Respir J. 2007;29(5):834–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  376. Cazzola M, Rogliani P, Matera MG. The future of bronchodilation: looking for new classes of bronchodilators. Eur Respir Rev. 2019;28(154)

    Google Scholar 

  377. Kouloumenta V, Hatziefthimiou A, Paraskeva E, Gourgoulianis K, Molyvdas PA. Non-genomic effect of testosterone on airway smooth muscle. Br J Pharmacol. 2006;149(8):1083–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Bordallo J, de Boto MJ, Meana C, Velasco L, Bordallo C, Suarez L, et al. Modulatory role of endogenous androgens on airway smooth muscle tone in isolated Guinea-pig and bovine trachea; involvement of beta2-adrenoceptors, the polyamine system and external calcium. Eur J Pharmacol. 2008;601(1–3):154–62.

    Article  CAS  PubMed  Google Scholar 

  379. Montaño LM, Espinoza J, Flores-Soto E, Chavez J, Perusquia M. Androgens are bronchoactive drugs that act by relaxing airway smooth muscle and preventing bronchospasm. J Endocrinol. 2014;222(1):1–13.

    Google Scholar 

  380. Carbajal-Garcia A, Reyes-Garcia J, Casas-Hernandez MF, Flores-Soto E, Diaz-Hernandez V, Solis-Chagoyan H, et al. Testosterone augments beta2 adrenergic receptor genomic transcription increasing salbutamol relaxation in airway smooth muscle. Mol Cell Endocrinol. 2020;510:110801.

    Article  CAS  PubMed  Google Scholar 

  381. Verthelyi D, Klinman DM. Sex hormone levels correlate with the activity of cytokine-secreting cells in vivo. Immunology. 2000;100(3):384–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  382. Dunn PJ, Mahood CB, Speed JF, Jury DR. Dehydroepiandrosterone sulphate concentrations in asthmatic patients: pilot study. N Z Med J. 1984;97(768):805–8.

    CAS  PubMed  Google Scholar 

  383. Kasperska-Zajac A. Asthma and dehydroepiandrosterone (DHEA): facts and hypotheses. Inflammation. 2010;33(5):320–4.

    Article  CAS  PubMed  Google Scholar 

  384. Weinstein RE, Lobocki CA, Gravett S, Hum H, Negrich R, Herbst J, et al. Decreased adrenal sex steroid levels in the absence of glucocorticoid suppression in postmenopausal asthmatic women. J Allergy Clin Immunol. 1996;97(1 Pt 1):1–8.

    Article  CAS  PubMed  Google Scholar 

  385. Choi IS, Cui Y, Koh YA, Lee HC, Cho YB, Won YH. Effects of dehydroepiandrosterone on Th2 cytokine production in peripheral blood mononuclear cells from asthmatics. Korean J Intern Med. 2008;23(4):176–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Koziol-White CJ, Goncharova EA, Cao G, Johnson M, Krymskaya VP, Panettieri RA Jr. DHEA-S inhibits human neutrophil and human airway smooth muscle migration. Biochim Biophys Acta. 2012;1822(10):1638–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  387. Wenzel SE, Robinson CB, Leonard JM, Panettieri RA Jr. Nebulized dehydroepiandrosterone-3-sulfate improves asthma control in the moderate-to-severe asthma results of a 6-week, randomized, double-blind, placebo-controlled study. Allergy Asthma Proc. 2010;31(6):461–71.

    Article  CAS  PubMed  Google Scholar 

  388. Marozkina N, Zein J, DeBoer MD, Logan L, Veri L, Ross K, et al. Dehydroepiandrosterone supplementation may benefit women with asthma who have low androgen levels: a pilot study. Pulm Ther. 2019;5(2):213–20.

    Article  PubMed  PubMed Central  Google Scholar 

  389. Asano T, Kanemitsu Y, Takemura M, Fukumitsu K, Kurokawa R, Inoue Y, et al. Small airway inflammation is associated with residual airway hyperresponsiveness in Th2-high asthma. J Asthma. 2019:1–9.

    Google Scholar 

  390. Doherty TA, Broide DH. Airway innate lymphoid cells in the induction and regulation of allergy. Allergol Int. 2019;68(1):9–16.

    Article  CAS  PubMed  Google Scholar 

  391. Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TK, et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature. 2010;464(7293):1367–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  392. Warren KJ, Sweeter JM, Pavlik JA, Nelson AJ, Devasure JM, Dickinson JD, et al. Sex differences in activation of lung-related type 2 innate lymphoid cells in experimental asthma. Ann Allergy Asthma Immunol. 2017;118(2):233–4.

    Article  CAS  PubMed  Google Scholar 

  393. Bartemes KR, Kephart GM, Fox SJ, Kita H. Enhanced innate type 2 immune response in peripheral blood from patients with asthma. J Allergy Clin Immunol. 2014;134(3):671–8. e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  394. Christianson CA, Goplen NP, Zafar I, Irvin C, Good JT Jr, Rollins DR, et al. Persistence of asthma requires multiple feedback circuits involving type 2 innate lymphoid cells and IL-33. J Allergy Clin Immunol. 2015;136(1):59–68. e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  395. Nagakumar P, Denney L, Fleming L, Bush A, Lloyd CM, Saglani S. Type 2 innate lymphoid cells in induced sputum from children with severe asthma. J Allergy Clin Immunol. 2016;137(2):624–6. e6

    Article  PubMed  Google Scholar 

  396. Smith SG, Chen R, Kjarsgaard M, Huang C, Oliveria JP, O’Byrne PM, et al. Increased numbers of activated group 2 innate lymphoid cells in the airways of patients with severe asthma and persistent airway eosinophilia. J Allergy Clin Immunol. 2016;137(1):75–86. e8

    Article  CAS  PubMed  Google Scholar 

  397. Yu QN, Tan WP, Fan XL, Guo YB, Qin ZL, Li CL, et al. Increased group 2 innate lymphoid cells are correlated with eosinophilic granulocytes in patients with allergic airway inflammation. Int Arch Allergy Immunol. 2018;176(2):124–32.

    Article  PubMed  Google Scholar 

  398. Stadhouders R, Li BWS, de Bruijn MJW, Gomez A, Rao TN, Fehling HJ, et al. Epigenome analysis links gene regulatory elements in group 2 innate lymphocytes to asthma susceptibility. J Allergy Clin Immunol. 2018;142(6):1793–807.

    Article  CAS  PubMed  Google Scholar 

  399. Yu CK, Liu YH, Chen CL. Dehydroepiandrosterone attenuates allergic airway inflammation in Dermatophagoides farinae-sensitized mice. J Microbiol Immunol Infect. 2002;35(3):199–202.

    CAS  PubMed  Google Scholar 

  400. Liou CJ, Huang WC. Dehydroepiandrosterone suppresses eosinophil infiltration and airway hyperresponsiveness via modulation of chemokines and Th2 cytokines in ovalbumin-sensitized mice. J Clin Immunol. 2011;31(4):656–65.

    Article  CAS  PubMed  Google Scholar 

  401. Hayashi T, Adachi Y, Hasegawa K, Morimoto M. Less sensitivity for late airway inflammation in males than females in BALB/c mice. Scand J Immunol. 2003;57(6):562–7.

    Article  CAS  PubMed  Google Scholar 

  402. Cerqua I, Terlizzi M, Bilancia R, Riemma MA, Citi V, Martelli A, et al. 5alpha-dihydrotestosterone abrogates sex bias in asthma like features in the mouse. Pharmacol Res. 2020;158:104905.

    Article  CAS  PubMed  Google Scholar 

  403. Lund SJ, Portillo A, Cavagnero K, Baum RE, Naji LH, Badrani JH, et al. Leukotriene C4 potentiates IL-33-induced group 2 innate lymphoid cell activation and lung inflammation. J Immunol. 2017;199(3):1096–104.

    Article  CAS  PubMed  Google Scholar 

  404. Laidlaw TM, Boyce JA. Cysteinyl leukotriene receptors, old and new; implications for asthma. Clin Exp Allergy. 2012;42(9):1313–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  405. Ueno H, Koya T, Takeuchi H, Tsukioka K, Saito A, Kimura Y, et al. Cysteinyl leukotriene synthesis via phospholipase A2 group IV mediates exercise-induced bronchoconstriction and airway remodeling. Am J Respir Cell Mol Biol. 2020;63(1):57–66.

    Article  CAS  PubMed  Google Scholar 

  406. Kanaoka Y, Boyce JA. Cysteinyl leukotrienes and their receptors; emerging concepts. Allergy Asthma Immunol Res. 2014;6(4):288–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  407. Pergola C, Rogge A, Dodt G, Northoff H, Weinigel C, Barz D, et al. Testosterone suppresses phospholipase D, causing sex differences in leukotriene biosynthesis in human monocytes. FASEB J. 2011;25(10):3377–87.

    Article  CAS  PubMed  Google Scholar 

  408. Bair AM, Turman MV, Vaine CA, Panettieri RA Jr, Soberman RJ. The nuclear membrane leukotriene synthetic complex is a signal integrator and transducer. Mol Biol Cell. 2012;23(22):4456–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  409. Radmark O, Werz O, Steinhilber D, Samuelsson B. 5-lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease. Biochim Biophys Acta. 2015;1851(4):331–9.

    Article  PubMed  CAS  Google Scholar 

  410. Pergola C, Dodt G, Rossi A, Neunhoeffer E, Lawrenz B, Northoff H, et al. ERK-mediated regulation of leukotriene biosynthesis by androgens: a molecular basis for gender differences in inflammation and asthma. Proc Natl Acad Sci U S A. 2008;105(50):19881–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  411. Pace S, Pergola C, Dehm F, Rossi A, Gerstmeier J, Troisi F, et al. Androgen-mediated sex bias impairs efficiency of leukotriene biosynthesis inhibitors in males. J Clin Invest. 2017;127(8):3167–76.

    Article  PubMed  PubMed Central  Google Scholar 

  412. Johnston NW, Mandhane PJ, Dai J, Duncan JM, Greene JM, Lambert K, et al. Attenuation of the September epidemic of asthma exacerbations in children: a randomized, controlled trial of montelukast added to usual therapy. Pediatrics. 2007;120(3):e702–12.

    Article  PubMed  Google Scholar 

  413. Kalidhindi RSR, Katragadda R, Beauchamp KL, Pabelick CM, Prakash YS, Sathish V. Androgen receptor-mediated regulation of intracellular calcium in human airway smooth muscle cells. Cell Physiol Biochem. 2019;53(1):215–28.

    Article  CAS  PubMed  Google Scholar 

  414. Jovanovic DV, Di Battista JA, Martel-Pelletier J, Jolicoeur FC, He Y, Zhang M, et al. IL-17 stimulates the production and expression of proinflammatory cytokines, IL-beta and TNF-alpha, by human macrophages. J Immunol. 1998;160(7):3513–21.

    Article  CAS  PubMed  Google Scholar 

  415. Vazquez-Tello A, Halwani R, Hamid Q, Al-Muhsen S. Glucocorticoid receptor-beta up-regulation and steroid resistance induction by IL-17 and IL-23 cytokine stimulation in peripheral mononuclear cells. J Clin Immunol. 2013;33(2):466–78.

    Article  CAS  PubMed  Google Scholar 

  416. Cato AC, Wade E. Molecular mechanisms of anti-inflammatory action of glucocorticoids. BioEssays. 1996;18(5):371–8.

    Article  CAS  PubMed  Google Scholar 

  417. Bamberger CM, Bamberger AM, de Castro M, Chrousos GP. Glucocorticoid receptor beta, a potential endogenous inhibitor of glucocorticoid action in humans. J Clin Invest. 1995;95(6):2435–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  418. Sumi Y, Hamid Q. Airway remodeling in asthma. Allergol Int. 2007;56(4):341–8.

    Article  CAS  PubMed  Google Scholar 

  419. Evasovic JM, Singer CA. Regulation of IL-17A and implications for TGF-beta1 comodulation of airway smooth muscle remodeling in severe asthma. Am J Physiol Lung Cell Mol Physiol. 2019;316(5):L843–L68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  420. Miettinen PJ, Ebner R, Lopez AR, Derynck R. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol. 1994;127(6 Pt 2):2021–36.

    Article  CAS  PubMed  Google Scholar 

  421. Chakir J, Shannon J, Molet S, Fukakusa M, Elias J, Laviolette M, et al. Airway remodeling-associated mediators in moderate to severe asthma: effect of steroids on TGF-beta, IL-11, IL-17, and type I and type III collagen expression. J Allergy Clin Immunol. 2003;111(6):1293–8.

    Article  CAS  PubMed  Google Scholar 

  422. Xu L, Xiang X, Ji X, Wang W, Luo M, Luo S, et al. Effects and mechanism of dehydroepiandrosterone on epithelial-mesenchymal transition in bronchial epithelial cells. Exp Lung Res. 2014;40(5):211–21.

    Article  CAS  PubMed  Google Scholar 

  423. Atlantis E, Martin SA, Haren MT, O’Loughlin PD, Taylor AW, Anand-Ivell R, et al. Demographic, physical and lifestyle factors associated with androgen status: the Florey Adelaide male ageing study (FAMAS). Clin Endocrinol. 2009;71(2):261–72.

    Article  CAS  Google Scholar 

  424. Jankowska EA, Filippatos G, Ponikowska B, Borodulin-Nadzieja L, Anker SD, Banasiak W, et al. Reduction in circulating testosterone relates to exercise capacity in men with chronic heart failure. J Card Fail. 2009;15(5):442–50.

    Article  CAS  PubMed  Google Scholar 

  425. Atlantis E, Fahey P, Cochrane B, Wittert G, Smith S. Endogenous testosterone level and testosterone supplementation therapy in chronic obstructive pulmonary disease (COPD): a systematic review and meta-analysis. BMJ Open. 2013;3(8)

    Google Scholar 

  426. Casaburi R, Bhasin S, Cosentino L, Porszasz J, Somfay A, Lewis MI, et al. Effects of testosterone and resistance training in men with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2004;170(8):870–8.

    Article  PubMed  Google Scholar 

  427. Creutzberg EC, Casaburi R. Endocrinological disturbances in chronic obstructive pulmonary disease. Eur Respir J Suppl. 2003;46:76s–80s.

    Article  CAS  PubMed  Google Scholar 

  428. Kamischke A, Kemper DE, Castel MA, Luthke M, Rolf C, Behre HM, et al. Testosterone levels in men with chronic obstructive pulmonary disease with or without glucocorticoid therapy. Eur Respir J. 1998;11(1):41–5.

    Article  CAS  PubMed  Google Scholar 

  429. Semple PD, Beastall GH, Watson WS, Hume R. Serum testosterone depression associated with hypoxia in respiratory failure. Clin Sci (Lond). 1980;58(1):105–6.

    Article  CAS  Google Scholar 

  430. Svartberg J. Androgens and chronic obstructive pulmonary disease. Curr Opin Endocrinol Diabetes Obes. 2010;17(3):257–61.

    Article  CAS  PubMed  Google Scholar 

  431. Karadag F, Ozcan H, Karul AB, Yilmaz M, Cildag O. Sex hormone alterations and systemic inflammation in chronic obstructive pulmonary disease. Int J Clin Pract. 2009;63(2):275–81.

    Article  CAS  PubMed  Google Scholar 

  432. Baillargeon J, Urban RJ, Zhang W, Zaiden MF, Javed Z, Sheffield-Moore M, et al. Testosterone replacement therapy and hospitalization rates in men with COPD. Chron Respir Dis. 2019;16:1479972318793004.

    Article  PubMed  Google Scholar 

  433. Ponce-Gallegos MA, Ramirez-Venegas A, Falfan-Valencia R. Th17 profile in COPD exacerbations. Int J Chron Obstruct Pulmon Dis. 2017;12:1857–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  434. Barin JG, Baldeviano GC, Talor MV, Wu L, Ong S, Quader F, et al. Macrophages participate in IL-17-mediated inflammation. Eur J Immunol. 2012;42(3):726–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  435. Finkelstein R, Fraser RS, Ghezzo H, Cosio MG. Alveolar inflammation and its relation to emphysema in smokers. Am J Respir Crit Care Med. 1995;152(5 Pt 1):1666–72.

    Article  CAS  PubMed  Google Scholar 

  436. Hautamaki RD, Kobayashi DK, Senior RM, Shapiro SD. Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science. 1997;277(5334):2002–4.

    Article  CAS  PubMed  Google Scholar 

  437. Balhara J, Gounni AS. The alveolar macrophages in asthma: a double-edged sword. Mucosal Immunol. 2012;5(6):605–9.

    Article  CAS  PubMed  Google Scholar 

  438. Shaykhiev R, Krause A, Salit J, Strulovici-Barel Y, Harvey BG, O’Connor TP, et al. Smoking-dependent reprogramming of alveolar macrophage polarization: implication for pathogenesis of chronic obstructive pulmonary disease. J Immunol. 2009;183(4):2867–83.

    Article  CAS  PubMed  Google Scholar 

  439. Moreira AP, Hogaboam CM. Macrophages in allergic asthma: fine-tuning their pro- and anti-inflammatory actions for disease resolution. J Interf Cytokine Res. 2011;31(6):485–91.

    Article  CAS  Google Scholar 

  440. Becerra-Diaz M, Strickland AB, Keselman A, Heller NM. Androgen and androgen receptor as enhancers of M2 macrophage polarization in allergic lung inflammation. J Immunol. 2018;201(10):2923–33.

    Article  CAS  PubMed  Google Scholar 

  441. Fiandalo MV, Stocking JJ, Pop EA, Wilton JH, Mantione KM, Li Y, et al. Inhibition of dihydrotestosterone synthesis in prostate cancer by combined frontdoor and backdoor pathway blockade. Oncotarget. 2018;9(13):11227–42.

    Article  PubMed  PubMed Central  Google Scholar 

  442. Zein JG, Erzurum SC. Asthma is Different in Women. Curr Allergy Asthma Rep. 2015;15(6):28.

    Article  PubMed  PubMed Central  Google Scholar 

  443. Ambhore NS, Katragadda R, Raju Kalidhindi RS, Thompson MA, Pabelick CM, Prakash YS, et al. Estrogen receptor beta signaling inhibits PDGF induced human airway smooth muscle proliferation. Mol Cell Endocrinol. 2018;476:37–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  444. Fuentes N, Cabello N, Nicoleau M, Chroneos ZC, Silveyra P. Modulation of the lung inflammatory response to ozone by the estrous cycle. Physiol Rep. 2019;7(5):e14026.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  445. Sathish V, Freeman MR, Long E, Thompson MA, Pabelick CM, Prakash YS. Cigarette smoke and estrogen signaling in human airway smooth muscle. Cell Physiol Biochem. 2015;36(3):1101–15.

    Article  CAS  PubMed  Google Scholar 

  446. Wang SY, Freeman MR, Sathish V, Thompson MA, Pabelick CM, Prakash YS. Sex steroids influence brain-derived neurotropic factor secretion from human airway smooth muscle cells. J Cell Physiol. 2016;231(7):1586–92.

    Article  CAS  PubMed  Google Scholar 

  447. Corteling R, Trifilieff A. Gender comparison in a murine model of allergen-driven airway inflammation and the response to budesonide treatment. BMC Pharmacol. 2004;4:4.

    Article  PubMed  PubMed Central  Google Scholar 

  448. Sakazaki F, Ueno H, Nakamuro K. 17beta-estradiol enhances expression of inflammatory cytokines and inducible nitric oxide synthase in mouse contact hypersensitivity. Int Immunopharmacol. 2008;8(5):654–60.

    Article  CAS  PubMed  Google Scholar 

  449. Seymour BW, Friebertshauser KE, Peake JL, Pinkerton KE, Coffman RL, Gershwin LJ. Gender differences in the allergic response of mice neonatally exposed to environmental tobacco smoke. Dev Immunol. 2002;9(1):47–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  450. Haggerty CL, Ness RB, Kelsey S, Waterer GW. The impact of estrogen and progesterone on asthma. Ann Allergy Asthma Immunol. 2003;90(3):284–91; quiz 91-3, 347.

    Article  CAS  PubMed  Google Scholar 

  451. Intapad S, Dimitropoulou C, Snead C, Piyachaturawat P, Catravas JD. Regulation of asthmatic airway relaxation by estrogen and heat shock protein 90. J Cell Physiol. 2012;227(8):3036–43.

    Article  CAS  PubMed  Google Scholar 

  452. Myers JR, Sherman CB. Should supplemental estrogens be used as steroid-sparing agents in asthmatic women? Chest. 1994;106(1):318–9.

    Article  CAS  PubMed  Google Scholar 

  453. Townsend EA, Sathish V, Thompson MA, Pabelick CM, Prakash YS. Estrogen effects on human airway smooth muscle involve cAMP and protein kinase a. Am J Physiol Lung Cell Mol Physiol. 2012;303(10):L923–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  454. Foster PS, Goldie RG, Paterson JW. Effect of steroids on beta-adrenoceptor-mediated relaxation of pig bronchus. Br J Pharmacol. 1983;78(2):441–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  455. Pang JJ, Xu XB, Li HF, Zhang XY, Zheng TZ, Qu SY. Inhibition of beta-estradiol on trachea smooth muscle contraction in vitro and in vivo. Acta Pharmacol Sin. 2002;23(3):273–7.

    CAS  PubMed  Google Scholar 

  456. Teoh H, Man RY. Enhanced relaxation of porcine coronary arteries after acute exposure to a physiological level of 17beta-estradiol involves non-genomic mechanisms and the cyclic AMP cascade. Br J Pharmacol. 2000;129(8):1739–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  457. Dimitropoulou C, White RE, Ownby DR, Catravas JD. Estrogen reduces carbachol-induced constriction of asthmatic airways by stimulating large-conductance voltage and calcium-dependent potassium channels. Am J Respir Cell Mol Biol. 2005;32(3):239–47.

    Article  CAS  PubMed  Google Scholar 

  458. Nunez FJ, Johnstone TB, Corpuz ML, Kazarian AG, Mohajer NN, Tliba O, et al. Glucocorticoids rapidly activate cAMP production via Galphas to initiate non-genomic signaling that contributes to one-third of their canonical genomic effects. FASEB J. 2020;34(2):2882–95.

    Article  CAS  PubMed  Google Scholar 

  459. Townsend EA, Meuchel LW, Thompson MA, Pabelick CM, Prakash YS. Estrogen increases nitric-oxide production in human bronchial epithelium. J Pharmacol Exp Ther. 2011;339(3):815–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  460. Perusquia M, Hernandez R, Montaño LM, Villalon CM, Campos MG. Inhibitory effect of sex steroids on Guinea-pig airway smooth muscle contractions. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1997;118(1):5–10.

    Google Scholar 

  461. Carey MA, Card JW, Bradbury JA, Moorman MP, Haykal-Coates N, Gavett SH, et al. Spontaneous airway hyperresponsiveness in estrogen receptor-alpha-deficient mice. Am J Respir Crit Care Med. 2007;175(2):126–35.

    Article  CAS  PubMed  Google Scholar 

  462. Matsubara S, Swasey CH, Loader JE, Dakhama A, Joetham A, Ohnishi H, et al. Estrogen determines sex differences in airway responsiveness after allergen exposure. Am J Respir Cell Mol Biol. 2008;38(5):501–8.

    Article  CAS  PubMed  Google Scholar 

  463. Dimitropoulou C, Drakopanagiotakis F, Chatterjee A, Snead C, Catravas JD. Estrogen replacement therapy prevents airway dysfunction in a murine model of allergen-induced asthma. Lung. 2009;187(2):116–27.

    Article  CAS  PubMed  Google Scholar 

  464. Bhallamudi S, Connell J, Pabelick CM, Prakash YS, Sathish V. Estrogen receptors differentially regulate intracellular calcium handling in human nonasthmatic and asthmatic airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2020;318(1):L112–L24.

    Article  CAS  PubMed  Google Scholar 

  465. Dunican EM, Fahy JV. The role of type 2 inflammation in the pathogenesis of asthma exacerbations. Ann Am Thorac Soc. 2015;12 Suppl 2:S144–9.

    Article  PubMed  Google Scholar 

  466. Haselkorn T, Szefler SJ, Simons FE, Zeiger RS, Mink DR, Chipps BE, et al. Allergy, total serum immunoglobulin E, and airflow in children and adolescents in TENOR. Pediatr Allergy Immunol. 2010;21(8):1157–65.

    Article  PubMed  Google Scholar 

  467. Bengtsson AK, Ryan EJ, Giordano D, Magaletti DM, Clark EA. 17beta-estradiol (E2) modulates cytokine and chemokine expression in human monocyte-derived dendritic cells. Blood. 2004;104(5):1404–10.

    Article  CAS  PubMed  Google Scholar 

  468. Uemura Y, Liu TY, Narita Y, Suzuki M, Matsushita S. 17 Beta-estradiol (E2) plus tumor necrosis factor-alpha induces a distorted maturation of human monocyte-derived dendritic cells and promotes their capacity to initiate T-helper 2 responses. Hum Immunol. 2008;69(3):149–57.

    Article  CAS  PubMed  Google Scholar 

  469. Melgert BN, ten Hacken NH, Rutgers B, Timens W, Postma DS, Hylkema MN. More alternative activation of macrophages in lungs of asthmatic patients. J Allergy Clin Immunol. 2011;127(3):831–3.

    Article  PubMed  Google Scholar 

  470. Girodet PO, Nguyen D, Mancini JD, Hundal M, Zhou X, Israel E, et al. Alternative macrophage activation is increased in asthma. Am J Respir Cell Mol Biol. 2016;55(4):467–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  471. Blacquiere MJ, Hylkema MN, Postma DS, Geerlings M, Timens W, Melgert BN. Airway inflammation and remodeling in two mouse models of asthma: comparison of males and females. Int Arch Allergy Immunol. 2010;153(2):173–81.

    Article  CAS  PubMed  Google Scholar 

  472. Melgert BN, Postma DS, Kuipers I, Geerlings M, Luinge MA, van der Strate BW, et al. Female mice are more susceptible to the development of allergic airway inflammation than male mice. Clin Exp Allergy. 2005;35(11):1496–503.

    Article  CAS  PubMed  Google Scholar 

  473. Keselman A, Fang X, White PB, Heller NM. Estrogen signaling contributes to sex differences in macrophage polarization during asthma. J Immunol. 2017;199(5):1573–83.

    Article  CAS  PubMed  Google Scholar 

  474. Newcomb DC, Cephus JY, Boswell MG, Fahrenholz JM, Langley EW, Feldman AS, et al. Estrogen and progesterone decrease let-7f microRNA expression and increase IL-23/IL-23 receptor signaling and IL-17A production in patients with severe asthma. J Allergy Clin Immunol. 2015;136(4):1025–34. e11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  475. McGeachy MJ, Bak-Jensen KS, Chen Y, Tato CM, Blumenschein W, McClanahan T, et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol. 2007;8(12):1390–7.

    Article  CAS  PubMed  Google Scholar 

  476. McGeachy MJ, Chen Y, Tato CM, Laurence A, Joyce-Shaikh B, Blumenschein WM, et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol. 2009;10(3):314–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  477. Ahmadi-Vasmehjani A, Baharlou R, Atashzar MR, Raofi R, Jafari M, Razavi FS. Regulatory effects of estradiol on peripheral blood mononuclear cells activation in patients with asthma. Iran J Allergy Asthma Immunol. 2018;17(1):9–17.

    PubMed  Google Scholar 

  478. Molnar I, Bohaty I, Somogyine-Vari E. High prevalence of increased interleukin-17A serum levels in postmenopausal estrogen deficiency. Menopause. 2014;21(7):749–52.

    Article  PubMed  Google Scholar 

  479. Schatz M, Dombrowski MP, Wise R, Thom EA, Landon M, Mabie W, et al. Asthma morbidity during pregnancy can be predicted by severity classification. J Allergy Clin Immunol. 2003;112(2):283–8.

    Article  PubMed  Google Scholar 

  480. Juniper EF, Daniel EE, Roberts RS, Kline PA, Hargreave FE, Newhouse MT. Improvement in airway responsiveness and asthma severity during pregnancy. A prospective study. Am Rev Respir Dis. 1989;140(4):924–31.

    Article  CAS  PubMed  Google Scholar 

  481. Straub RH. The complex role of estrogens in inflammation. Endocr Rev. 2007;28(5):521–74.

    Article  CAS  PubMed  Google Scholar 

  482. Gilmore W, Weiner LP, Correale J. Effect of estradiol on cytokine secretion by proteolipid protein-specific T cell clones isolated from multiple sclerosis patients and normal control subjects. J Immunol. 1997;158(1):446–51.

    Article  CAS  PubMed  Google Scholar 

  483. Cenci S, Weitzmann MN, Roggia C, Namba N, Novack D, Woodring J, et al. Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. J Clin Invest. 2000;106(10):1229–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  484. Triebner K, Johannessen A, Puggini L, Benediktsdottir B, Bertelsen RJ, Bifulco E, et al. Menopause as a predictor of new-onset asthma: a longitudinal northern European population study. J Allergy Clin Immunol. 2016;137(1):50–7. e6

    Article  PubMed  Google Scholar 

  485. Triebner K, Matulonga B, Johannessen A, Suske S, Benediktsdottir B, Demoly P, et al. Menopause is associated with accelerated lung function decline. Am J Respir Crit Care Med. 2017;195(8):1058–65.

    Article  PubMed  Google Scholar 

  486. Fait T. Menopause hormone therapy: latest developments and clinical practice. Drugs Context. 2019;8:212551.

    Article  PubMed  PubMed Central  Google Scholar 

  487. van Hylckama VA, Helmerhorst FM, Vandenbroucke JP, Doggen CJ, Rosendaal FR. The venous thrombotic risk of oral contraceptives, effects of oestrogen dose and progestogen type: results of the MEGA case-control study. BMJ. 2009;339:b2921.

    Article  Google Scholar 

  488. van Rooijen M, Silveira A, Thomassen S, Hansson LO, Rosing J, Hamsten A, et al. Rapid activation of haemostasis after hormonal emergency contraception. Thromb Haemost. 2007;97(1):15–20.

    Article  PubMed  CAS  Google Scholar 

  489. Jaimez R, Cooney A, Jackson K, Lemus AE, Lemini C, Cardenas M, et al. In vivo estrogen bioactivities and in vitro estrogen receptor binding and transcriptional activities of anticoagulant synthetic 17beta-aminoestrogens. J Steroid Biochem Mol Biol. 2000;73(1–2):59–66.

    Article  CAS  PubMed  Google Scholar 

  490. Lemini C, Rubio-Poo C, Franco Y, Jaimez R, Avila ME, Medina M, et al. In vivo profile of the anticoagulant effect of 17ss-amino-1,3,5(10)estratrien-3-ol. Eur J Pharmacol. 2013;700(1–3):210–6.

    Article  CAS  PubMed  Google Scholar 

  491. Lemini C, Rubio-Poo C, Silva G, Garcia-Mondragon J, Zavala E, Mendoza-Patino N, et al. Anticoagulant and estrogenic effects of two new 17 beta-aminoestrogens, butolame [17 beta-(4-hydroxy-1-butylamino)-1,3,5(10)-estratrien-3-ol] and pentolame [17 beta-(5-hydroxy-1-pentylamino)-1,3,5(10)-estratrien-3-ol]. Steroids. 1993;58(10):457–61.

    Article  CAS  PubMed  Google Scholar 

  492. Flores-Soto E, Martinez-Villa I, Solis-Chagoyan H, Sommer B, Lemini C, Montaño LM. 17beta-Aminoestrogens induce Guinea pig airway smooth muscle hyperresponsiveness through L-type ca(2+) channels activation. Steroids. 2015;101:64–70.

    Google Scholar 

  493. Stamatiou R, Paraskeva E, Papagianni M, Molyvdas PA, Hatziefthimiou A. The mitogenic effect of testosterone and 17beta-estradiol on airway smooth muscle cells. Steroids. 2011;76(4):400–8.

    Article  CAS  PubMed  Google Scholar 

  494. Cheng B, Song J, Zou Y, Wang Q, Lei Y, Zhu C, et al. Responses of vascular smooth muscle cells to estrogen are dependent on balance between ERK and p38 MAPK pathway activities. Int J Cardiol. 2009;134(3):356–65.

    Article  PubMed  Google Scholar 

  495. Li H, Cheng Y, Simoncini T, Xu S. 17beta-estradiol inhibits TNF-alpha-induced proliferation and migration of vascular smooth muscle cells via suppression of TRAIL. Gynecol Endocrinol. 2016;32(7):581–6.

    Article  CAS  PubMed  Google Scholar 

  496. Zheng S, Chen X, Hong S, Long L, Xu Y, Simoncini T, et al. 17beta-estradiol inhibits vascular smooth muscle cell migration via up-regulation of striatin protein. Gynecol Endocrinol. 2015;31(8):618–24.

    Article  CAS  PubMed  Google Scholar 

  497. Chakir J, Haj-Salem I, Gras D, Joubert P, Beaudoin EL, Biardel S, et al. Effects of bronchial Thermoplasty on airway smooth muscle and collagen deposition in asthma. Ann Am Thorac Soc. 2015;12(11):1612–8.

    PubMed  Google Scholar 

  498. Mostaco-Guidolin LB, Osei ET, Ullah J, Hajimohammadi S, Fouadi M, Li X, et al. Defective Fibrillar collagen organization by fibroblasts contributes to airway remodeling in asthma. Am J Respir Crit Care Med. 2019;200(4):431–43.

    Article  CAS  PubMed  Google Scholar 

  499. Royce SG, Tan L, Koek AA, Tang ML. Effect of extracellular matrix composition on airway epithelial cell and fibroblast structure: implications for airway remodeling in asthma. Ann Allergy Asthma Immunol. 2009;102(3):238–46.

    Article  PubMed  Google Scholar 

  500. Chakrabarti S, Patel KD. Matrix metalloproteinase-2 (MMP-2) and MMP-9 in pulmonary pathology. Exp Lung Res. 2005;31(6):599–621.

    Article  CAS  PubMed  Google Scholar 

  501. Chung FT, Huang HY, Lo CY, Huang YC, Lin CW, He CC, et al. Increased ratio of matrix Metalloproteinase-9 (MMP-9)/tissue inhibitor Metalloproteinase-1 from alveolar macrophages in chronic asthma with a fast decline in FEV1 at 5-year follow-up. J Clin Med. 2019;8(9)

    Google Scholar 

  502. Ohbayashi H, Shimokata K. Matrix metalloproteinase-9 and airway remodeling in asthma. Curr Drug Targets Inflamm Allergy. 2005;4(2):177–81.

    Article  CAS  PubMed  Google Scholar 

  503. Barr RG, Camargo CA Jr. Hormone replacement therapy and obstructive airway diseases. Treat Respir Med. 2004;3(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  504. Konings GFJ, Reynaert NL, Delvoux B, Verhamme FM, Bracke KR, Brusselle GG, et al. Increased levels of enzymes involved in local estradiol synthesis in chronic obstructive pulmonary disease. Mol Cell Endocrinol. 2017;443:23–31.

    Article  CAS  PubMed  Google Scholar 

  505. Zienolddiny S, Campa D, Lind H, Ryberg D, Skaug V, Stangeland LB, et al. A comprehensive analysis of phase I and phase II metabolism gene polymorphisms and risk of non-small cell lung cancer in smokers. Carcinogenesis. 2008;29(6):1164–9.

    Article  CAS  PubMed  Google Scholar 

  506. Van Winkle LS, Gunderson AD, Shimizu JA, Baker GL, Brown CD. Gender differences in naphthalene metabolism and naphthalene-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2002;282(5):L1122–34.

    Article  PubMed  Google Scholar 

  507. Chichester CH, Buckpitt AR, Chang A, Plopper CG. Metabolism and cytotoxicity of naphthalene and its metabolites in isolated murine Clara cells. Mol Pharmacol. 1994;45(4):664–72.

    CAS  PubMed  Google Scholar 

  508. Han W, Pentecost BT, Pietropaolo RL, Fasco MJ, Spivack SD. Estrogen receptor alpha increases basal and cigarette smoke extract-induced expression of CYP1A1 and CYP1B1, but not GSTP1, in normal human bronchial epithelial cells. Mol Carcinog. 2005;44(3):202–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  509. Lee AJ, Cai MX, Thomas PE, Conney AH, Zhu BT. Characterization of the oxidative metabolites of 17beta-estradiol and estrone formed by 15 selectively expressed human cytochrome p450 isoforms. Endocrinology. 2003;144(8):3382–98.

    Article  CAS  PubMed  Google Scholar 

  510. Osborne MP, Bradlow HL, Wong GY, Telang NT. Upregulation of estradiol C16 alpha-hydroxylation in human breast tissue: a potential biomarker of breast cancer risk. J Natl Cancer Inst. 1993;85(23):1917–20.

    Article  CAS  PubMed  Google Scholar 

  511. Schneider J, Kinne D, Fracchia A, Pierce V, Anderson KE, Bradlow HL, et al. Abnormal oxidative metabolism of estradiol in women with breast cancer. Proc Natl Acad Sci U S A. 1982;79(9):3047–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  512. Lu LJ, Cree M, Josyula S, Nagamani M, Grady JJ, Anderson KE. Increased urinary excretion of 2-hydroxyestrone but not 16alpha-hydroxyestrone in premenopausal women during a soya diet containing isoflavones. Cancer Res. 2000;60(5):1299–305.

    CAS  PubMed  Google Scholar 

  513. Michnovicz JJ, Hershcopf RJ, Naganuma H, Bradlow HL, Fishman J. Increased 2-hydroxylation of estradiol as a possible mechanism for the anti-estrogenic effect of cigarette smoking. N Engl J Med. 1986;315(21):1305–9.

    Article  CAS  PubMed  Google Scholar 

  514. Spivack SD, Hurteau GJ, Fasco MJ, Kaminsky LS. Phase I and II carcinogen metabolism gene expression in human lung tissue and tumors. Clin Cancer Res. 2003;9(16 Pt 1):6002–11.

    CAS  PubMed  Google Scholar 

  515. Weinberg OK, Marquez-Garban DC, Fishbein MC, Goodglick L, Garban HJ, Dubinett SM, et al. Aromatase inhibitors in human lung cancer therapy. Cancer Res. 2005;65(24):11287–91.

    Article  CAS  PubMed  Google Scholar 

  516. Young PA, Pietras RJ. Aromatase inhibitors combined with aspirin to prevent lung cancer in preclinical models. Transl Lung Cancer Res. 2018;7(Suppl 4):S373–S6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  517. Travis WD, Costabel U, Hansell DM, King TE Jr, Lynch DA, Nicholson AG, et al. An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med. 2013;188(6):733–48.

    Article  PubMed  PubMed Central  Google Scholar 

  518. Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 2011;183(6):788–824.

    Article  PubMed  PubMed Central  Google Scholar 

  519. Raghu G, Chen SY, Hou Q, Yeh WS, Collard HR. Incidence and prevalence of idiopathic pulmonary fibrosis in US adults 18-64 years old. Eur Respir J. 2016;48(1):179–86.

    Article  PubMed  Google Scholar 

  520. Raghu G, Chen SY, Yeh WS, Maroni B, Li Q, Lee YC, et al. Idiopathic pulmonary fibrosis in US Medicare beneficiaries aged 65 years and older: incidence, prevalence, and survival, 2001-11. Lancet Respir Med. 2014;2(7):566–72.

    Article  PubMed  Google Scholar 

  521. Glassberg MK. Overview of idiopathic pulmonary fibrosis, evidence-based guidelines, and recent developments in the treatment landscape. Am J Manag Care. 2019;25(11 Suppl):S195–203.

    PubMed  Google Scholar 

  522. Venkataraman T, Frieman MB. The role of epidermal growth factor receptor (EGFR) signaling in SARS coronavirus-induced pulmonary fibrosis. Antivir Res. 2017;143:142–50.

    Article  CAS  PubMed  Google Scholar 

  523. Wang Q, Pan S, Zhang S, Shen G, Huang M, Wu M. Lung transplantation in pulmonary fibrosis secondary to influenza a pneumonia. Ann Thorac Surg. 2019;108(4):e233–e5.

    Article  PubMed  Google Scholar 

  524. Wang L, Cheng W, Zhang Z. Respiratory syncytial virus infection accelerates lung fibrosis through the unfolded protein response in a bleomycin-induced pulmonary fibrosis animal model. Mol Med Rep. 2017;16(1):310–6.

    Article  CAS  PubMed  Google Scholar 

  525. Paolocci G, Folletti I, Toren K, Ekstrom M, Dell’Omo M, Muzi G, et al. Occupational risk factors for idiopathic pulmonary fibrosis in southern Europe: a case-control study. BMC Pulm Med. 2018;18(1):75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  526. Hu Y, Wang LS, Li Y, Li QH, Li CL, Chen JM, et al. Effects of particulate matter from straw burning on lung fibrosis in mice. Environ Toxicol Pharmacol. 2017;56:249–58.

    Article  CAS  PubMed  Google Scholar 

  527. Fang L, Cheng Q, Zhao F, Cheng H, Luo Y, Bao X, et al. Cigarette smoke exposure combined with lipopolysaccharides induced pulmonary fibrosis in mice. Respir Physiol Neurobiol. 2019;266:9–17.

    Article  CAS  PubMed  Google Scholar 

  528. Pan M, Zheng Z, Chen Y, Sun N, Zheng B, Yang Q, et al. Angiotensin-(1-7) attenuated cigarette smoking-related pulmonary fibrosis via improving the impaired autophagy caused by Nicotinamide adenine dinucleotide phosphate reduced oxidase 4-dependent reactive oxygen species. Am J Respir Cell Mol Biol. 2018;59(3):306–19.

    Article  CAS  PubMed  Google Scholar 

  529. Gille T, Didier M, Boubaya M, Moya L, Sutton A, Carton Z, et al. Obstructive sleep apnoea and related comorbidities in incident idiopathic pulmonary fibrosis. Eur Respir J. 2017;49(6)

    Google Scholar 

  530. Gribbin J, Hubbard R, Smith C. Role of diabetes mellitus and gastro-oesophageal reflux in the aetiology of idiopathic pulmonary fibrosis. Respir Med. 2009;103(6):927–31.

    Article  PubMed  Google Scholar 

  531. Hutchinson J, Fogarty A, Hubbard R, McKeever T. Global incidence and mortality of idiopathic pulmonary fibrosis: a systematic review. Eur Respir J. 2015;46(3):795–806.

    Article  PubMed  Google Scholar 

  532. Agusti AG, Roca J, Gea J, Wagner PD, Xaubet A, Rodriguez-Roisin R. Mechanisms of gas-exchange impairment in idiopathic pulmonary fibrosis. Am Rev Respir Dis. 1991;143(2):219–25.

    Article  CAS  PubMed  Google Scholar 

  533. Robinson HC. Respiratory conditions update: restrictive lung disease. FP Essent. 2016;448:29–34.

    PubMed  Google Scholar 

  534. Fernandez IE, Eickelberg O. New cellular and molecular mechanisms of lung injury and fibrosis in idiopathic pulmonary fibrosis. Lancet. 2012;380(9842):680–8.

    Article  CAS  PubMed  Google Scholar 

  535. Wynn TA. Integrating mechanisms of pulmonary fibrosis. J Exp Med. 2011;208(7):1339–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  536. Salton F, Volpe MC, Confalonieri M. Epithelial(−)mesenchymal transition in the pathogenesis of idiopathic pulmonary fibrosis. Medicina (Kaunas). 2019;55(4)

    Google Scholar 

  537. Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG, Brumwell AN, et al. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci U S A. 2006;103(35):13180–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  538. Willis BC, Liebler JM, Luby-Phelps K, Nicholson AG, Crandall ED, du Bois RM, et al. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis. Am J Pathol. 2005;166(5):1321–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  539. Ji Y, Dou YN, Zhao QW, Zhang JZ, Yang Y, Wang T, et al. Paeoniflorin suppresses TGF-beta mediated epithelial-mesenchymal transition in pulmonary fibrosis through a Smad-dependent pathway. Acta Pharmacol Sin. 2016;37(6):794–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  540. Cho N, Razipour SE, McCain ML. Featured article: TGF-beta1 dominates extracellular matrix rigidity for inducing differentiation of human cardiac fibroblasts to myofibroblasts. Exp Biol Med (Maywood). 2018;243(7):601–12.

    Article  CAS  Google Scholar 

  541. Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol. 1993;122(1):103–11.

    Article  CAS  PubMed  Google Scholar 

  542. Nakagome K, Dohi M, Okunishi K, Tanaka R, Miyazaki J, Yamamoto K. In vivo IL-10 gene delivery attenuates bleomycin induced pulmonary fibrosis by inhibiting the production and activation of TGF-beta in the lung. Thorax. 2006;61(10):886–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  543. Saito A, Okazaki H, Sugawara I, Yamamoto K, Takizawa H. Potential action of IL-4 and IL-13 as fibrogenic factors on lung fibroblasts in vitro. Int Arch Allergy Immunol. 2003;132(2):168–76.

    Article  CAS  PubMed  Google Scholar 

  544. Upparahalli Venkateshaiah S, Niranjan R, Manohar M, Verma AK, Kandikattu HK, Lasky JA, et al. Attenuation of allergen-, IL-13-, and TGF-alpha-induced lung fibrosis after the treatment of rIL-15 in mice. Am J Respir Cell Mol Biol. 2019;61(1):97–109.

    Article  PubMed  PubMed Central  Google Scholar 

  545. Xiao L, Li ZH, Hou XM, Yu RJ. Evaluation of interleukin-13 in the serum and bronchoalveolar lavage fluid of patients with idiopathic pulmonary fibrosis. Zhonghua Jie He He Hu Xi Za Zhi. 2003;26(11):686–8.

    PubMed  Google Scholar 

  546. Hancock A, Armstrong L, Gama R, Millar A. Production of interleukin 13 by alveolar macrophages from normal and fibrotic lung. Am J Respir Cell Mol Biol. 1998;18(1):60–5.

    Article  CAS  PubMed  Google Scholar 

  547. Park SW, Ahn MH, Jang HK, Jang AS, Kim DJ, Koh ES, et al. Interleukin-13 and its receptors in idiopathic interstitial pneumonia: clinical implications for lung function. J Korean Med Sci. 2009;24(4):614–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  548. Khosravi AR, Alheidary S, Nikaein D, Asghari N. Aspergillus fumigatus conidia stimulate lung epithelial cells (TC-1 JHU-1) to produce IL-12, IFNgamma, IL-13 and IL-17 cytokines: modulatory effect of propolis extract. J Mycol Med. 2018;28(4):594–8.

    Article  CAS  PubMed  Google Scholar 

  549. Jia Y, Fang X, Zhu X, Bai C, Zhu L, Jin M, et al. IL-13(+) type 2 innate lymphoid cells correlate with asthma control status and treatment response. Am J Respir Cell Mol Biol. 2016;55(5):675–83.

    Article  CAS  PubMed  Google Scholar 

  550. Nie Y, Hu Y, Yu K, Zhang D, Shi Y, Li Y, et al. Akt1 regulates pulmonary fibrosis via modulating IL-13 expression in macrophages. Innate Immun. 2019;25(7):451–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  551. Fichtner-Feigl S, Strober W, Kawakami K, Puri RK, Kitani A. IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis. Nat Med. 2006;12(1):99–106.

    Article  CAS  PubMed  Google Scholar 

  552. Ingram JL, Rice AB, Geisenhoffer K, Madtes DK, Bonner JC. IL-13 and IL-1beta promote lung fibroblast growth through coordinated up-regulation of PDGF-AA and PDGF-Ralpha. FASEB J. 2004;18(10):1132–4.

    Article  CAS  PubMed  Google Scholar 

  553. Fanny M, Nascimento M, Baron L, Schricke C, Maillet I, Akbal M, et al. The IL-33 receptor ST2 regulates pulmonary inflammation and fibrosis to Bleomycin. Front Immunol. 2018;9:1476.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  554. Zhang C, Cai R, Lazerson A, Delcroix G, Wangpaichitr M, Mirsaeidi M, et al. Growth hormone-releasing hormone receptor antagonist modulates lung inflammation and fibrosis due to Bleomycin. Lung. 2019;197(5):541–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  555. Wilson MS, Madala SK, Ramalingam TR, Gochuico BR, Rosas IO, Cheever AW, et al. Bleomycin and IL-1beta-mediated pulmonary fibrosis is IL-17A dependent. J Exp Med. 2010;207(3):535–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  556. Liu T, Jin H, Ullenbruch M, Hu B, Hashimoto N, Moore B, et al. Regulation of found in inflammatory zone 1 expression in bleomycin-induced lung fibrosis: role of IL-4/IL-13 and mediation via STAT-6. J Immunol. 2004;173(5):3425–31.

    Article  CAS  PubMed  Google Scholar 

  557. Mi S, Li Z, Yang HZ, Liu H, Wang JP, Ma YG, et al. Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-beta1-dependent and -independent mechanisms. J Immunol. 2011;187(6):3003–14.

    Article  CAS  PubMed  Google Scholar 

  558. Wang T, Liu Y, Zou JF, Cheng ZS. Interleukin-17 induces human alveolar epithelial to mesenchymal cell transition via the TGF-beta1 mediated Smad2/3 and ERK1/2 activation. PLoS One. 2017;12(9):e0183972.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  559. Simonian PL, Roark CL, Wehrmann F, Lanham AK. Diaz del Valle F, born WK, et al. Th17-polarized immune response in a murine model of hypersensitivity pneumonitis and lung fibrosis. J Immunol. 2009;182(1):657–65.

    Article  CAS  PubMed  Google Scholar 

  560. Chen Y, Li C, Weng D, Song L, Tang W, Dai W, et al. Neutralization of interleukin-17A delays progression of silica-induced lung inflammation and fibrosis in C57BL/6 mice. Toxicol Appl Pharmacol. 2014;275(1):62–72.

    Article  CAS  PubMed  Google Scholar 

  561. Harari S, Madotto F, Caminati A, Conti S, Cesana G. Epidemiology of idiopathic pulmonary fibrosis in northern Italy. PLoS One. 2016;11(2):e0147072.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  562. Richeldi L, Rubin AS, Avdeev S, Udwadia ZF, Xu ZJ. Idiopathic pulmonary fibrosis in BRIC countries: the cases of Brazil, Russia, India, and China. BMC Med. 2015;13:237.

    Article  PubMed  PubMed Central  Google Scholar 

  563. American Thoracic Society. Idiopathic pulmonary fibrosis: diagnosis and treatment. International consensus statement. American Thoracic Society (ATS), and the European Respiratory Society (ERS). Am J Respir Crit Care Med. 2000;161(2 Pt 1):646–64.

    Google Scholar 

  564. Olson AL, Gifford AH, Inase N, Fernandez Perez ER, Suda T. The epidemiology of idiopathic pulmonary fibrosis and interstitial lung diseases at risk of a progressive-fibrosing phenotype. Eur Respir Rev. 2018;27(150)

    Google Scholar 

  565. Redente EF, Jacobsen KM, Solomon JJ, Lara AR, Faubel S, Keith RC, et al. Age and sex dimorphisms contribute to the severity of bleomycin-induced lung injury and fibrosis. Am J Physiol Lung Cell Mol Physiol. 2011;301(4):L510–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  566. Khalil N, Bereznay O, Sporn M, Greenberg AH. Macrophage production of transforming growth factor beta and fibroblast collagen synthesis in chronic pulmonary inflammation. J Exp Med. 1989;170(3):727–37.

    Article  CAS  PubMed  Google Scholar 

  567. Buford TW, Willoughby DS. Impact of DHEA(S) and cortisol on immune function in aging: a brief review. Appl Physiol Nutr Metab. 2008;33(3):429–33.

    Article  CAS  PubMed  Google Scholar 

  568. Mendoza-Milla C, Valero Jimenez A, Rangel C, Lozano A, Morales V, Becerril C, et al. Dehydroepiandrosterone has strong antifibrotic effects and is decreased in idiopathic pulmonary fibrosis. Eur Respir J. 2013;42(5):1309–21.

    Article  CAS  PubMed  Google Scholar 

  569. Lekgabe ED, Royce SG, Hewitson TD, Tang ML, Zhao C, Moore XL, et al. The effects of relaxin and estrogen deficiency on collagen deposition and hypertrophy of nonreproductive organs. Endocrinology. 2006;147(12):5575–83.

    Article  CAS  PubMed  Google Scholar 

  570. Tofovic SP, Zhang X, Jackson EK, Zhu H, Petrusevska G. 2-methoxyestradiol attenuates bleomycin-induced pulmonary hypertension and fibrosis in estrogen-deficient rats. Vasc Pharmacol. 2009;51(2–3):190–7.

    Article  CAS  Google Scholar 

  571. Pan LC, Wilson DW, Segall HJ. Strain differences in the response of Fischer 344 and Sprague-Dawley rats to monocrotaline induced pulmonary vascular disease. Toxicology. 1993;79(1):21–35.

    Article  CAS  PubMed  Google Scholar 

  572. Hirano S, Furutama D, Hanafusa T. Physiologically high concentrations of 17beta-estradiol enhance NF-kappaB activity in human T cells. Am J Physiol Regul Integr Comp Physiol. 2007;292(4):R1465–71.

    Article  CAS  PubMed  Google Scholar 

  573. Speyer CL, Rancilio NJ, McClintock SD, Crawford JD, Gao H, Sarma JV, et al. Regulatory effects of estrogen on acute lung inflammation in mice. Am J Physiol Cell Physiol. 2005;288(4):C881–90.

    Article  CAS  PubMed  Google Scholar 

  574. Frazier-Jessen MR, Kovacs EJ. Estrogen modulation of JE/monocyte chemoattractant protein-1 mRNA expression in murine macrophages. J Immunol. 1995;154(4):1838–45.

    Article  CAS  PubMed  Google Scholar 

  575. Kurokawa A, Azuma K, Mita T, Toyofuku Y, Fujitani Y, Hirose T, et al. 2-Methoxyestradiol reduces monocyte adhesion to aortic endothelial cells in ovariectomized rats. Endocr J. 2007;54(6):1027–31.

    Article  CAS  PubMed  Google Scholar 

  576. Barron L, Wynn TA. Fibrosis is regulated by Th2 and Th17 responses and by dynamic interactions between fibroblasts and macrophages. Am J Physiol Gastrointest Liver Physiol. 2011;300(5):G723–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  577. Bonner JC. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev. 2004;15(4):255–73.

    Article  CAS  PubMed  Google Scholar 

  578. Antoniades HN, Bravo MA, Avila RE, Galanopoulos T, Neville-Golden J, Maxwell M, et al. Platelet-derived growth factor in idiopathic pulmonary fibrosis. J Clin Invest. 1990;86(4):1055–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  579. Yoshida M, Sakuma J, Hayashi S, Abe K, Saito I, Harada S, et al. A histologically distinctive interstitial pneumonia induced by overexpression of the interleukin 6, transforming growth factor beta 1, or platelet-derived growth factor B gene. Proc Natl Acad Sci U S A. 1995;92(21):9570–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  580. Mukherjee S, Duan F, Kolb MR, Janssen LJ. Platelet derived growth factor-evoked Ca2+ wave and matrix gene expression through phospholipase C in human pulmonary fibroblast. Int J Biochem Cell Biol. 2013;45(7):1516–24.

    Article  CAS  PubMed  Google Scholar 

  581. Chen G, Qiao Y, Xiao X, Zheng S, Chen L. Effects of estrogen on lung development in a rat model of diaphragmatic hernia. J Pediatr Surg. 2010;45(12):2340–5.

    Article  PubMed  Google Scholar 

  582. Bentzen SM, Skoczylas JZ, Overgaard M, Overgaard J. Radiotherapy-related lung fibrosis enhanced by tamoxifen. J Natl Cancer Inst. 1996;88(13):918–22.

    Article  CAS  PubMed  Google Scholar 

  583. Smith LC, Moreno S, Robertson L, Robinson S, Gant K, Bryant AJ, et al. Transforming growth factor beta1 targets estrogen receptor signaling in bronchial epithelial cells. Respir Res. 2018;19(1):160.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  584. Elliot S, Periera-Simon S, Xia X, Catanuto P, Rubio G, Shahzeidi S, et al. MicroRNA let-7 Downregulates ligand-independent estrogen receptor-mediated male-predominant pulmonary fibrosis. Am J Respir Crit Care Med. 2019;200(10):1246–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  585. Spitz MR, Wei Q, Dong Q, Amos CI, Wu X. Genetic susceptibility to lung cancer: the role of DNA damage and repair. Cancer Epidemiol Biomark Prev. 2003;12(8):689–98.

    CAS  Google Scholar 

  586. Jonsson S, Thorsteinsdottir U, Gudbjartsson DF, Jonsson HH, Kristjansson K, Arnason S, et al. Familial risk of lung carcinoma in the Icelandic population. JAMA. 2004;292(24):2977–83.

    Article  CAS  PubMed  Google Scholar 

  587. Remen T, Pintos J, Abrahamowicz M, Siemiatycki J. Risk of lung cancer in relation to various metrics of smoking history: a case-control study in Montreal. BMC Cancer. 2018;18(1):1275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  588. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.

    Article  PubMed  Google Scholar 

  589. Jeon J, Holford TR, Levy DT, Feuer EJ, Cao P, Tam J, et al. Smoking and lung Cancer mortality in the United States from 2015 to 2065: a comparative modeling approach. Ann Intern Med. 2018;169(10):684–93.

    Article  PubMed  PubMed Central  Google Scholar 

  590. Lortet-Tieulent J, Renteria E, Sharp L, Weiderpass E, Comber H, Baas P, et al. Convergence of decreasing male and increasing female incidence rates in major tobacco-related cancers in Europe in 1988-2010. Eur J Cancer. 2015;51(9):1144–63.

    Article  PubMed  Google Scholar 

  591. Harichand-Herdt S, Ramalingam SS. Gender-associated differences in lung cancer: clinical characteristics and treatment outcomes in women. Semin Oncol. 2009;36(6):572–80.

    Article  CAS  PubMed  Google Scholar 

  592. Kabat GC. Aspects of the epidemiology of lung cancer in smokers and nonsmokers in the United States. Lung Cancer. 1996;15(1):1–20.

    Article  CAS  PubMed  Google Scholar 

  593. Rivera GA, Wakelee H. Lung Cancer in never smokers. Adv Exp Med Biol. 2016;893:43–57.

    Article  PubMed  Google Scholar 

  594. Donington JS, Colson YL. Sex and gender differences in non-small cell lung cancer. Semin Thorac Cardiovasc Surg. 2011;23(2):137–45.

    Article  PubMed  Google Scholar 

  595. Kligerman S, White C. Epidemiology of lung cancer in women: risk factors, survival, and screening. AJR Am J Roentgenol. 2011;196(2):287–95.

    Article  PubMed  Google Scholar 

  596. Radkiewicz C, Dickman PW, Johansson ALV, Wagenius G, Edgren G, Lambe M. Sex and survival in non-small cell lung cancer: a nationwide cohort study. PLoS One. 2019;14(6):e0219206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  597. Inamura K. Lung Cancer: understanding its molecular pathology and the 2015 WHO classification. Front Oncol. 2017;7:193.

    Article  PubMed  PubMed Central  Google Scholar 

  598. Martey CA, Pollock SJ, Turner CK, O’Reilly KM, Baglole CJ, Phipps RP, et al. Cigarette smoke induces cyclooxygenase-2 and microsomal prostaglandin E2 synthase in human lung fibroblasts: implications for lung inflammation and cancer. Am J Physiol Lung Cell Mol Physiol. 2004;287(5):L981–91.

    Article  CAS  PubMed  Google Scholar 

  599. D’Anna C, Cigna D, Costanzo G, Ferraro M, Siena L, Vitulo P, et al. Cigarette smoke alters cell cycle and induces inflammation in lung fibroblasts. Life Sci. 2015;126:10–8.

    Article  PubMed  CAS  Google Scholar 

  600. Montuenga LM, Pio R. Tumour-associated macrophages in nonsmall cell lung cancer: the role of interleukin-10. Eur Respir J. 2007;30(4):608–10.

    Article  CAS  PubMed  Google Scholar 

  601. Ding M, He SJ, Yang J. MCP-1/CCL2 mediated by autocrine loop of PDGF-BB promotes invasion of lung Cancer cell by recruitment of macrophages via CCL2-CCR2 Axis. J Interf Cytokine Res. 2019;39(4):224–32.

    Article  CAS  Google Scholar 

  602. Cai Z, Chen Q, Chen J, Lu Y, Xiao G, Wu Z, et al. Monocyte chemotactic protein 1 promotes lung cancer-induced bone resorptive lesions in vivo. Neoplasia. 2009;11(3):228–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  603. Wang N, Liang H, Zen K. Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front Immunol. 2014;5:614.

    Article  PubMed  PubMed Central  Google Scholar 

  604. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677–86.

    Article  CAS  PubMed  Google Scholar 

  605. Chittezhath M, Dhillon MK, Lim JY, Laoui D, Shalova IN, Teo YL, et al. Molecular profiling reveals a tumor-promoting phenotype of monocytes and macrophages in human cancer progression. Immunity. 2014;41(5):815–29.

    Article  CAS  PubMed  Google Scholar 

  606. Anderson CF, Mosser DM. A novel phenotype for an activated macrophage: the type 2 activated macrophage. J Leukoc Biol. 2002;72(1):101–6.

    Article  CAS  PubMed  Google Scholar 

  607. Hu P, Shen M, Zhang P, Zheng C, Pang Z, Zhu L, et al. Intratumoral neutrophil granulocytes contribute to epithelial-mesenchymal transition in lung adenocarcinoma cells. Tumour Biol. 2015;36(10):7789–96.

    Article  CAS  PubMed  Google Scholar 

  608. Pham CT. Neutrophil serine proteases: specific regulators of inflammation. Nat Rev Immunol. 2006;6(7):541–50.

    Article  CAS  PubMed  Google Scholar 

  609. Canli O, Nicolas AM, Gupta J, Finkelmeier F, Goncharova O, Pesic M, et al. Myeloid cell-derived reactive oxygen species induce epithelial mutagenesis. Cancer Cell. 2017;32(6):869–83. e5

    Article  CAS  PubMed  Google Scholar 

  610. Hiraoka K, Miyamoto M, Cho Y, Suzuoki M, Oshikiri T, Nakakubo Y, et al. Concurrent infiltration by CD8+ T cells and CD4+ T cells is a favourable prognostic factor in non-small-cell lung carcinoma. Br J Cancer. 2006;94(2):275–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  611. Dai F, Liu L, Che G, Yu N, Pu Q, Zhang S, et al. The number and microlocalization of tumor-associated immune cells are associated with patient’s survival time in non-small cell lung cancer. BMC Cancer. 2010;10:220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  612. Miotto D, Lo Cascio N, Stendardo M, Querzoli P, Pedriali M, De Rosa E, et al. CD8+ T cells expressing IL-10 are associated with a favourable prognosis in lung cancer. Lung Cancer. 2010;69(3):355–60.

    Article  CAS  PubMed  Google Scholar 

  613. Neurath MF, Becker C, Barbulescu K. Role of NF-kappaB in immune and inflammatory responses in the gut. Gut. 1998;43(6):856–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  614. Ben-Neriah Y, Karin M. Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat Immunol. 2011;12(8):715–23.

    Article  CAS  PubMed  Google Scholar 

  615. Chen W, Li Z, Bai L, Lin Y. NF-kappaB in lung cancer, a carcinogenesis mediator and a prevention and therapy target. Front Biosci (Landmark Ed). 2011;16:1172–85.

    Article  CAS  Google Scholar 

  616. Luo X, Ding Q, Wang M, Li Z, Mao K, Sun B, et al. In vivo disruption of TGF-beta signaling by Smad7 in airway epithelium alleviates allergic asthma but aggravates lung carcinogenesis in mouse. PLoS One. 2010;5(4):e10149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  617. Bruno A, Focaccetti C, Pagani A, Imperatori AS, Spagnoletti M, Rotolo N, et al. The proangiogenic phenotype of natural killer cells in patients with non-small cell lung cancer. Neoplasia. 2013;15(2):133–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  618. Siegel PM, Massague J. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer. 2003;3(11):807–21.

    Article  CAS  PubMed  Google Scholar 

  619. Saito A, Horie M, Micke P, Nagase T. The role of TGF-beta signaling in lung Cancer associated with idiopathic pulmonary fibrosis. Int J Mol Sci. 2018;19(11)

    Google Scholar 

  620. Wang YC, Sung WW, Wu TC, Wang L, Chien WP, Cheng YW, et al. Interleukin-10 haplotype may predict survival and relapse in resected non-small cell lung cancer. PLoS One. 2012;7(7):e39525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  621. Lan X, Lan T, Faxiang Q. Interleukin-10 promoter polymorphism and susceptibility to lung cancer: a systematic review and meta-analysis. Int J Clin Exp Med. 2015;8(9):15317–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  622. Chow MT, Moller A, Smyth MJ. Inflammation and immune surveillance in cancer. Semin Cancer Biol. 2012;22(1):23–32.

    Article  CAS  PubMed  Google Scholar 

  623. Zeng L, O’Connor C, Zhang J, Kaplan AM, Cohen DA. IL-10 promotes resistance to apoptosis and metastatic potential in lung tumor cell lines. Cytokine. 2010;49(3):294–302.

    Article  CAS  PubMed  Google Scholar 

  624. Wang R, Lu M, Zhang J, Chen S, Luo X, Qin Y, et al. Increased IL-10 mRNA expression in tumor-associated macrophage correlated with late stage of lung cancer. J Exp Clin Cancer Res. 2011;30:62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  625. Beattie CW, Hansen NW, Thomas PA. Steroid receptors in human lung cancer. Cancer Res. 1985;45(9):4206–14.

    CAS  PubMed  Google Scholar 

  626. Kaiser U, Hofmann J, Schilli M, Wegmann B, Klotz U, Wedel S, et al. Steroid-hormone receptors in cell lines and tumor biopsies of human lung cancer. Int J Cancer. 1996;67(3):357–64.

    Article  CAS  PubMed  Google Scholar 

  627. Maasberg M, Rotsch M, Jaques G, Enderle-Schmidt U, Weehle R, Havemann K. Androgen receptors, androgen-dependent proliferation, and 5 alpha-reductase activity of small-cell lung cancer cell lines. Int J Cancer. 1989;43(4):685–91.

    Article  CAS  PubMed  Google Scholar 

  628. Jeong Y, Xie Y, Xiao G, Behrens C, Girard L, Wistuba II, et al. Nuclear receptor expression defines a set of prognostic biomarkers for lung cancer. PLoS Med. 2010;7(12):e1000378.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  629. Raso MG, Behrens C, Herynk MH, Liu S, Prudkin L, Ozburn NC, et al. Immunohistochemical expression of estrogen and progesterone receptors identifies a subset of NSCLCs and correlates with EGFR mutation. Clin Cancer Res. 2009;15(17):5359–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  630. Jeong Y, Xie Y, Lee W, Bookout AL, Girard L, Raso G, et al. Research resource: diagnostic and therapeutic potential of nuclear receptor expression in lung cancer. Mol Endocrinol. 2012;26(8):1443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  631. Hyde Z, Flicker L, McCaul KA, Almeida OP, Hankey GJ, Chubb SA, et al. Associations between testosterone levels and incident prostate, lung, and colorectal cancer. A population-based study. Cancer Epidemiol Biomark Prev. 2012;21(8):1319–29.

    Article  CAS  Google Scholar 

  632. Harlos C, Musto G, Lambert P, Ahmed R, Pitz MW. Androgen pathway manipulation and survival in patients with lung cancer. Horm Cancer. 2015;6(2–3):120–7.

    Article  CAS  PubMed  Google Scholar 

  633. Kissick HT, Sanda MG, Dunn LK, Pellegrini KL, On ST, Noel JK, et al. Androgens alter T-cell immunity by inhibiting T-helper 1 differentiation. Proc Natl Acad Sci U S A. 2014;111(27):9887–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  634. Wu CT. Chen WC, Lin PY, Liao SK. Chen MF Androgen deprivation modulates the inflammatory response induced by irradiation BMC Cancer. 2009;9:92.

    PubMed  Google Scholar 

  635. Padgett DA, Loria RM. Endocrine regulation of murine macrophage function: effects of dehydroepiandrosterone, androstenediol, and androstenetriol. J Neuroimmunol. 1998;84(1):61–8.

    Article  CAS  PubMed  Google Scholar 

  636. Corcoran MP, Meydani M, Lichtenstein AH, Schaefer EJ, Dillard A, Lamon-Fava S. Sex hormone modulation of proinflammatory cytokine and C-reactive protein expression in macrophages from older men and postmenopausal women. J Endocrinol. 2010;206(2):217–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  637. Zeni E, Mazzetti L, Miotto D, Lo Cascio N, Maestrelli P, Querzoli P, et al. Macrophage expression of interleukin-10 is a prognostic factor in nonsmall cell lung cancer. Eur Respir J. 2007;30(4):627–32.

    Article  CAS  PubMed  Google Scholar 

  638. Hagenbaugh A, Sharma S, Dubinett SM, Wei SH, Aranda R, Cheroutre H, et al. Altered immune responses in interleukin 10 transgenic mice. J Exp Med. 1997;185(12):2101–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  639. De Vita F, Orditura M, Galizia G, Romano C, Roscigno A, Lieto E, et al. Serum interleukin-10 levels as a prognostic factor in advanced non-small cell lung cancer patients. Chest. 2000;117(2):365–73.

    Article  PubMed  Google Scholar 

  640. Xu LL, Shanmugam N, Segawa T, Sesterhenn IA, McLeod DG, Moul JW, et al. A novel androgen-regulated gene, PMEPA1, located on chromosome 20q13 exhibits high level expression in prostate. Genomics. 2000;66(3):257–63.

    Article  CAS  PubMed  Google Scholar 

  641. Brunschwig EB, Wilson K, Mack D, Dawson D, Lawrence E, Willson JK, et al. PMEPA1, a transforming growth factor-beta-induced marker of terminal colonocyte differentiation whose expression is maintained in primary and metastatic colon cancer. Cancer Res. 2003;63(7):1568–75.

    CAS  PubMed  Google Scholar 

  642. Itoh S, Thorikay M, Kowanetz M, Moustakas A, Itoh F, Heldin CH, et al. Elucidation of Smad requirement in transforming growth factor-beta type I receptor-induced responses. J Biol Chem. 2003;278(6):3751–61.

    Article  CAS  PubMed  Google Scholar 

  643. Hu Y, He K, Wang D, Yuan X, Liu Y, Ji H, et al. TMEPAI regulates EMT in lung cancer cells by modulating the ROS and IRS-1 signaling pathways. Carcinogenesis. 2013;34(8):1764–72.

    Article  CAS  PubMed  Google Scholar 

  644. Bai X, Jing L, Li Y, Li Y, Luo S, Wang S, et al. TMEPAI inhibits TGF-beta signaling by promoting lysosome degradation of TGF-beta receptor and contributes to lung cancer development. Cell Signal. 2014;26(9):2030–9.

    Article  CAS  PubMed  Google Scholar 

  645. Fu JB, Kau TY, Severson RK, Kalemkerian GP. Lung cancer in women: analysis of the national surveillance, epidemiology, and end results database. Chest. 2005;127(3):768–77.

    Article  PubMed  Google Scholar 

  646. North CM, Christiani DC. Women and lung cancer: what is new? Semin Thorac Cardiovasc Surg. 2013;25(2):87–94.

    Article  PubMed  Google Scholar 

  647. Niikawa H, Suzuki T, Miki Y, Suzuki S, Nagasaki S, Akahira J, et al. Intratumoral estrogens and estrogen receptors in human non-small cell lung carcinoma. Clin Cancer Res. 2008;14(14):4417–26.

    Article  CAS  PubMed  Google Scholar 

  648. Ikeda K, Shiraishi K, Yoshida A, Shinchi Y, Sanada M, Motooka Y, et al. Synchronous multiple lung adenocarcinomas: estrogen concentration in peripheral lung. PLoS One. 2016;11(8):e0160910.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  649. Zhang G, Liu X, Farkas AM, Parwani AV, Lathrop KL, Lenzner D, et al. Estrogen receptor beta functions through nongenomic mechanisms in lung cancer cells. Mol Endocrinol. 2009;23(2):146–56.

    Article  PubMed  CAS  Google Scholar 

  650. Schwartz AG, Prysak GM, Murphy V, Lonardo F, Pass H, Schwartz J, et al. Nuclear estrogen receptor beta in lung cancer: expression and survival differences by sex. Clin Cancer Res. 2005;11(20):7280–7.

    Article  CAS  PubMed  Google Scholar 

  651. Hershberger PA, Stabile LP, Kanterewicz B, Rothstein ME, Gubish CT, Land S, et al. Estrogen receptor beta (ERbeta) subtype-specific ligands increase transcription, p44/p42 mitogen activated protein kinase (MAPK) activation and growth in human non-small cell lung cancer cells. J Steroid Biochem Mol Biol. 2009;116(1–2):102–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  652. Stabile LP, Davis AL, Gubish CT, Hopkins TM, Luketich JD, Christie N, et al. Human non-small cell lung tumors and cells derived from normal lung express both estrogen receptor alpha and beta and show biological responses to estrogen. Cancer Res. 2002;62(7):2141–50.

    CAS  PubMed  Google Scholar 

  653. Mah V, Seligson DB, Li A, Marquez DC, Wistuba II, Elshimali Y, et al. Aromatase expression predicts survival in women with early-stage non small cell lung cancer. Cancer Res. 2007;67(21):10484–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  654. Stabile LP, Dacic S, Land SR, Lenzner DE, Dhir R, Acquafondata M, et al. Combined analysis of estrogen receptor beta-1 and progesterone receptor expression identifies lung cancer patients with poor outcome. Clin Cancer Res. 2011;17(1):154–64.

    Article  CAS  PubMed  Google Scholar 

  655. Stabile LP, Rothstein ME, Cunningham DE, Land SR, Dacic S, Keohavong P, et al. Prevention of tobacco carcinogen-induced lung cancer in female mice using antiestrogens. Carcinogenesis. 2012;33(11):2181–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  656. He M, Yu W, Chang C, Miyamoto H, Liu X, Jiang K, et al. Estrogen receptor alpha promotes lung cancer cell invasion via increase of and cross-talk with infiltrated macrophages through the CCL2/CCR2/MMP9 and CXCL12/CXCR4 signaling pathways. Mol Oncol. 2020;

    Google Scholar 

  657. O’Connor T, Borsig L, Heikenwalder M. CCL2-CCR2 signaling in disease pathogenesis. Endocr Metab Immune Disord Drug Targets. 2015;15(2):105–18.

    Article  PubMed  CAS  Google Scholar 

  658. Fielding CA, McLoughlin RM, McLeod L, Colmont CS, Najdovska M, Grail D, et al. IL-6 regulates neutrophil trafficking during acute inflammation via STAT3. J Immunol. 2008;181(3):2189–95.

    Article  CAS  PubMed  Google Scholar 

  659. Yanagawa H, Sone S, Takahashi Y, Haku T, Yano S, Shinohara T, et al. Serum levels of interleukin 6 in patients with lung cancer. Br J Cancer. 1995;71(5):1095–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  660. Pine SR, Mechanic LE, Enewold L, Chaturvedi AK, Katki HA, Zheng YL, et al. Increased levels of circulating interleukin 6, interleukin 8, C-reactive protein, and risk of lung cancer. J Natl Cancer Inst. 2011;103(14):1112–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  661. Fuentes N, Nicoleau M, Cabello N, Montes D, Zomorodi N, Chroneos ZC, et al. 17beta-estradiol affects lung function and inflammation following ozone exposure in a sex-specific manner. Am J Physiol Lung Cell Mol Physiol. 2019;317(5):L702–L16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  662. Haura EB, Livingston S, Coppola D. Autocrine interleukin-6/interleukin-6 receptor stimulation in non-small-cell lung cancer. Clin Lung Cancer. 2006;7(4):273–5.

    Article  CAS  PubMed  Google Scholar 

  663. Song L, Turkson J, Karras JG, Jove R, Haura EB. Activation of Stat3 by receptor tyrosine kinases and cytokines regulates survival in human non-small cell carcinoma cells. Oncogene. 2003;22(27):4150–65.

    Article  CAS  PubMed  Google Scholar 

  664. Huang Q, Zhang Z, Liao Y, Liu C, Fan S, Wei X, et al. 17beta-estradiol upregulates IL6 expression through the ERbeta pathway to promote lung adenocarcinoma progression. J Exp Clin Cancer Res. 2018;37(1):133.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  665. Wang J, Wang Y, Wong C. Oestrogen-related receptor alpha inverse agonist XCT-790 arrests A549 lung cancer cell population growth by inducing mitochondrial reactive oxygen species production. Cell Prolif. 2010;43(2):103–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  666. Huang JW, Guan BZ, Yin LH, Liu FN, Hu B, Zheng QY, et al. Effects of estrogen-related receptor alpha (ERRalpha) on proliferation and metastasis of human lung cancer A549 cells. J Huazhong Univ Sci Technolog Med Sci. 2014;34(6):875–81.

    Article  CAS  PubMed  Google Scholar 

  667. Zhang J, Guan X, Liang N, Li S. Estrogen-related receptor alpha triggers the proliferation and migration of human non-small cell lung cancer via interleukin-6. Cell Biochem Funct. 2018;36(5):255–62.

    Article  CAS  PubMed  Google Scholar 

  668. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  669. Miller R, Englund K. Transmission and risk factors of OF COVID-19. Cleve Clin J Med. 2020;

    Google Scholar 

  670. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–20.

    Article  CAS  PubMed  Google Scholar 

  671. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  672. Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020;63(3):364–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  673. Velavan TP, Meyer CG. The COVID-19 epidemic. Tropical Med Int Health. 2020;25(3):278–80.

    Article  CAS  Google Scholar 

  674. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China Lancet. 2020;395(10223):497–506.

    Article  CAS  PubMed  Google Scholar 

  675. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;

    Google Scholar 

  676. Zhang B, Zhou X, Qiu Y, Song Y, Feng F, Feng J, et al. Clinical characteristics of 82 cases of death from COVID-19. PLoS One. 2020;15(7):e0235458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  677. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  678. Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-cell RNA expression profiling of ACE2, The receptor of SARS-CoV-2. Am J Respir Crit Care Med. 2020;

    Google Scholar 

  679. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281–92. e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  680. Xu X, Chen P, Wang J, Feng J, Zhou H, Li X, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci. 2020;63(3):457–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  681. Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047):112–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  682. Imai Y, Kuba K, Penninger JM. The discovery of angiotensin-converting enzyme 2 and its role in acute lung injury in mice. Exp Physiol. 2008;93(5):543–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  683. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11(8):875–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  684. Heurich A, Hofmann-Winkler H, Gierer S, Liepold T, Jahn O, Pohlmann S. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol. 2014;88(2):1293–307.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  685. Lukassen S, Chua RL, Trefzer T, Kahn NC, Schneider MA, Muley T, et al. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J. 2020;39(10):e105114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  686. Meng Y, Wu P, Lu W, Liu K, Ma K, Huang L, et al. Sex-specific clinical characteristics and prognosis of coronavirus disease-19 infection in Wuhan, China: a retrospective study of 168 severe patients. PLoS Pathog. 2020;16(4):e1008520.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  687. Gemmati D, Bramanti B, Serino ML, Secchiero P, Zauli G, Tisato V. COVID-19 and individual genetic susceptibility/receptivity: role of ACE1/ACE2 genes, immunity, inflammation and coagulation. Might the double X-chromosome in females be protective against SARS-CoV-2 compared to the single X-chromosome in males? Int J Mol Sci. 2020;21(10)

    Google Scholar 

  688. Stelzig KE, Canepa-Escaro F, Schiliro M, Berdnikovs S, Prakash YS, Chiarella SE. Estrogen regulates the expression of SARS-CoV-2 receptor ACE2 in differentiated airway epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2020;318(6):L1280–L1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  689. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  690. Zhang H, Zhou P, Wei Y, Yue H, Wang Y, Hu M, et al. Histopathologic changes and SARS-CoV-2 Immunostaining in the lung of a patient with COVID-19. Ann Intern Med. 2020;172(9):629–32.

    Article  PubMed  Google Scholar 

  691. Tay MZ, Poh CM, Renia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363–74.

    Article  CAS  PubMed  Google Scholar 

  692. Tian S, Hu W, Niu L, Liu H, Xu H, Xiao SY. Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung Cancer. J Thorac Oncol. 2020;15(5):700–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  693. Huang KJ, Su IJ, Theron M, Wu YC, Lai SK, Liu CC, et al. An interferon-gamma-related cytokine storm in SARS patients. J Med Virol. 2005;75(2):185–94.

    Article  CAS  PubMed  Google Scholar 

  694. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan. Clin Infect Dis: China; 2020.

    Book  Google Scholar 

  695. Zheng HY, Zhang M, Yang CX, Zhang N, Wang XC, Yang XP, et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020;17(5):541–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  696. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):2620–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  697. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  698. Nie Y, Wang G, Shi X, Zhang H, Qiu Y, He Z, et al. Neutralizing antibodies in patients with severe acute respiratory syndrome-associated coronavirus infection. J Infect Dis. 2004;190(6):1119–26.

    Article  PubMed  Google Scholar 

  699. Thevarajan I, Nguyen THO, Koutsakos M, Druce J, Caly L, van de Sandt CE, et al. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nat Med. 2020;26(4):453–5.

    Article  CAS  PubMed  Google Scholar 

  700. Elizaldi SR, Lakshmanappa YS, Roh JW, Schmidt BA, Carroll TD, Weaver KD, et al. SARS-CoV-2 infection induces germinal center responses with robust stimulation of CD4 T follicular helper cells in rhesus macaques. bioRxiv. 2020.

    Google Scholar 

  701. Qin L, Li X, Shi J, Yu M, Wang K, Tao Y, et al. Gendered effects on inflammation reaction and outcome of COVID-19 patients in Wuhan. J Med Virol. 2020;

    Google Scholar 

  702. Pozzilli P, Lenzi A. Commentary: testosterone, a key hormone in the context of COVID-19 pandemic. Metabolism. 2020;108:154252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  703. Maggio M, Basaria S, Ceda GP, Ble A, Ling SM, Bandinelli S, et al. The relationship between testosterone and molecular markers of inflammation in older men. J Endocrinol Invest. 2005;28(11 Suppl Proceedings):116–9.

    Google Scholar 

  704. Mohamad NV, Wong SK, Wan Hasan WN, Jolly JJ, Nur-Farhana MF, Ima-Nirwana S, et al. The relationship between circulating testosterone and inflammatory cytokines in men. Aging Male. 2019;22(2):129–40.

    Article  CAS  PubMed  Google Scholar 

  705. Zhao M, Wang M, Zhang J, Gu J, Zhang P, Xu Y, et al. Comparison of clinical characteristics and outcomes of patients with coronavirus disease 2019 at different ages. Aging (Albany NY). 2020;12(11):10070–86.

    Article  CAS  Google Scholar 

  706. Bhasin S, Brito JP, Cunningham GR, Hayes FJ, Hodis HN, Matsumoto AM, et al. Testosterone therapy in men with hypogonadism: An Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2018;103(5):1715–44.

    Article  PubMed  Google Scholar 

  707. Van Vliet M, Spruit MA, Verleden G, Kasran A, Van Herck E, Pitta F, et al. Hypogonadism, quadriceps weakness, and exercise intolerance in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005;172(9):1105–11.

    Article  PubMed  Google Scholar 

  708. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the new York City area. JAMA. 2020;

    Google Scholar 

  709. Alqahtani JS, Oyelade T, Aldhahir AM, Alghamdi SM, Almehmadi M, Alqahtani AS, et al. Prevalence, severity and mortality associated with COPD and smoking in patients with COVID-19: a rapid systematic review and meta-analysis. PLoS One. 2020;15(5):e0233147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  710. Kapoor D, Aldred H, Clark S, Channer KS, Jones TH. Clinical and biochemical assessment of hypogonadism in men with type 2 diabetes: correlations with bioavailable testosterone and visceral adiposity. Diabetes Care. 2007;30(4):911–7.

    Article  CAS  PubMed  Google Scholar 

  711. Svartberg J, von Muhlen D, Sundsfjord J, Jorde R. Waist circumference and testosterone levels in community dwelling men. The Tromso study Eur J Epidemiol. 2004;19(7):657–63.

    Article  CAS  PubMed  Google Scholar 

  712. Balasubramanian V, Naing S. Hypogonadism in chronic obstructive pulmonary disease: incidence and effects. Curr Opin Pulm Med. 2012;18(2):112–7.

    Article  CAS  PubMed  Google Scholar 

  713. Caminiti G, Volterrani M, Iellamo F, Marazzi G, Massaro R, Miceli M, et al. Effect of long-acting testosterone treatment on functional exercise capacity, skeletal muscle performance, insulin resistance, and baroreflex sensitivity in elderly patients with chronic heart failure a double-blind, placebo-controlled, randomized study. J Am Coll Cardiol. 2009;54(10):919–27.

    Article  CAS  PubMed  Google Scholar 

  714. Douglas GC, O’Bryan MK, Hedger MP, Lee DK, Yarski MA, Smith AI, et al. The novel angiotensin-converting enzyme (ACE) homolog, ACE2, is selectively expressed by adult Leydig cells of the testis. Endocrinology. 2004;145(10):4703–11.

    Article  CAS  PubMed  Google Scholar 

  715. Rastrelli G, Di Stasi V, Inglese F, Beccaria M, Garuti M, Di Costanzo D, et al. Low testosterone levels predict clinical adverse outcomes in SARS-CoV-2 pneumonia patients. Andrology. 2020;

    Google Scholar 

  716. Bobjer J, Katrinaki M, Tsatsanis C, Lundberg Giwercman Y, Giwercman A. Negative association between testosterone concentration and inflammatory markers in young men: a nested cross-sectional study. PLoS One. 2013;8(4):e61466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  717. Olsen NJ, Kovacs WJ. Evidence that androgens modulate human thymic T cell output. J Investig Med. 2011;59(1):32–5.

    Article  PubMed  PubMed Central  Google Scholar 

  718. Roden AC, Moser MT, Tri SD, Mercader M, Kuntz SM, Dong H, et al. Augmentation of T cell levels and responses induced by androgen deprivation. J Immunol. 2004;173(10):6098–108.

    Article  CAS  PubMed  Google Scholar 

  719. Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, et al. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA. 2020;

    Google Scholar 

  720. Valk SJ, Piechotta V, Chai KL, Doree C, Monsef I, Wood EM, et al. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a rapid review. Cochrane Database Syst Rev. 2020;5:CD013600.

    PubMed  Google Scholar 

  721. Sheridan C. Convalescent serum lines up as first-choice treatment for coronavirus. Nat Biotechnol. 2020;38(6):655–8.

    Article  CAS  PubMed  Google Scholar 

  722. Zeng F, Dai C, Cai P, Wang J, Xu L, Li J, et al. A comparison study of SARS-CoV-2 IgG antibody between male and female COVID-19 patients: a possible reason underlying different outcome between sex. J Med Virol. 2020;

    Google Scholar 

  723. Glowacka I, Bertram S, Muller MA, Allen P, Soilleux E, Pfefferle S, et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol. 2011;85(9):4122–34.

    Article  PubMed  PubMed Central  Google Scholar 

  724. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–80. e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  725. Lucas JM, Heinlein C, Kim T, Hernandez SA, Malik MS, True LD, et al. The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis. Cancer Discov. 2014;4(11):1310–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  726. Stopsack KH, Mucci LA, Antonarakis ES, Nelson PS, Kantoff PW. TMPRSS2 and COVID-19: serendipity or opportunity for intervention? Cancer Discov. 2020;10(6):779–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  727. Asselta R, Paraboschi EM, Mantovani A, Duga S. ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy. Aging (Albany NY). 2020;12(11):10087–98.

    Article  CAS  Google Scholar 

  728. Ross MT, Grafham DV, Coffey AJ, Scherer S, McLay K, Muzny D, et al. The DNA sequence of the human X chromosome. Nature. 2005;434(7031):325–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  729. Channappanavar R, Fett C, Mack M, Ten Eyck PP, Meyerholz DK, Perlman S. Sex-based differences in susceptibility to severe acute respiratory syndrome coronavirus infection. J Immunol. 2017;198(10):4046–53.

    Article  CAS  PubMed  Google Scholar 

  730. Fagone P, Ciurleo R, Lombardo SD, Iacobello C, Palermo CI, Shoenfeld Y, et al. Transcriptional landscape of SARS-CoV-2 infection dismantles pathogenic pathways activated by the virus, proposes unique sex-specific differences and predicts tailored therapeutic strategies. Autoimmun Rev. 2020;19(7):102571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  731. Laffont S, Rouquie N, Azar P, Seillet C, Plumas J, Aspord C, et al. X-chromosome complement and estrogen receptor signaling independently contribute to the enhanced TLR7-mediated IFN-alpha production of plasmacytoid dendritic cells from women. J Immunol. 2014;193(11):5444–52.

    Article  CAS  PubMed  Google Scholar 

  732. Phiel KL, Henderson RA, Adelman SJ, Elloso MM. Differential estrogen receptor gene expression in human peripheral blood mononuclear cell populations. Immunol Lett. 2005;97(1):107–13.

    Article  CAS  PubMed  Google Scholar 

  733. Grimaldi CM, Cleary J, Dagtas AS, Moussai D, Diamond B. Estrogen alters thresholds for B cell apoptosis and activation. J Clin Invest. 2002;109(12):1625–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  734. Brannstrom M, Friden BE, Jasper M, Norman RJ. Variations in peripheral blood levels of immunoreactive tumor necrosis factor alpha (TNFalpha) throughout the menstrual cycle and secretion of TNFalpha from the human corpus luteum. Eur J Obstet Gynecol Reprod Biol. 1999;83(2):213–7.

    Article  CAS  PubMed  Google Scholar 

  735. Rachon D, Mysliwska J, Suchecka-Rachon K, Wieckiewicz J, Mysliwski A. Effects of oestrogen deprivation on interleukin-6 production by peripheral blood mononuclear cells of postmenopausal women. J Endocrinol. 2002;172(2):387–95.

    Article  CAS  PubMed  Google Scholar 

  736. Berg G, Ekerfelt C, Hammar M, Lindgren R, Matthiesen L, Ernerudh J. Cytokine changes in postmenopausal women treated with estrogens: a placebo-controlled study. Am J Reprod Immunol. 2002;48(2):63–9.

    Article  PubMed  Google Scholar 

  737. Murphy AJ, Guyre PM, Pioli PA. Estradiol suppresses NF-kappa B activation through coordinated regulation of let-7a and miR-125b in primary human macrophages. J Immunol. 2010;184(9):5029–37.

    Article  CAS  PubMed  Google Scholar 

  738. Zhang X, Wang L, Zhang H, Guo D, Qiao Z, Qiao J. Estrogen inhibits lipopolysaccharide-induced tumor necrosis factor-alpha release from murine macrophages. Methods Find Exp Clin Pharmacol. 2001;23(4):169–73.

    Article  CAS  PubMed  Google Scholar 

  739. Robinson DP, Lorenzo ME, Jian W, Klein SL. Elevated 17beta-estradiol protects females from influenza a virus pathogenesis by suppressing inflammatory responses. PLoS Pathog. 2011;7(7):e1002149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  740. Robinson DP, Hall OJ, Nilles TL, Bream JH, Klein SL. 17beta-estradiol protects females against influenza by recruiting neutrophils and increasing virus-specific CD8 T cell responses in the lungs. J Virol. 2014;88(9):4711–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  741. Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz DK, et al. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe. 2016;19(2):181–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  742. Stein B, Yang MX. Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-kappa B and C/EBP beta. Mol Cell Biol. 1995;15(9):4971–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  743. Giron-Gonzalez JA, Moral FJ, Elvira J, Garcia-Gil D, Guerrero F, Gavilan I, et al. Consistent production of a higher TH1:TH2 cytokine ratio by stimulated T cells in men compared with women. Eur J Endocrinol. 2000;143(1):31–6.

    Article  CAS  PubMed  Google Scholar 

  744. Faas M, Bouman A, Moesa H, Heineman MJ, de Leij L, Schuiling G. The immune response during the luteal phase of the ovarian cycle: a Th2-type response? Fertil Steril. 2000;74(5):1008–13.

    Article  CAS  PubMed  Google Scholar 

  745. Lu FX, Abel K, Ma Z, Rourke T, Lu D, Torten J, et al. The strength of B cell immunity in female rhesus macaques is controlled by CD8+ T cells under the influence of ovarian steroid hormones. Clin Exp Immunol. 2002;128(1):10–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  746. Kanda N, Tamaki K. Estrogen enhances immunoglobulin production by human PBMCs. J Allergy Clin Immunol. 1999;103(2 Pt 1):282–8.

    Article  CAS  PubMed  Google Scholar 

  747. Grandi G, Facchinetti F, Bitzer J. The gendered impact of coronavirus disease (COVID-19): do estrogens play a role? Eur J Contracept Reprod Health Care. 2020;25(3):233–4.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Jorge Reyes-García is grateful to Posgrado en Ciencias Biológicas UNAM and CONACYT for the support to obtain a postdoctoral fellowship (EPE 2019). Abril Carbajal-García is grateful to the Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, for the instruction received during her studies to get a Ph.D. degree. She received fellowship from the Consejo Nacional de Ciencia y Tecnología, México (application # 2018-000068-02NACF-17950; CVU 826027).

Declaration of Interest

Figures in this book chapter were created with BioRender.com. The authors declare that they do not have a conflict of interest or financial relationship that may have influenced the work.

Funding

This study was partly supported by grants from Dirección General de Asuntos del Personal Académico (DGAPA), Universidad Nacional Autónoma de México IN204319, and CONACYT 137725 to LM Montaño.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Xiao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reyes-García, J., Montaño, L.M., Carbajal-García, A., Wang, YX. (2021). Sex Hormones and Lung Inflammation. In: Wang, YX. (eds) Lung Inflammation in Health and Disease, Volume II. Advances in Experimental Medicine and Biology, vol 1304. Springer, Cham. https://doi.org/10.1007/978-3-030-68748-9_15

Download citation

Publish with us

Policies and ethics