Skip to main content

Estimating the Age of Fingermarks: Relevance, Potential Approaches, and Perspectives

  • Chapter
  • First Online:
Technologies for Fingermark Age Estimations: A Step Forward

Abstract

The age estimation of (latent or visible) fingermarks recovered at crime scenes may be particularly useful to be able to discern traces relevant to the investigated event or to help place a particular event in time. The measurement of physical or chemical changes of fingermark characteristics over time has been proposed as a mean to achieve this goal. However, fingermark depositions are complex matrices that are influenced by many factors besides time, such as donor, transfer, and environmental conditions to cite only a few. Thus, the main challenge resides in the identification of aging parameters that evolve over time with as little influence as possible from such factors. The development of reliable aging models that can be implemented in practice to place fingermarks in time requires the acquisition of large amounts of fundamental data on the aging processes of target compounds, if possible, using versatile and easily available analytical techniques. The importance of the data interpretation stage should not be underestimated either. Thus, while age estimation of fingermarks would be particularly useful for crime reconstructions or as evidence in court, much more information is currently needed on the aging of natural fingermarks. A research cycle is proposed to address this issue in a more systematic manner, and several cases in which fingermark dating was either attempted or debated are discussed from a forensic perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A trace can be defined as a mark, signal, or object. It is an observable sign (not always visible to the naked eye), the vestige of a presence, or an action at the place of the latter.

  2. 2.

    Friction ridge details comprise the combination of friction ridge flow, friction ridge characteristics (including levels I, II, and III), and friction ridge structure.

  3. 3.

    Squalene is an organic compound found in human sebum and is an essential precursor in the biosynthesis of cholesterol, steroids, and vitamin D.

  4. 4.

    “Groomed” refers to fingermarks that are artificially charged with, for example, sebaceous secretions by rubbing fingertips to the forehead before deposition.

Abbreviations

AFM:

Atomic Force Microscopy

CWL:

Chromatic White Light

DNA:

Deoxyribonucleic Acid

FTIR:

Fourier Transform Infrared Spectroscopy

GC:

Gas Chromatography

HIS:

Hyperspectral Imaging

LC:

Liquid Chromatography

LR:

Likelihood Ratios

MALDI:

Matrix-Assisted Laser Desorption Ionization

MS:

Mass Spectrometry

PA:

Peak Area

PCA:

Principal Component Analysis

PLSR:

Partial Least Squares Regression

QCM:

Quartz Crystal Microbalance

RMSE:

Root Mean Square Errors

SIMCA:

Soft Independent Modeling of Class Analogy

SIMS:

Secondary Ion Mass Spectrometry

TLC:

Thin-Layer Chromatography

TOF:

Time of Flight

UP:

Ultra-performance

UV-Vis:

Ultraviolet Visible Light

References

  1. Weyermann C, Ribaux O (2012) Situating forensic traces in time. Sci Justice 52(2):68–75

    Article  PubMed  Google Scholar 

  2. Margot P (2000) A question of time. Sci Justice 40(2):64–71

    Article  Google Scholar 

  3. Wertheim K (2003) Fingerprint age determination: is there any Hope? JFI 53(1):42–49

    Google Scholar 

  4. Midkiff C (1993) Lifetime of a latent print. How long? Can you tell? JFI 43(4):386–392

    Google Scholar 

  5. Margot P (2011) Commentary on the need for a research culture in the forensic sciences. UCLA Law Rev 58:795–801

    Google Scholar 

  6. Girod A et al (2016) Fingermark age determinations: legal considerations, review of the literature and practical propositions. Forensic Sci Int 262:212–226

    Article  CAS  PubMed  Google Scholar 

  7. De Alcaraz-Fossoul F, Barrot Feixat C, Roberts KA (2015) The paradigm of fingerprint age determination. Jacobs J Forensic Sci 1(1):006

    Google Scholar 

  8. Aginsky VN (1996) Dating and characterizing writing, stamp, pad and jet printer inks by gas chromatography / mass spectrometry. Int J Forensic Doc Examiners 2(2):103–116

    CAS  Google Scholar 

  9. Andersson C, Andrasko J (1999) A novel application of time since the latest discharge of a shotgun in a suspect murder. J Forensic Sci 44(1):211–213

    Article  Google Scholar 

  10. Archer NE et al (2005) Changes in the lipid composition of latent fingerprint residue with time after deposition on a surface. Forensic Sci Int 154:224–239

    Article  CAS  PubMed  Google Scholar 

  11. Weyermann C, Roux C, Champod C (2011) Initial results on the composition of fingerprints and its evolution as a function of time by GC/MS analysis. J Forensic Sci 56(1):102–108

    Article  CAS  PubMed  Google Scholar 

  12. De Alcaraz-Fossoul J et al (2016) Latent fingermark aging patterns (part I): minutiae count as one Indicator of degradation. J Forensic Sci 61(2):322–333

    Article  PubMed  CAS  Google Scholar 

  13. Girod A, Weyermann C (2014) Lipid composition of fingermark residue and donor classification using GC/MS. Forensic Sci Int 238:68–82

    Article  CAS  PubMed  Google Scholar 

  14. Frick AA et al (2015) Investigations into the initial composition of latent fingermark lipids by gas chromatography–mass spectrometry. Forensic Sci Int 254:133–147

    Article  CAS  PubMed  Google Scholar 

  15. Croxton RS et al (2010) Variation in amino acid and lipid composition of latent fingerprints. Forensic Sci Int 199(1):93–102

    Article  CAS  PubMed  Google Scholar 

  16. Girod A, Ramotowski R, Weyermann C (2012) Composition of fingerprint residue: a qualitative and quantitative review. Forensic Sci Int 223(1–3):10–24

    Article  CAS  PubMed  Google Scholar 

  17. Frick AA, Fritz P, Lewis SW (2013) Chemistry of print residue. In: Siegel JA, Saukko PJ, Houck MM (eds) Encyclopedia of forensic sciences, 2nd edn. Academic, Waltham, pp 92–97

    Chapter  Google Scholar 

  18. Champod C et al (2016) Fingerprints and other ridge skin impressions, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  19. Keisar O et al (2019) Measuring the water content in freshly-deposited fingermarks. Forensic Sci Int 294:204–210

    Article  CAS  PubMed  Google Scholar 

  20. De Alcaraz-Fossoul J et al (2019) Application of 3D imaging technology to latent fingermark aging studies. J Forensic Sci 64(2):570–576

    Article  PubMed  Google Scholar 

  21. Popov KT, Sears VG, Jones BJ (2017) Migration of latent fingermarks on non-porous surfaces: observation technique and nanoscale variations. Forensic Sci Int 275:44–56

    Article  CAS  PubMed  Google Scholar 

  22. Muramoto S, Sisco E (2015) Strategies for potential age dating of fingerprints through the diffusion of sebum molecules on a nonporous surface analyzed using time-of-flight secondary ion mass spectrometry. Anal Chem 87(16):8035–8038

    Article  CAS  PubMed  Google Scholar 

  23. De Alcaraz-Fossoul J et al (2019) Latent fingermark aging patterns (part IV): ridge width as one indicator of degradation. J Forensic Sci 64(4):1057–1066

    Article  PubMed  CAS  Google Scholar 

  24. De Alcaraz-Fossoul J et al (2017) Latent fingermark aging patterns (part III): discontinuity index as one indicator of degradation. J Forensic Sci 62(5):1180–1187

    Article  PubMed  CAS  Google Scholar 

  25. De Alcaraz-Fossoul J et al (2016) Latent fingermark aging patterns (part II): color contrast between ridges and furrows as one indicator of degradation. J Forensic Sci 61(4):947–958

    Article  PubMed  CAS  Google Scholar 

  26. Merkel R, Dittmann J, Vielhauer C (2011) Approximation of a mathematical aging function for latent fingerprint traces based on first experiments using a Chromatic White Light (CWL) sensor and the binary pixel aging feature. In: International federation for information processing (IFIP). CMS 2011, LNCS 7025, pp 59–71

    Google Scholar 

  27. Kent T (2016) Water content of latent fingerprints – dispelling the myth. Forensic Sci Int 266:134–138

    Google Scholar 

  28. Angst E (1962) Procédés pour la détermination de l’âge d’empreintes dactyloscopiques sur le papier. Rev Int Criminol Pol Tech 16:134–146

    Google Scholar 

  29. Cuthbertson F (1972) The chemistry of fingerprints. Atomic energy authority, Atomic Weapons Research Establishment (AWRE Report No. 013/69). Aldermastone, United Kingdom

    Google Scholar 

  30. van Dam A et al (2016) On the autofluorescence of aged fingermarks. Forensic Sci Int 258:19–25

    Article  PubMed  CAS  Google Scholar 

  31. Frick AA et al (2016) Monitoring compositional changes of the lipid fraction of fingermark residues deposited on paper during storage. Forensic Chem 2:29–36

    Article  CAS  Google Scholar 

  32. Girod A et al (2016) Aging of target lipid parameters in fingermark residue using GC/MS: effects of influence factors and perspectives for dating purposes. Sci Justice 56(3):165–180

    Article  PubMed  Google Scholar 

  33. Girod A et al (2015) Fingermark initial composition and aging using Fourier transform infrared microscopy (μ-FTIR). Forensic Sci Int 254:185–196

    Article  CAS  PubMed  Google Scholar 

  34. Johnston A, Rogers K (2017) The effect of moderate temperatures on latent fingerprint chemistry. Appl Spectrosc 71(9):2102–2110

    Article  CAS  PubMed  Google Scholar 

  35. Yang J-H, Yoh JJ (2018) Reconstruction of chemical fingerprints from an individual’s time-delayed, overlapped fingerprints via laser-induced breakdown spectrometry (LIBS) and Raman spectroscopy. Microchem J 139:386–393

    Article  CAS  Google Scholar 

  36. Pleik S et al (2016) Fatty acid structure and degradation analysis in fingerprint residues. J Am Soc Mass Spectrom 27(9):1565–1574

    Article  CAS  PubMed  Google Scholar 

  37. Dorakumbura BN, Busetti F, Lewis SW (2020) Analysis of squalene and its transformation by-products in latent fingermarks by ultrahigh-performance liquid chromatography-high resolution accurate mass Orbitrap™ mass spectrometry. Forensic Chem 17:100193

    Article  CAS  Google Scholar 

  38. Hinners P, Thomas M, Lee YJ (2020) Determining fingerprint age with mass spectrometry imaging via ozonolysis of triacylglycerols. Anal Chem 92:3125–3132

    Article  CAS  PubMed  Google Scholar 

  39. De Paoli G et al (2010) Photo- and thermal-degradation studies of select eccrine fingerprint constituents. J Forensic Sci 55(4):962–969

    Article  PubMed  Google Scholar 

  40. Oonk S et al (2018) Proteomics as a new tool to study fingermark ageing in forensics. Sci Rep 8(1):16425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Drapel V et al (2009) Identification of promising antigenic components in latent fingermark residues. Forensic Sci Int 184(1):47–53

    Article  CAS  PubMed  Google Scholar 

  42. Cadd S et al (2015) Fingerprint composition and aging: a literature review. Sci Justice 55(4):219–238

    Article  PubMed  Google Scholar 

  43. Dorakumbura BN, Busetti F, Lewis SW (2019) Investigations into sampling approaches for chemical analysis of latent fingermark residue. Forensic Chem 14:100166

    Article  CAS  Google Scholar 

  44. Koenig A, Girod A, Weyermann C (2011) Identification of wax esters in fingermark residues by GC/MS and their potential use as aging parameters. JFI 61(6):606–630

    Google Scholar 

  45. Pleik S et al (2018) Ambient-air ozonolysis of triglycerides in aged fingerprint residues. Analyst 143(5):1197–1209

    Article  CAS  PubMed  Google Scholar 

  46. Frick AA et al (2020) Changes in latent fingermark glyceride composition as a function of sample age using UPLC-IMS-QToF-MSE. In preparation

    Google Scholar 

  47. Frick AA, Weyermann C (2019) An untargeted lipidomic approach for qualitative determination of latent fingermark glycerides using UPLC-IMS-QToF-MSE. Analyst 144(11):3590–3600

    Article  CAS  PubMed  Google Scholar 

  48. Almog J et al (2014) Guidelines for the assessment of fingermark detection techniques International Fingerprint Research Group (IFRG). JFI 64:174–197

    Google Scholar 

  49. Hansen DB, Jouille M (2005) The development of novel ninhydrin analogues. Chem Soc Rev:408–417

    Google Scholar 

  50. Bleay SM, de Puit M (2018) Ageing of fingermarks. In: Bleay SM, Croxton RS, de Puit M (eds) Fingerprint development techniques. Wiley, pp 69–97

    Google Scholar 

  51. Templeton JEL, Linacre A (2014) DNA profiles from fingermarks. BioTechniques 57(5):259–266

    Article  CAS  PubMed  Google Scholar 

  52. Merkel R (2015) Latent fingerprint aging from a hyperspectral perspective: first qualitative degradation studies using UV/VIS spectroscopy. In: 2015 ninth international conference on IT Security Incident Management & IT Forensics

    Google Scholar 

  53. DelRio FW, Cook RF (2017) Quantitative scanning probe microscopy for nanomechanical forensics. Exp Mech 57(7):1045–1055

    Article  CAS  PubMed  Google Scholar 

  54. Dorakumbura BN, Becker T, Lewis SW (2016) Nanomechanical mapping of latent fingermarks: a preliminary investigation into the changes in surface interactions and topography over time. Forensic Sci Int 267:16–24

    Article  PubMed  Google Scholar 

  55. Rosa R et al (2017) Electrochemical impedance spectroscopy: a deeper and quantitative insight into the fingermarks physical modifications over time. Forensic Sci Int 273:144–152

    Article  CAS  PubMed  Google Scholar 

  56. Merkel R (2014) New solutions for an old challenge: chances and limitations of optical, non-invasive acquisition and digital processing techniques for the age estimation of latent fingerprints. PhD Thesis, Otto-von-Guericke University, Magdeburg, Germany

    Google Scholar 

  57. Fritz P et al (2013) Infrared microscopy studies of the chemical composition of latent fingermark residues. Microchem J 111:40–46

    Article  CAS  Google Scholar 

  58. Johnston A, Rogers K (2018) A study of the intermolecular interactions of lipid components from analogue fingerprint residues. Sci Justice 58(2):121–127

    Article  PubMed  Google Scholar 

  59. Tahtouh M et al (2005) The detection and enhancement of latent fingermarks using infrared chemical imaging. J Forensic Sci 50(1):64–72

    Article  CAS  PubMed  Google Scholar 

  60. Williams DK, Schwartz RL, Bartick EG (2004) Analysis of latent fingerprint deposits by infrared microspectroscopy. Appl Spectrosc 58(3):313–316

    Article  CAS  PubMed  Google Scholar 

  61. Hemmila A, McGill J, Ritter D (2008) Fourier transform infrared reflectance spectra of latent fingerprints: a biometric gauge for the age of an individual*. J Forensic Sci 53(2):369–376

    Article  CAS  PubMed  Google Scholar 

  62. Day JS et al (2004) The detection of drugs of abuse in fingerprints using Raman spectroscopy I: latent fingerprints. Spectrochim Acta A Mol Biomol Spectrosc 60(3):563–568

    Article  PubMed  CAS  Google Scholar 

  63. Dorakumbura BN et al (2018) Revealing the spatial distribution of chemical species within latent fingermarks using vibrational spectroscopy. Analyst 143(17):4027–4039

    Article  CAS  PubMed  Google Scholar 

  64. Andersson PO et al (2017) Towards fingermark dating: a Raman spectroscopy proof-of-concept study. ChemistryOpen 6(6):706–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Figueroa B et al (2017) Label-free chemical imaging of latent fingerprints with stimulated Raman scattering microscopy. Anal Chem 89(8):4468–4473

    Article  CAS  PubMed  Google Scholar 

  66. Dikshitulu YS et al (1986) Aging studies on fingerprint residues using thin-layer and high performance liquid chromatography. Forensic Sci Int 31:4261–4266

    Article  Google Scholar 

  67. Duff JM, Menzel ER (1978) Laser-assisted thin-layer chromatography and luminescence of fingerprints: an approach to fingerprint age determination. J Forensic Sci 23(1):129–134

    Article  CAS  Google Scholar 

  68. Szabóová Ž et al (2017) GC–MS/MS method for age determination of fingerprints. Monatshefte für Chemie – Chem Monthly 148(9):1673–1678

    Article  CAS  Google Scholar 

  69. Mountfort KA et al (2007) Identification of oxidation products of squalene in solution and in latent fingerprints by ESI-MS and LC/APCI-MS. Anal Chem 79:2650–2657

    Article  CAS  PubMed  Google Scholar 

  70. Huynh C, Halámek J (2016) Trends in fingerprint analysis. TrAC Trends Anal Chem 82:328–336

    Article  CAS  Google Scholar 

  71. Francese S et al (2013) Beyond the ridge pattern: multi-informative analysis of latent fingermarks by MALDI mass spectrometry. Analyst 138(15):4215–4228

    Article  CAS  PubMed  Google Scholar 

  72. Wolstenholme R et al (2009) Study of latent fingermarks by matrix-assisted laser desorption/ionisation mass spectrometry imaging of endogenous lipids. Rapid Commun Mass Spectrom 23(19):3031–3039

    Article  CAS  PubMed  Google Scholar 

  73. Edelman GJ et al (2012) Hyperspectral imaging for non-contact analysis of forensic traces. Forensic Sci Int 223(1):28–39

    Article  CAS  PubMed  Google Scholar 

  74. Gorka M et al (2019) Molecular composition of fingermarks: assessment of the intra- and inter-variability in a small group of donors using MALDI-MSI. Forensic Chem 12:99–106

    Article  CAS  Google Scholar 

  75. Fieldhouse SJ (2015) An investigation into the effects of force applied during deposition on latent fingermarks and inked fingerprints using a variable force fingerprint sampler. J Forensic Sci 60(2):422–427

    Article  PubMed  Google Scholar 

  76. Kind S (1987) Chapter 5: time and sequence. In: The scientific investigation of crime. Forensic Science Services, Harrogate, pp 106–389

    Google Scholar 

  77. Steiner R, Roux C, Moret S (2019) Controlling fingermark variability for research purposes: a review. WIREs Forensic Sci 1(4):e1338

    Article  Google Scholar 

  78. Townsley v. United States, 236 A.2d 63. 1967

    Google Scholar 

  79. Solis v. People, 485 P.2d 903. 1971

    Google Scholar 

  80. State v. Scott, 251 S.E.2d 414; 296 N.C. 519. 1979

    Google Scholar 

  81. Matter of J.M.C., Jr., 502 A.2d 472. 1985

    Google Scholar 

  82. United States v. Collon (United States v. Garside), 426 F.2d 939. 1970

    Google Scholar 

  83. U. S. Department of Justice, O.o.t.I.G (2006) A review of the FBI’s handling of the Brandon Mavfield Case, O.a.R.D. Office of the Inspector General, ed. Washington, DC

    Google Scholar 

  84. Langeburg G (2012) A critical analysis and study of the ACE-V Process. PhD thesis, in School of Criminal Sciences, University of Lausanne

    Google Scholar 

  85. Dror IE et al (2011) Cognitive issues in fingerprint analysis: inter- and intra-expert consistency and the effect of a ‘target’ comparison. Forensic Sci Int 208(1):10–17

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Swiss National Science Foundation (SNF no. PP00P1_123358/1 and 205121_169677) which enabled the preparation of this collaborative chapter. A great thank also goes to Dr. Amanda Frick and Dr. Ana Moraleda from the School of Criminal Science of the University of Lausanne for their suggestions for improving this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Weyermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weyermann, C., Girod-Frais, A. (2021). Estimating the Age of Fingermarks: Relevance, Potential Approaches, and Perspectives. In: De Alcaraz-Fossoul, J. (eds) Technologies for Fingermark Age Estimations: A Step Forward. Springer, Cham. https://doi.org/10.1007/978-3-030-69337-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69337-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69336-7

  • Online ISBN: 978-3-030-69337-4

  • eBook Packages: Law and CriminologyLaw and Criminology (R0)

Publish with us

Policies and ethics