Skip to main content

Optimal Placement of Taxis in a City Using Dominating Set Problem

  • Conference paper
  • First Online:
Databases Theory and Applications (ADC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12610))

Included in the following conference series:

Abstract

Mobile application based ride-hailing systems, e.g., DiDi, Uber have become part of day to day life and natural choices of transport for urban commuters. However, the pick-up demand in any area is not always matching with the supply or drop-off request in the same area. Urban planners and researchers are working hard to balance this demand and supply situation for taxi requests. The existing approaches have mainly focused on clustering of the spatial regions to identify hotspots, which refer to the locations with a high demand for pick-up requests. In our study, we determined that if the hotspots focus on the clustering of high demand for pick-up requests, most of the hotspots pivot near the city center or two-three spatial regions, ignoring the other parts of the city. In this work, we proposed a method, which can help in finding a local hotspot to cover the whole city area. We proposed a dominating set problem based solution, which covers every part of the city. This will help the drivers looking for near-by next customer in the region wherever they drop their last customer. It will also reduce the waiting time for customers as well as for a driver looking for next pick-up request. This would maximize their profit as well as help in improving their services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu, H., Li, Z., Zhang, G., Liu, P., Wang, J.: Extracting and predicting taxi hotspots in spatiotemporal dimensions using conditional generative adversarial neural networks. IEEE Trans. Veh. Technol. 69(4), 3680–3692 (2020)

    Article  Google Scholar 

  2. Li, M., He, D., Zhou, X.: Efficient kNN search with occupation in large-scale on-demand ride-hailing. In: Borovica-Gajic, R., Qi, J., Wang, W. (eds.) ADC 2020. LNCS, vol. 12008, pp. 29–41. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39469-1_3

    Chapter  Google Scholar 

  3. Zhou, D., Hong, R., Xia, J.: Identification of taxi pick-up and drop-off hotspots using the density-based spatial clustering method. In: CICTP 2017: Transportation Reform and Change-Equity, Inclusiveness, Sharing, and Innovation, pp. 196–204. American Society of Civil Engineers, Reston (2017)

    Google Scholar 

  4. Chang, H.W., Tai, Y.C., Hsu, J.Y.J.: Context-aware taxi demand hotspots prediction. Int. J. Bus. Intell. Data Min. 5(1), 3–18 (2010)

    Google Scholar 

  5. Fagin, R., Kumar, R., Sivakumar, D.: Efficient similarity search and classification via rank aggregation. In: SIGMOD, pp. 301–312 (2003)

    Google Scholar 

  6. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for the web. In: WWW, pp. 613–622 (2001)

    Google Scholar 

  7. Mamoulis, N., Cheng, K.H., Yiu, M.L., Cheung, D.W.: Efficient aggregation of ranked inputs. In: ICDE, pp. 72–84 (2006)

    Google Scholar 

  8. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. J. ACM 55(5), 23 (2008)

    Article  MathSciNet  Google Scholar 

  9. Shekhar, S., Feiner, S.K., Aref, W.G.: Spatial computing. Commun. ACM 59(1), 72–81 (2016)

    Article  Google Scholar 

  10. Tao, Y., Hristidis, V., Papadias, D., Papakonstantinou, Y.: Branch-and-bound processing of ranked queries. Inf. Syst. 32(3), 424–445 (2007)

    Article  Google Scholar 

  11. Li, M., Bao, Z., Sellis, T., Yan, S.: Visualization-aided exploration of the real estate data. In: Cheema, M.A., Zhang, W., Chang, L. (eds.) ADC 2016. LNCS, vol. 9877, pp. 435–439. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46922-5_34

    Chapter  Google Scholar 

  12. Mouratidis, K., Bakiras, S., Papadias, D.: Continuous monitoring of top-k queries over sliding windows. In: SIGMOD, pp. 635–646 (2006)

    Google Scholar 

  13. Cormode, G., Hadjieleftheriou, M.: Finding frequent items in data streams. PVLDB 1(2), 1530–1541 (2008)

    Google Scholar 

  14. Papapetrou, O., Garofalakis, M., Deligiannakis, A.: Sketch-based querying of distributed sliding-window data streams. PVLDB 5(10), 992–1003 (2012)

    Google Scholar 

  15. Bohm, C., Ooi, B.C., Plant, C., Yan, Y.: Efficiently processing continuous k-NN queries on data streams. In: ICDE, pp. 156–165 (2007)

    Google Scholar 

  16. Korn, F., Muthukrishnan, S., Srivastava, D.: Reverse nearest neighbor aggregates over data streams. In: PVLDB, pp. 814–825 (2002)

    Google Scholar 

  17. Li, C., Gu, Y., Qi, J., Yu, G., Zhang, R., Yi, W.: Processing moving KNN queries using influential neighbor sets. PVLDB 8(2), 113–124 (2014)

    Google Scholar 

  18. Cheema, M., Zhang, W., Lin, X., Zhang, Y., Li, X.: Continuous reverse k nearest neighbors queries in Euclidean space and in spatial networks. VLDB J. 21(1), 69–95 (2012). https://doi.org/10.1007/s00778-011-0235-9

    Article  Google Scholar 

  19. Khetarpaul, S., Gupta, S.K., Malhotra, S., Subramaniam, L.V.: Bus arrival time prediction using a modified amalgamation of fuzzy clustering and neural network on spatio-temporal data. In: Sharaf, M.A., Cheema, M.A., Qi, J. (eds.) ADC 2015. LNCS, vol. 9093, pp. 142–154. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19548-3_12

    Chapter  Google Scholar 

  20. Xia, T., Zhang, D., Kanoulas, E., Du, Y.: On computing top-t most influential spatial sites. In: PVLDB, pp. 946–957 (2005)

    Google Scholar 

  21. Li, C.-L., Wang, E.T., Huang, G.-J., Chen, A.L.P.: Top-n query processing in spatial databases considering bi-chromatic reverse k-nearest neighbors. Inf. Syst. 42, 123–138 (2014)

    Article  Google Scholar 

  22. Koh, J.-L., Lin, C.-Y., Chen, A.P.: Finding k most favorite products based on reverse top-t queries. PVLDB 23(4), 541–564 (2014). https://doi.org/10.1007/s00778-013-0336-8

    Article  Google Scholar 

  23. Vlachou, A., Doulkeridis, C., Nørvåg, K., Kotidis, Y.: Identifying the most influential data objects with reverse top-k queries. PVLDB 3(1–2), 364–372 (2010)

    Google Scholar 

  24. Wong, R.C.-W., Özsu, M.T., Yu, P.S., Fu, A.W.-C., Liu, L.: Efficient method for maximizing bichromatic reverse nearest neighbor. PVLDB 2(1), 1126–1137 (2009)

    Google Scholar 

  25. Gkorgkas, O., Vlachou, A., Doulkeridis, C., Nørvåg, K.: Discovering influential data objects over time. In: Nascimento, M.A., et al. (eds.) SSTD 2013. LNCS, vol. 8098, pp. 110–127. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40235-7_7

    Chapter  Google Scholar 

  26. Choudhury, F.M., Bao, Z., Culpepper, J.S., Sellis, T.: Monitoring the top-m aggregation in a sliding window of spatial queries (2016)

    Google Scholar 

  27. Sampathkumar, E., Walikar, H.B.: Connected domination number of a graph. J. Math. Phys. 13, 1–7 (1979)

    MathSciNet  MATH  Google Scholar 

  28. Pang, C., Zhang, R., Zhang, Q., Wang, J.: Dominating sets in directed graphs. Inf. Sci. 180(19), 3647–3652 (2010)

    Article  MathSciNet  Google Scholar 

  29. He, H., Zhu, Z., Makinen, E.: A neural network model to minimize the connected dominating set for self-configuration of wireless sensor networks. IEEE Trans. Neural Netw. 20(6), 973–982 (2009)

    Article  Google Scholar 

  30. http://users.diag.uniroma1.it/challenge9/download.shtml

  31. https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mishra, S., Khetarpaul, S. (2021). Optimal Placement of Taxis in a City Using Dominating Set Problem. In: Qiao, M., Vossen, G., Wang, S., Li, L. (eds) Databases Theory and Applications. ADC 2021. Lecture Notes in Computer Science(), vol 12610. Springer, Cham. https://doi.org/10.1007/978-3-030-69377-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69377-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69376-3

  • Online ISBN: 978-3-030-69377-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics