Skip to main content

Betrayed by Motion: Camouflaged Object Discovery via Motion Segmentation

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 (ACCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12623))

Included in the following conference series:

Abstract

The objective of this paper is to design a computational architecture that discovers camouflaged objects in videos, specifically by exploiting motion information to perform object segmentation. We make the following three contributions: (i) We propose a novel architecture that consists of two essential components for breaking camouflage, namely, a differentiable registration module to align consecutive frames based on the background, which effectively emphasises the object boundary in the difference image, and a motion segmentation module with memory that discovers the moving objects, while maintaining the object permanence even when motion is absent at some point. (ii) We collect the first large-scale Moving Camouflaged Animals (MoCA) video dataset, which consists of over 140 clips across a diverse range of animals (67 categories). (iii) We demonstrate the effectiveness of the proposed model on MoCA, and achieve competitive performance on the unsupervised segmentation protocol on DAVIS2016 by only relying on motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodale, M.A., Milner, A.D.: Separate visual pathways for perception and action. Trends Neurosci. 15, 20–25 (1992)

    Article  Google Scholar 

  2. Tokmakov, P., Schmid, C., Alahari, K.: Learning to segment moving objects. IJCV 127, 282–301 (2019)

    Google Scholar 

  3. Bideau, P., Learned-Miller, E.: A detailed rubric for motion segmentation. arXiv preprint arXiv:1610.10033 (2016)

  4. Pont-Tuset, J., Perazzi, F., Caelles, S., Arbeláez, P., Sorkine-Hornung, A., Gool, L.V.: The 2017 Davis challenge on video object segmentation. arXiv preprint arXiv:1704.00675 (2017)

  5. Xu, N., et al.: YouTube-VOS: a large-scale video object segmentation benchmark. In: Proceedings of ECCV (2018)

    Google Scholar 

  6. Brox, T., Malik, J.: Object segmentation by long term analysis of point trajectories. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 282–295. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15555-0_21

    Chapter  Google Scholar 

  7. Ochs, P., Brox, T.: Object segmentation in video: a hierarchical variational approach for turning point trajectories into dense regions. In: Proceedings of ICCV (2011)

    Google Scholar 

  8. Papazoglou, A., Ferrari, V.: Fast object segmentation in unconstrained video. In: Proceedings of ICCV (2013)

    Google Scholar 

  9. Jain, S.D., Xiong, B., Grauman, K.: FusionSeg: learning to combine motion and appearance for fully automatic segmentation of generic objects in videos. In: Proceedings of CVPR (2017)

    Google Scholar 

  10. Dave, A., Tokmakov, P., Ramanan, D.: Towards segmenting anything that moves. In: ICCV Workshop on Holistic Video Understanding (2019)

    Google Scholar 

  11. Oh, S.W., Lee, J.Y., Xu, N., Kim, S.J.: Video object segmentation using space-time memory networks. In: Proceedings of ICCV (2019)

    Google Scholar 

  12. Voigtlaender, P., Chai, Y., Schroff, F., Adam, H., Leibe, B., Chen, L.C.: FEELVOS: fast end-to-end embedding learning for video object segmentation. In: Proceedings of CVPR (2019)

    Google Scholar 

  13. Vondrick, C., Shrivastava, A., Fathi, A., Guadarrama, S., Murphy, K.: Tracking emerges by colorizing videos. In: ECCV (2018)

    Google Scholar 

  14. Wang, W., Lu, X., Shen, J., Crandall, D.J., Shao, L.: Zero-shot video object segmentation via attentive graph neural networks. In: Proceedings of ICCV (2019)

    Google Scholar 

  15. Lai, Z., Xie, W.: Self-supervised learning for video correspondence flow. In: Proceedings of BMVC (2019)

    Google Scholar 

  16. Lai, Z., Lu, E., Xie, W.: MAST: a memory-augmented self-supervised tracker. In: Proceedings of CVPR (2020)

    Google Scholar 

  17. Maninis, K.K., et al.: Video object segmentation without temporal information. IEEE Trans. Pattern Anal. Mach. Intell. 41, 1515-1530 (2018)

    Google Scholar 

  18. Voigtlaender, P., Leibe, B.: Online adaptation of convolutional neural networks for video object segmentation. arXiv (2017)

    Google Scholar 

  19. Caelles, S., Maninis, K.K., Pont-Tuset, J., Leal-Taixé, L., Cremers, D., Van Gool, L.: One-shot video object segmentation. In: Proceedings of CVPR (2017)

    Google Scholar 

  20. Fragkiadaki, K., Zhang, G., Shi, J.: Video segmentation by tracing discontinuities in a trajectory embedding. In: Proceedings of CVPR (2012)

    Google Scholar 

  21. Keuper, M., Andres, B., Brox, T.: Motion trajectory segmentation via minimum cost multicuts. In: Proceedings of ICCV (2015)

    Google Scholar 

  22. Yang, Z., Wang, Q., Bertinetto, L., Bai, S., Hu, W., Torr, P.H.: Anchor diffusion for unsupervised video object segmentation. In: Proceedings of ICCV (2019)

    Google Scholar 

  23. Xiankai, L., Wenguan, W., Chao, M., Jianbing, S., Ling, S., Fatih, P.: See more, know more: unsupervised video object segmentation with co-attention Siamese networks. In: Proceedings of CVPR (2019)

    Google Scholar 

  24. Koh, Y.J., Kim, C.S.: Primary object segmentation in videos based on region augmentation and reduction. In: Proceedings of CVPR (2017)

    Google Scholar 

  25. Fan, D.P., Wang, W., Cheng, M.M., Shen, J.: Shifting more attention to video salient object detection. In: Proceedings of CVPR (2019)

    Google Scholar 

  26. Le, T.N., Nguyen, T.V., Nie, Z., Tran, M.T., Sugimoto, A.: Anabranch network for camouflaged object segmentation. CVIU 184, 45–56 (2016)

    Google Scholar 

  27. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004). ISBN:0521540518

    Google Scholar 

  28. Szeliski, R.: Image alignment and stitching: a tutorial. Technical report MSR-TR-2004-92 (2004)

    Google Scholar 

  29. Lowe, D.: Object recognition from local scale-invariant features. In: Proceedings of ICCV, pp. 1150–1157 (1999)

    Google Scholar 

  30. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  31. Brachmann, E., et al.: DSAC-differentiable RANSAC for camera localization. In: Proceedings of CVPR (2017)

    Google Scholar 

  32. Brachmann, E., Rother, C.: Learning less is more-6d camera localization via 3d surface regression. In: Proceedings of CVPR (2018)

    Google Scholar 

  33. Ranftl, R., Koltun, V.: Deep fundamental matrix estimation. In: Proceedings of ECCV (2018)

    Google Scholar 

  34. Rocco, I., Arandjelovic, R., Sivic, J.: End-to-end weakly-supervised semantic alignment. In: Proceedings of CVPR (2018)

    Google Scholar 

  35. Brachmann, E., Rother, C.: Neural-guided RANSAC: learning where to sample model hypotheses. In: Proceedings of ICCV (2019)

    Google Scholar 

  36. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In: Proceedings of CVPR (2018)

    Google Scholar 

  37. Yi, K.M., Trulls, E., Ono, Y., Lepetit, V., Salzmann, M., Fua, P.: Learning to find good correspondences. In: Proceedings of CVPR (2018)

    Google Scholar 

  38. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  39. Ballas, N., Yao, L., Pal, C., Courville, A.: Delving deeper into convolutional networks for learning video representations. In: Proceedings of ICLR (2016)

    Google Scholar 

  40. Bideau, P., Learned-Miller, E.: It’s moving! a probabilistic model for causal motion segmentation in moving camera videos. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 433–449. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_26

    Chapter  Google Scholar 

  41. Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: Proceedings of CVPR (2016)

    Google Scholar 

  42. Tokmakov, P., Alahari, K., Schmid, C.: Learning motion patterns in videos. In: Proceedings of CVPR (2017)

    Google Scholar 

  43. Mayer, N., et al.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: Proceedings of CVPR (2016)

    Google Scholar 

  44. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet 2.0: evolution of optical flow estimation with deep network. In: Proceedings of CVPR (2017)

    Google Scholar 

  45. Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the UK EPSRC CDT in AIMS, Schlumberger Studentship, and the UK EPSRC Programme Grant Seebibyte EP/M013774/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hala Lamdouar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lamdouar, H., Yang, C., Xie, W., Zisserman, A. (2021). Betrayed by Motion: Camouflaged Object Discovery via Motion Segmentation. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12623. Springer, Cham. https://doi.org/10.1007/978-3-030-69532-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69532-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69531-6

  • Online ISBN: 978-3-030-69532-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics