Skip to main content

Robust High Dynamic Range (HDR) Imaging with Complex Motion and Parallax

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 (ACCV 2020)

Abstract

High dynamic range (HDR) imaging is widely used in consumer photography, computer game rendering, autonomous driving, and surveillance systems. Reconstructing ghosting-free HDR images of dynamic scenes from a set of multi-exposure images is a challenging task, especially with large object motion, disparity, and occlusions, leading to visible artifacts using existing methods. In this paper, we propose a Pyramidal Alignment and Masked merging network (PAMnet) that learns to synthesize HDR images from input low dynamic range (LDR) images in an end-to-end manner. Instead of aligning under/overexposed images to the reference view directly in pixel-domain, we apply deformable convolutions across multiscale features for pyramidal alignment. Aligned features offer more flexibility to refine the inevitable misalignment for subsequent merging network without reconstructing the aligned image explicitly. To make full use of aligned features, we use dilated dense residual blocks with squeeze-and-excitation (SE) attention. Such attention mechanism effectively helps to remove redundant information and suppress misaligned features. Additional mask-based weighting is further employed to refine the HDR reconstruction, which offers better image quality and sharp local details. Experiments demonstrate that PAMnet can produce ghosting-free HDR results in the presence of large disparity and motion. We present extensive comparative studies using several popular datasets to demonstrate superior quality compared to the state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ledda, P., Santos, L.P., Chalmers, A.: A local model of eye adaptation for high dynamic range images. In: Proceedings of the 3rd International Conference on Computer Graphics, virtual Reality, Visualisation and Interaction in Africa, pp. 151–160 (2004)

    Google Scholar 

  2. Froehlich, J., Grandinetti, S., Eberhardt, B., Walter, S., Schilling, A., Brendel, H.: Creating cinematic wide gamut hdr-video for the evaluation of tone mapping operators and hdr-displays. In: Digital Photography X, vol. 9023. International Society for Optics and Photonics (2014)

    Google Scholar 

  3. Tocci, M.D., Kiser, C., Tocci, N., Sen, P.: A versatile HDR video production system. ACM Trans. Graphics (TOG) 30, 1–10 (2011)

    Article  Google Scholar 

  4. Nayar, S.K., Mitsunaga, T.: High dynamic range imaging: Spatially varying pixel exposures. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No. PR00662), vol. 1, pp. 472–479. IEEE (2000)

    Google Scholar 

  5. Yan, Q., Sun, J., Li, H., Zhu, Y., Zhang, Y.: High dynamic range imaging by sparse representation. Neurocomputing 269, 160–169 (2017)

    Article  Google Scholar 

  6. Lee, C., Li, Y., Monga, V.: Ghost-free high dynamic range imaging via rank minimization. IEEE Signal Process. Lett. 21, 1045–1049 (2014)

    Article  Google Scholar 

  7. Bogoni, L.: Extending dynamic range of monochrome and color images through fusion. In: Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, vol. 3. IEEE (2000)

    Google Scholar 

  8. Kalantari, N.K., Ramamoorthi, R.: Deep high dynamic range imaging of dynamic scenes. ACM Trans. Graph. 36, 144–1 (2017)

    Article  Google Scholar 

  9. Wu, S., Xu, J., Tai, Y.-W., Tang, C.-K.: Deep high dynamic range imaging with large foreground motions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 120–135. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_8

    Chapter  Google Scholar 

  10. Yan, Q., Gong, D., Shi, Q., Hengel, A.V.D., Shen, C., Reid, I., Zhang, Y.: Attention-guided network for ghost-free high dynamic range imaging. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1751–1760 (2019)

    Google Scholar 

  11. Sen, P., Kalantari, N.K., Yaesoubi, M., Darabi, S., Goldman, D.B., Shechtman, E.: Robust patch-based HDR reconstruction of dynamic scenes. ACM Trans. Graph. 31, 203:1–203:11 (2012)

    Google Scholar 

  12. Gharbi, M., Chen, J., Barron, J.T., Hasinoff, S.W., Durand, F.: Deep bilateral learning for real-time image enhancement. ACM Trans. Graphics (TOG) 36, 1–12 (2017)

    Article  Google Scholar 

  13. Hu, J., Gallo, O., Pulli, K., Sun, X.: HDR deghosting: how to deal with saturation? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1163–1170 (2013)

    Google Scholar 

  14. Yan, Q., et al.: Deep HDR imaging via a non-local network. IEEE Trans. Image Process. 29, 4308–4322 (2020)

    Article  Google Scholar 

  15. Metzler, C.A., Ikoma, H., Peng, Y., Wetzstein, G.: Deep optics for single-shot high-dynamic-range imaging. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1375–1385 (2020)

    Google Scholar 

  16. Sun, Q., Tseng, E., Fu, Q., Heidrich, W., Heide, F.: Learning rank-1 diffractive optics for single-shot high dynamic range imaging. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1386–1396 (2020)

    Google Scholar 

  17. Choi, I., Baek, S.H., Kim, M.H.: Reconstructing interlaced high-dynamic-range video using joint learning. IEEE Trans. Image Process. 26, 5353–5366 (2017)

    Article  MathSciNet  Google Scholar 

  18. Prabhakar, K.R., Arora, R., Swaminathan, A., Singh, K.P., Babu, R.V.: A fast, scalable, and reliable deghosting method for extreme exposure fusion. In: 2019 IEEE International Conference on Computational Photography (ICCP), pp. 1–8. IEEE (2019)

    Google Scholar 

  19. Park, W.J., Ji, S.W., Kang, S.J., Jung, S.W., Ko, S.J.: Stereo vision-based high dynamic range imaging using differently-exposed image pair. Sensors 17, 1473 (2017)

    Article  Google Scholar 

  20. Selmanovic, E., Debattista, K., Bashford-Rogers, T., Chalmers, A.: Enabling stereoscopic high dynamic range video. Sig. Process. Image Commun. 29, 216–228 (2014)

    Article  Google Scholar 

  21. Popovic, V., Seyid, K., Pignat, E., Çogal, Ö., Leblebici, Y.: Multi-camera platform for panoramic real-time HDR video construction and rendering. J. Real-Time Image Proc. 12, 697–708 (2016)

    Article  Google Scholar 

  22. Villena-Martinez, V., Oprea, S., Saval-Calvo, M., Azorin-Lopez, J., Fuster-Guillo, A., Fisher, R.B.: When deep learning meets data alignment: a review on deep registration networks (drns). arXiv preprint arXiv:2003.03167 (2020)

  23. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in neural information processing systems, pp. 2017–2025 (2015)

    Google Scholar 

  24. Jia, X., De Brabandere, B., Tuytelaars, T., Gool, L.V.: Dynamic filter networks. In: Advances in Neural Information Processing Systems, pp. 667–675 (2016)

    Google Scholar 

  25. Dai, J., et al.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 764–773 (2017)

    Google Scholar 

  26. Poynton, C.: Digital video and HD: Algorithms and Interfaces. Elsevier (2012)

    Google Scholar 

  27. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  28. Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable convnets v2: more deformable, better results. arXiv preprint arXiv:1811.11168 (2018)

  29. Ranjan, A., Black, M.J.: Optical flow estimation using a spatial pyramid network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4161–4170 (2017)

    Google Scholar 

  30. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: PWC-net: CNNs for optical flow using pyramid, warping, and cost volume. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8934–8943 (2018)

    Google Scholar 

  31. Wang, X., Chan, K.C., Yu, K., Dong, C., Change Loy, C.: EDVR: video restoration with enhanced deformable convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  32. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2472–2481 (2018)

    Google Scholar 

  33. Scharstein, D., Pal, C.: Learning conditional random fields for stereo. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

    Google Scholar 

  34. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  35. Paszke, A., et al.: Automatic differentiation in pytorch (2017)

    Google Scholar 

  36. Mantiuk, R., Kim, K.J., Rempel, A.G., Heidrich, W.: HDR-VDP-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions. ACM Trans. Graphics (TOG) 30, 1–14 (2011)

    Article  Google Scholar 

Download references

Acknowledgement

We are grateful for the constructive comments from anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pu, Z., Guo, P., Asif, M.S., Ma, Z. (2021). Robust High Dynamic Range (HDR) Imaging with Complex Motion and Parallax. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12623. Springer, Cham. https://doi.org/10.1007/978-3-030-69532-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69532-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69531-6

  • Online ISBN: 978-3-030-69532-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics