Skip to main content

A Calibration Method for the Generalized Imaging Model with Uncertain Calibration Target Coordinates

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 (ACCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12624))

Included in the following conference series:

Abstract

The developments in optical metrology and computer vision require more and more advanced camera models. Their geometric calibration is of essential importance. Usually, low-dimensional models are used, which however often have insufficient accuracy for the respective applications. A more sophisticated approach uses the generalized camera model. Here, each pixel is described individually by its geometric ray properties. Our efforts in this article strive to improve this model. Hence, we propose a new approach for calibration. Moreover, we show how the immense number of parameters can be efficiently calculated and how the measurement uncertainties of reference features can be effectively utilized. We demonstrate the benefits of our method through an extensive evaluation of different cameras, namely a standard webcam and a microlens-based light field camera.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000)

    Article  Google Scholar 

  2. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Ng, R., Levoy, M., Brédif, M., Duval, G., Horowitz, M., Hanrahan, P.: Light field photography with a hand-held plenoptic camera. Computer Science Technical Report CSTR 2, 1–11 (2005)

    Google Scholar 

  4. Pless, R.: Using many cameras as one. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, II-587-93, Los Alamitos, Calif. IEEE Computer Society (2003)

    Google Scholar 

  5. Swaminathan, R., Kang, S.B., Szeliski, R., Criminisi, A., Nayar, S.K.: On the motion and appearance of specularities in image sequences. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 508–523. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47969-4_34

    Chapter  Google Scholar 

  6. Grossberg, M.D., Nayar, S.K.: A general imaging model and a method for finding its parameters, pp. 108–115. In: Proceedings/Eighth IEEE International Conference on Computer Vision, Los Alamitos, Calif. IEEE Computer Society (2001)

    Google Scholar 

  7. Grossberg, M.D., Nayar, S.K.: The raxel imaging model and ray-based calibration. Int. J. Comput. Vis. 61, 119–137 (2005)

    Article  Google Scholar 

  8. Sturm, P., Ramalingam, S.: A generic concept for camera calibration. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3022, pp. 1–13. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24671-8_1

    Chapter  Google Scholar 

  9. Ramalingam, S., Sturm, P.: A unifying model for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1309–1319 (2017)

    Article  Google Scholar 

  10. Ramalingam, S., Sturm, P., Lodha, S.K.: Towards complete generic camera calibration. In: Schmid, C., Tomasi, C., Soatto, S. (eds.) CVPR 2005, Los Alamitos, Calif, pp. 1093–1098. IEEE Computer Society, (2005)

    Google Scholar 

  11. Bothe, T., Li, W., Schulte, M., Kopylow, C.V., Bergmann, R.B., Jüptner, W.P.O.: Vision ray calibration for the quantitative geometric description of general imaging and projection optics in metrology. Appl. Optics 49, 5851–5860 (2010)

    Google Scholar 

  12. Miraldo, P., Araujo, H., Queiro, J.: Point-based calibration using a parametric representation of the general imaging model. In: 2011 IEEE International Conference on Computer Vision (ICCV), Piscataway, NJ, pp. 2304–2311. IEEE (2011)

    Google Scholar 

  13. Miraldo, P., Araujo, H.: Calibration of smooth camera models. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2091–2103 (2013)

    Article  Google Scholar 

  14. Schops, T., Larsson, V., Pollefeys, M., Sattler, T.: Why having 10,000 parameters in your camera model is better than twelve. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  15. Bergamasco, F., Albarelli, A., Rodola, E., Torsello, A.: Can a fully unconstrained imaging model be applied effectively to central cameras? In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Piscataway, NJ, pp. 1391–1398. IEEE (2013)

    Google Scholar 

  16. Bergamasco, F., Albarelli, A., Cosmo, L., Torsello, A., Rodola, E., Cremers, D.: Adopting an unconstrained ray model in light-field cameras for 3D shape reconstruction. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Piscataway, NJ, pp. 3003–3012. IEEE (2015)

    Google Scholar 

  17. Chen, C.S., Chang, W.Y.: On pose recovery for generalized visual sensors. IEEE Trans. Pattern Anal. Mach. Intell. 26, 848–861 (2004)

    Article  Google Scholar 

  18. Balzer, J., Werling, S.: Principles of shape from specular reflection. Measurement 43, 1305–1317 (2010)

    Article  Google Scholar 

  19. Pankaj, D.S., Nidamanuri, R.R., Prasad, P.B.: 3-D imaging techniques and review of products. In: Proceedings of International Conference on Innovations in Computer Science and Engineering (2013)

    Google Scholar 

  20. van der Jeught, S., Dirckx, J.J.: Real-time structured light profilometry: a review. Opt. Lasers Eng. 87, 18–31 (2016)

    Article  Google Scholar 

  21. Shevlin, F.: Analysis of orientation problems using plücker lines. In: Proceedings of MD and Los Angeles, CA, pp. 685–689. IEEE Computer Society Press (1984)

    Google Scholar 

  22. van der Hodge, W., Pedoe, D.: Methods of Algebraic Geometry. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  23. Brox, T., Rosenhahn, B., Gall, J., Cremers, D.: Combined region and motion-based 3D tracking of rigid and articulated objects. IEEE Trans. Pattern Anal. Mach. Intell. 32, 402–415 (2010)

    Article  Google Scholar 

  24. Grippo, L., Sciandrone, M.: On the convergence of the block nonlinear Gauss-Seidel method under convex constraints. Oper. Res. Lett. 26, 127–136 (2000)

    Article  MathSciNet  Google Scholar 

  25. Zuo, C., Feng, S., Huang, L., Tao, T., Yin, W., Chen, Q.: Phase shifting algorithms for fringe projection profilometry: a review. Opt. Lasers Eng. 109, 23–59 (2018)

    Article  Google Scholar 

  26. Fischer, M., Petz, M., Tutsch, R.: Model-based noise prediction for fringe projection systems - a tool for the statistical analysis of evaluation algorithms. TM Technisches Messen 84, 111–122 (2017)

    Article  Google Scholar 

  27. Zuo, C., Huang, L., Zhang, M., Chen, Q., Asundi, A.: Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review. Opt. Lasers Eng. 85, 84–103 (2016)

    Article  Google Scholar 

  28. Salvi, J., Pagès, J., Batlle, J.: Pattern codification strategies in structured light systems. Pattern Recogn. 37, 827–849 (2004)

    Article  Google Scholar 

  29. Kanatani, K.: Analysis of 3-D rotation fitting. IEEE Trans. Pattern Anal. Mach. Intell. 16, 543–549 (1994)

    Article  Google Scholar 

  30. Schweighofer, G., Pinz, A.: Globally optimal O(n) solution to the PnP problem for general camera models. In: BMVC (2008)

    Google Scholar 

  31. Ventura, J., Arth, C., Reitmayr, G., Schmalstieg, D.: A minimal solution to the generalized pose-and-scale problem. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 422–429. IEEE (2014)

    Google Scholar 

  32. Kneip, L., Li, H., Seo, Y.: UPnP: an optimal O(n) solution to the absolute pose problem with universal applicability. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 127–142. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_9

    Chapter  Google Scholar 

  33. Kukelova, Z., Bujnak, M., Pajdla, T.: Automatic generator of minimal problem solvers. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 302–315. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88690-7_23

    Chapter  Google Scholar 

  34. Ma, Y., Soatto, S., Kosecka, J., Sastry, S.S.: An Invitation to 3-D Vision: From Images to Geometric Models. Springer, New York (2003). https://doi.org/10.1007/978-0-387-21779-6

    Book  MATH  Google Scholar 

  35. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization algorithms on matrix manifolds. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  36. Boumal, N.: Optimization and estimation on manifolds. Ph.D. thesis, Catholic University of Louvain, Louvain-la-Neuve, Belgium (2014)

    Google Scholar 

  37. Niesen, U., Shah, D., Wornell, G.: Adaptive alternating minimization algorithms. In: 2007 IEEE International Symposium on Information Theory, pp. 1641–1645, Piscataway, NJ. IEEE Service Center (2007)

    Google Scholar 

  38. Nesterov, Y.E.:A method for solving the convex programming problem with convergencerate O(1/k\(\,\hat{}\,\)2).Dokl. akad. nauk Sssr. 269, pp. 543–547 (1983)

    Google Scholar 

  39. Bradski, G.: The openCV library. Dr. Dobb’s J. Softw. Tools, 120, 122–125 (2000)

    Google Scholar 

  40. Ihrke, I., Restrepo, J., Mignard-Debise, L.: Principles of light field imaging: briefly revisiting 25 years of research. IEEE Signal Process. Mag. 33, 59–69 (2016)

    Article  Google Scholar 

  41. Zhang, Q., Zhang, C., Ling, J., Wang, Q., Yu, J.:A generic multi-projection-center model and calibration method for light field cameras. IEEE Trans. Pattern Anal. Mach. Intell. (2018)

    Google Scholar 

  42. Zhang, Q., Ling, J., Liu, Y., Yu, J.:Ray-space projection model for light field camera. In: CVPR 2019 (2019)

    Google Scholar 

  43. Bok, Y., Jeon, H.G., Kweon, I.S.: Geometric calibration of micro-lens-based light field cameras using line features. IEEE Trans. Pattern Anal. Mach. Intell. 39, 287–300 (2017)

    Article  Google Scholar 

  44. Dansereau, D.G., Pizarro, O., Williams, S.B.: Decoding, calibration and rectification for lenselet-based plenoptic cameras. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1027–1034 (2013)

    Google Scholar 

  45. Institute of Industrial Information Technology, Karlsruhe Institute of Technology: Public GitLab repositories. GNU GPLv3 License (2020). https://gitlab.com/iiit-public

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Uhlig .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 207 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Uhlig, D., Heizmann, M. (2021). A Calibration Method for the Generalized Imaging Model with Uncertain Calibration Target Coordinates. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12624. Springer, Cham. https://doi.org/10.1007/978-3-030-69535-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69535-4_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69534-7

  • Online ISBN: 978-3-030-69535-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics