Skip to main content

Mandibular Teeth Movement Variations in Tipping Scenario: A Finite Element Study on Several Patients

  • Conference paper
  • First Online:
Computational Biomechanics for Medicine

Abstract

Previous studies on computational modeling of tooth movement in orthodontic treatments are limited to a single model and fail in generalizing the simulation results to other patients. To this end, we consider multiple patients and focus on tooth movement variations under the identical load and boundary conditions both for intra- and inter-patient analyses. We introduce a novel computational analysis tool based on finite element models (FEMs) addressing how to assess initial tooth displacement in the mandibular dentition across different patients for uncontrolled tipping scenarios with different load magnitudes applied to the mandibular dentition. This is done by modeling the movement of each patient’s tooth as a nonlinear function of both load and tooth size. As the size of tooth can affect the resulting tooth displacement, a combination of two clinical biomarkers obtained from the tooth anatomy, i.e., crown height and root volume, is considered to make the proposed model generalizable to different patients and teeth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 3Shape Trios Intraoral Scanner. https://www.3shape.com/en/scanners/trios.

  2. Autodesk Meshmixer. http://www.meshmixer.com/.

  3. Baker, T. J. (1989). Element quality in tetrahedral meshes. In Proceedings of the 7th International Conference on Finite Element Methods in Flow Problems (p. 1018).

    Google Scholar 

  4. Caendish, J. C., Field, D. A., & Frey, W. H. (1985). An apporach to automatic three-dimensional finite element mesh generation. International Journal for Numerical Methods in Engineering, 21(2), 329–347.

    Article  ADS  Google Scholar 

  5. Cattaneo, P., Dalstra, M., & Melsen, B. (2005). The finite element method: A tool to study orthodontic tooth movement. Journal of Dental Research, 84(5), 428–433.

    Article  Google Scholar 

  6. Cattaneo, P. M., Dalstra, M., & Melsen, B. (2008). Moment-to-force ratio, center of rotation, and force level: A finite element study predicting their interdependency for simulated orthodontic loading regimens. American Journal of Orthodontics and Dentofacial Orthopedics, 133(5), 681–689.

    Article  Google Scholar 

  7. Chen, J., Li, W., Swain, M. V., Darendeliler, M. A., & Li, Q. (2014). A periodontal ligament driven remodeling algorithm for orthodontic tooth movement. Journal of Biomechanics, 47(7), 1689–1695.

    Article  Google Scholar 

  8. Christiansen, R. L., & Burstone, C. J. (1969). Centers of rotation within the periodontal space. American Journal of Orthodontics, 55(4), 353–369.

    Article  Google Scholar 

  9. Dorow, C., Krstin, N., & Sander, F. G. (2003). Determination of the mechanical properties of the periodontal ligament in a uniaxial tensional experiment. Journal of Orofacial Orthopedics/Fortschritte der Kieferorthopädie, 64(2), 100–107.

    Article  Google Scholar 

  10. FEBio Software Suite. https://febio.org/.

  11. Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J. C., Pujol, S., et al. (2012). 3D Slicer as an image computing platform for the quantitative imaging network. Magnetic Resonance Imaging, 30(9), 1323–1341.

    Article  Google Scholar 

  12. Freitag, L. A., & Ollivier-Gooch, C. (1997). Tetrahedral mesh improvement using swapping and smoothing. International Journal for Numerical Methods in Engineering, 40(21), 3979–4002.

    Article  ADS  MathSciNet  Google Scholar 

  13. Hamanaka, R., Yamaoka, S., Anh, T. N., Tominaga, J. Y., Koga, Y., Yoshida, N. (2017) Numeric simulation model for long-term orthodontic tooth movement with contact boundary conditions using the finite element method. American Journal of Orthodontics and Dentofacial Orthopedics 152(5), 601–612.

    Google Scholar 

  14. Hohmann, A., Kober, C., Young, P., Dorow, C., Geiger, M., Boryor, A., et al. (2011). Influence of different modeling strategies for the periodontal ligament on finite element simulation results. American Journal of Orthodontics and Dentofacial Orthopedics, 139(6), 775–783.

    Article  Google Scholar 

  15. Huang, H. L., Tsai, M. T., Yang, S. G., Su, K. C., Shen, Y. W., & Hsu, J. T. (2020). Mandible integrity and material properties of the periodontal ligament during orthodontic tooth movement: A finite-element study. Applied Sciences, 10(8), 2980.

    Article  Google Scholar 

  16. Jones, M., Hickman, J., Middleton, J., Knox, J., & Volp, C. (2001). A validated finite element method study of orthodontic tooth movement in the human subject. Journal of Orthodontics, 28(1), 29–38.

    Article  Google Scholar 

  17. Kawamura, J., Park, J. H., Kojima, Y., Kook, Y. A., Kyung, H. M., & Chae, J. M. (2019). Biomechanical analysis for total mesialization of the mandibular dentition: A finite element study. Orthodontics & Craniofacial Research, 22(4), 329–336.

    Article  Google Scholar 

  18. Li, Y., Jacox, L. A., Little, S. H., & Ko, C. C. (2018). Orthodontic tooth movement: The biology and clinical implications. The Kaohsiung Journal of Medical Sciences, 34(4), 207–214.

    Article  Google Scholar 

  19. Liang, W., Rong, Q., Lin, J., & Xu, B. (2009). Torque control of the maxillary incisors in lingual and labial orthodontics: A 3-dimensional finite element analysis. American Journal of Orthodontics and Dentofacial Orthopedics, 135(3), 316–322.

    Article  Google Scholar 

  20. Likitmongkolsakul, U., Smithmaitrie, P., Samruajbenjakun, B., & Aksornmuang, J. (2018). Development and validation of 3D finite element models for prediction of orthodontic tooth movement. International Journal of Dentistry.

    Google Scholar 

  21. Liu, A., & Joe, B. (1994). Relationship between tetrahedron shape measures. BIT Numerical Mathematics, 34(2), 268–287.

    Article  MathSciNet  Google Scholar 

  22. Maas, S., Weiss, J. (2007) FEBio user’s manual. https://help.febio.org/FEBio/FEBio_um_2_8/index.html. [Online; Accessed 1 March 2019].

  23. McCormack, S. W., Witzel, U., Watson, P. J., Fagan, M. J., & Gröning, F. (2014). The biomechanical function of periodontal ligament fibres in orthodontic tooth movement. Plos One, 9(7), e102387.

    Article  ADS  Google Scholar 

  24. Melsen, B., Cattaneo, P. M., Dalstra, M., & Kraft, D. C. (2007) The importance of force levels in relation to tooth movement. In Seminars in Orthodontics (Vol. 13, pp. 220–233). Elsevier.

    Google Scholar 

  25. Misztal, M. K., Erleben, K., Bargteil, A., Fursund, J., Christensen, B. B., Bærentzen, J. A., & Bridson, R. (2013). Multiphase flow of immiscible fluids on unstructured moving meshes. IEEE Transactions on Visualization and Computer Graphics, 20(1), 4–16.

    Article  Google Scholar 

  26. Ortún-Terrazas, J., Cegoñino, J., Santana-Penín, U., Santana-Mora, U., & del Palomar, A. P. (2018). Approach towards the porous fibrous structure of the periodontal ligament using micro-computerized tomography and finite element analysis. Journal of the Mechanical Behavior of Biomedical Materials, 79, 135–149.

    Article  Google Scholar 

  27. Park, M., Na, Y., Park, M., & Ahn, J. (2017). Biomechanical analysis of distalization of mandibular molars by placing a mini-plate: a finite element study. The Korean Journal of Orthodontics, 47(5), 289–297.

    Article  Google Scholar 

  28. Qian, L., Todo, M., Morita, Y., Matsushita, Y., & Koyano, K. (2009). Deformation analysis of the periodontium considering the viscoelasticity of the periodontal ligament. Dental Materials, 25(10), 1285–1292.

    Article  Google Scholar 

  29. Savignano, R., Viecilli, R. F., Paoli, A., Razionale, A. V., & Barone, S. (2016). Nonlinear dependency of tooth movement on force system directions. American Journal of Orthodontics and Dentofacial Orthopedics, 149(6), 838–846.

    Article  Google Scholar 

  30. Shewchuk, J. R. (2002). What is a good linear finite element? Interpolation, conditioning, anisotropy, and quality measures. University of California at Berkeley, 73, 137.

    Google Scholar 

  31. Tanne, K., Nagataki, T., Inoue, Y., Sakuda, M., & Burstone, C. J. (1991). Patterns of initial tooth displacements associated with various root lengths and alveolar bone heights. American Journal of Orthodontics and Dentofacial Orthopedics, 100(1), 66–71.

    Article  Google Scholar 

  32. Uhlir, R., Mayo, V., Lin, P. H., Chen, S., Lee, Y. T., Hershey, G., et al. (2016). Biomechanical characterization of the periodontal ligament: Orthodontic tooth movement. The Angle Orthodontist, 87(2), 183–192.

    Article  Google Scholar 

  33. WIAS-Software, TetGen. http://wias-berlin.de/software/index.jsp?id=TetGen&lang=1.

  34. Ziegler, A., Keilig, L., Kawarizadeh, A., Jäger, A., & Bourauel, C. (2005). Numerical simulation of the biomechanical behaviour of multi-rooted teeth. The European Journal of Orthodontics, 27(4), 333–339.

    Article  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 764644. This paper only contains the author’s views and the Research Executive Agency and the Commission are not responsible for any use that may be made of the information it contains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torkan Gholamalizadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gholamalizadeh, T., Darkner, S., Cattaneo, P.M., Søndergaard, P., Erleben, K. (2021). Mandibular Teeth Movement Variations in Tipping Scenario: A Finite Element Study on Several Patients. In: Miller, K., Wittek, A., Nash, M., Nielsen, P.M.F. (eds) Computational Biomechanics for Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-70123-9_3

Download citation

Publish with us

Policies and ethics