Skip to main content

A Scalable and Automated Machine Learning Framework to Support Risk Management

  • Conference paper
  • First Online:
Agents and Artificial Intelligence (ICAART 2020)

Abstract

Due to the growth of data and widespread usage of Machine Learning (ML) by non-experts, automation and scalability are becoming key issues for ML. This paper presents an automated and scalable framework for ML that requires minimum human input. We designed the framework for the domain of telecommunications risk management. This domain often requires non-ML-experts to continuously update supervised learning models that are trained on huge amounts of data. Thus, the framework uses Automated Machine Learning (AutoML), to select and tune the ML models, and distributed ML, to deal with Big Data. The modules included in the framework are task detection (to detect classification or regression), data preprocessing, feature selection, model training, and deployment. In this paper, we focus the experiments on the model training module. We first analyze the capabilities of eight AutoML tools: Auto-Gluon, Auto-Keras, Auto-Sklearn, Auto-Weka, H2O AutoML, Rminer, TPOT, and TransmogrifAI. Then, to select the tool for model training, we performed a benchmark with the only two tools that address a distributed ML (H2O AutoML and TransmogrifAI). The experiments used three real-world datasets from the telecommunications domain (churn, event forecasting, and fraud detection), as provided by an analytics company. The experiments allowed us to measure the computational effort and predictive capability of the AutoML tools. Both tools obtained high-quality results and did not present substantial predictive differences. Nevertheless, H2O AutoML was selected by the analytics company for the model training module, since it was considered a more mature technology that presented a more interesting set of features (e.g., integration with more platforms). After choosing H2O AutoML for the ML training, we selected the technologies for the remaining components of the architecture (e.g., data preprocessing and web interface).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/liao-iu/scalaTS/.

References

  1. Apache Spark: extracting, transforming and selecting features - Spark 2.4.5 documentation (2020) https://spark.apache.org/docs/latest/ml-features

  2. Apache Spark: ML pipelines - Spark 2.4.5 documentation (2020). https://spark.apache.org/docs/latest/ml-pipeline.html

  3. Auto-Gluon: AutoGluon: AutoML toolkit for deep learning — AutoGluon documentation 0.0.1 documentation (2020). https://autogluon.mxnet.io/

  4. Blum, A.L., Langley, P.: Selection of relevant features and examples in machine learning. Artif. Intell. 97(1–2), 245–271 (1997). https://doi.org/10.1016/s0004-3702(97)00063-5

  5. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002). https://doi.org/10.1613/jair.953

    Article  MATH  Google Scholar 

  6. Chollet, F., et al.: Keras (2015). https://keras.io

  7. Cook, D.: Practical Machine Learning with H2O: Powerful, Scalable Techniques for Deep Learning and AI. O’Reilly Media, Inc., Sebastopol (2016)

    Google Scholar 

  8. Cortez, P.: Data mining with neural networks and support vector machines using the R/rminer tool. In: Perner, P. (ed.) ICDM 2010. LNCS (LNAI), vol. 6171, pp. 572–583. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14400-4_44

    Chapter  Google Scholar 

  9. Cortez, P.: A tutorial on using the rminer r package for data mining tasks, Technical report, Universidade do Minho, Escola de Engenharia (EEng) (2015)

    Google Scholar 

  10. Cortez, P.: Package ‘rminer’ (2020). https://cran.r-project.org/web/packages/rminer/rminer.pdf

  11. Darwiche, A.: Human-level intelligence or animal-like abilities? Commun. ACM 61(10), 56–67 (2018). https://doi.org/10.1145/3271625

  12. Elshawi, R., Maher, M., Sakr, S.: Automated machine learning: state-of-the-art and open challenges. arXiv preprint arXiv:1906.02287 (2019)

  13. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. arXiv preprint arXiv:1808.05377 (2018)

  14. Ferreira, L., Pilastri, A., Martins, C., Santos, P., Cortez, P.: An automated and distributed machine learning framework for telecommunications risk management. In: Proceedings of the 12th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, pp. 99–107. INSTICC, SciTePress (2020). https://doi.org/10.5220/0008952800990107

  15. Feurer, M., et al.: Efficient and robust automated machine learning. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, 7–12 December 2015, Montreal, Quebec, Canada, pp. 2962–2970 (2015). http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning

  16. Feurer, M., Springenberg, J.T., Hutter, F.: Initializing Bayesian hyperparameter optimization via meta-learning. In: Bonet, B., Koenig, S. (eds.) Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 25–30 January 2015, Austin, Texas, USA, pp. 1128–1135. AAAI Press (2015). http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/10029

  17. Gijsbers, P., LeDell, E., Thomas, J., Poirier, S., Bischl, B., Vanschoren, J.: An open source autoML benchmark. arXiv preprint arXiv:1907.00909 (2019)

  18. Guyon, I., et al.: Design of the 2015 chalearn autoML challenge. In: 2015 International Joint Conference on Neural Networks, IJCNN 2015, Killarney, Ireland, 12–17 July 2015, pp. 1–8. IEEE (2015). https://doi.org/10.1109/IJCNN.2015.7280767

  19. Guyon, I., et al.: A brief review of the chalearn automl challenge: any-time any-dataset learning without human intervention. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Proceedings of the 2016 Workshop on Automatic Machine Learning, AutoML 2016, co-located with 33rd International Conference on Machine Learning (ICML 2016), New York City, NY, USA, 24 June 2016. JMLR Workshop and Conference Proceedings, vol. 64, pp. 21–30. JMLR.org (2016)

    Google Scholar 

  20. Guyon, I., et al.: Analysis of the AutoML challenge series 2015–2018. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Automated Machine Learning. TSSCML, pp. 177–219. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5_10

    Chapter  Google Scholar 

  21. H2O.ai: H2O AutoML, June 2017. http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html, h2O version 3.30.0.1

  22. He, X., Zhao, K., Chu, X.: AutoML: a survey of the state-of-the-art. arXiv preprint arXiv:1908.00709 (2019)

  23. Jin, H., Song, Q., Hu, X.: Auto-keras: an efficient neural architecture search system. In: Teredesai, A., Kumar, V., Li, Y., Rosales, R., Terzi, E., Karypis, G. (eds.) Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, 4–8 August 2019, pp. 1946–1956. ACM (2019). https://doi.org/10.1145/3292500.3330648

  24. Kotthoff, L., Thornton, C., Hoos, H.H., Hutter, F., Leyton-Brown, K.: Auto-weka 2.0: automatic model selection and hyperparameter optimization in WEKA. J. Mach. Learn. Res. 18, 25:1–25:5 (2017). http://jmlr.org/papers/v18/16-261.html

  25. Le, T.T., Fu, W., Moore, J.H.: Scaling tree-based automated machine learning to biomedical big data with a feature set selector. Bioinformatics 36(1), 250–256 (2020)

    Article  Google Scholar 

  26. Oliveira, N., Cortez, P., Areal, N.: The impact of microblogging data for stock market prediction: Using twitter to predict returns, volatility, trading volume and survey sentiment indices. Expert Syst. Appl. 73, 125–144 (2017). https://doi.org/10.1016/j.eswa.2016.12.036

    Article  Google Scholar 

  27. Olson, R.S., Urbanowicz, R.J., Andrews, P.C., Lavender, N.A., Kidd, L.C., Moore,J.H.: Automating biomedical data science through tree-based pipeline optimization. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9597, pp. 123–137. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31204-0_9

  28. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011). http://dl.acm.org/citation.cfm?id=2078195

  29. Peteiro-Barral, D., Guijarro-Berdiñas, B.: A survey of methods for distributed machine learning. Prog. Artif. Intell. 2(1), 1–11 (2013). https://doi.org/10.1007/s13748-012-0035-5

    Article  Google Scholar 

  30. Salesforce: Transmogrifai (2019). https://docs.transmogrif.ai/en/stable/

  31. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-weka: combined selection and hyperparameter optimization of classification algorithms. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 847–855 (2013). https://doi.org/10.1145/2487575.2487629

  32. Truong, A., Walters, A., Goodsitt, J., Hines, K., Bruss, B., Farivar, R.: Towards automated machine learning: Evaluation and comparison of autoML approaches and tools. arXiv preprint arXiv:1908.05557 (2019)

  33. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science in machine learning. SIGKDD Explor. 15(2), 49–60 (2013). https://doi.org/10.1145/2641190.2641198

    Article  Google Scholar 

  34. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Amsterdam (2016)

    Google Scholar 

  35. Yao, Q., et al.: Taking human out of learning applications: a survey on automated machine learning. arXiv preprint arXiv:1810.13306 (2018)

  36. Zöller, M.A., Huber, M.F.: Benchmark and survey of automated machine learning frameworks. Technical report. https://www.researchgate.net/publication/332750780

Download references

Acknowledgements

This work was executed under the project IRMDA - Intelligent Risk Management for the Digital Age, Individual Project, NUP: POCI-01-0247-FEDER-038526, co-funded by the Incentive System for Research and Technological Development, from the Thematic Operational Program Competitiveness of the national framework program - Portugal2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferreira, L., Pilastri, A., Martins, C., Santos, P., Cortez, P. (2021). A Scalable and Automated Machine Learning Framework to Support Risk Management. In: Rocha, A.P., Steels, L., van den Herik, J. (eds) Agents and Artificial Intelligence. ICAART 2020. Lecture Notes in Computer Science(), vol 12613. Springer, Cham. https://doi.org/10.1007/978-3-030-71158-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71158-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71157-3

  • Online ISBN: 978-3-030-71158-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics