Skip to main content

Acute Fracture Injuries in Sport

  • Chapter
  • First Online:
Fractures in Sport

Abstract

Acute fractures in sport are a significant problem for the athlete, given that fractures can result in one of the longest return times to sport of all injuries.

Optimal clinical management of these injuries relies on a robust understanding of the basic science principles that are associated with fractures.

Fracture healing is key to expedient recovery of these injuries. Given the young healthy demographic of athletic patients, an appreciation of the optimal fracture healing capacity of such individuals, can facilitate the earliest return to sport possible.

Given the sport-specific, and often recurring, actions that account for such fractures, it is key to review their injury mechanisms, to better predict the occurrence of these injuries. A robust understanding of the biomechanical properties underpinning the mechanism of fracture, allows the clinician to make a comprehensive assessment regarding causative factors, modifiable risk factors, and injury stability.

Further to this, it must be appreciated that the management of such injuries should be developed to facilitate the earliest return to sport, with the lowest morbidity possible. As such, several adaptations to ‘traditional’ fracture management can be advocated in the athletic patient. A sound understanding of the biomechanical principles of fracture management allows the clinicians to appropriately select the optimal management techniques.

Injury prevention forms a key component in reducing the incidence and morbidity of acute sport-related fractures. Key basic principles that allow a comprehensive understanding and subsequent application of this topic include: the practice of injury surveillance, the development of injury prevention equipment and techniques, and the clinical integration of such practices to assess their safety and effectiveness.

This chapter provides an overview of the basic science principles of acute fractures in sport, reviewing fracture healing models, common injury patterns, general treatment principles, associated biomechanics principles and preventative measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robertson GA, Wood AM. Fractures in sport: optimising their management and outcome. World J Orthop. 2015;6(11):850–63.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Robertson GA, Wood AM, Bakker-Dyos J, Aitken SA, Keenan AC, Court-Brown CM. The epidemiology, morbidity, and outcome of soccer-related fractures in a standard population. Am J Sports Med. 2012;40(8):1851–7.

    Article  PubMed  Google Scholar 

  3. Robertson GA, Wood AM, Heil K, Aitken SA, Court-Brown CM. The epidemiology, morbidity and outcome of fractures in rugby union from a standard population. Injury. 2014;45(4):677–83.

    Article  PubMed  Google Scholar 

  4. Robertson GA, Wood AM, Aitken SA, Court Brown CM. The epidemiology, management and outcome of field hockey related fractures in a standard population. Arch Trauma Res. 2017;6(4):76–81.

    Article  Google Scholar 

  5. Robertson GA, Wood AM, Aitken SA, Court BC. Epidemiology, management, and outcome of sport-related ankle fractures in a standard UK population. Foot Ankle Int. 2014;35(11):1143–52.

    Article  PubMed  Google Scholar 

  6. Robertson GA, Wood AM. Return to sport after tibial shaft fractures: a systematic review. Sports Health. 2016;8(4):324–30.

    Article  PubMed  Google Scholar 

  7. Robertson GA, Wood AM. Return to sport following clavicle fractures: a systematic review. Br Med Bull. 2016;119(1):111–28.

    Article  CAS  PubMed  Google Scholar 

  8. Goffin JS, Liao Q, Robertson GA. Return to sport following scaphoid fractures: a systematic review and meta-analysis. World J Orthop. 2019;10(2):101–14.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Robertson GAJ, Wong SJ, Wood AM. Return to sport following tibial plateau fractures: a systematic review. World J Orthop. 2017;8(7):574–87.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Robertson GAJ, Ang KK, Maffulli N, Keenan G, Wood AM. Return to sport following Lisfranc injuries: a systematic review and meta-analysis. Foot Ankle Surg. 2019;25(5):654–64.

    Article  PubMed  Google Scholar 

  11. Bottlang M, Fitzpatrick DC, Claes L, Anderson DD. Biomechanics of fractures and fracture fixation. In: Tornetta III P, Ricci W, Ostrum RF, McQueen MM, McKee MD, Court Brown CM, editors. Rockwood and Green’s fractures in adults. 9th ed. Philadelphia: Wolters Kluwer; 2019. p. 1–42.

    Google Scholar 

  12. Lopas LA, Mendias C, Kim HT, Hankenson KD, Ahn J. Bone, cartilage and tendon healing. In: Tornetta III P, Ricci W, Ostrum RF, McQueen MM, McKee MD, Court Brown CM, editors. Rockwood and Green’s fractures in adults. 9th ed. Philadelphia: Wolters Kluwer; 2019. p. 43–60.

    Google Scholar 

  13. Court Brown CM, Davidson EK. Principles of nonoperative management of fractures. In: Tornetta III P, Ricci W, Ostrum RF, McQueen MM, McKee MD, Court Brown CM, editors. Rockwood and Green’s fractures in adults. 9th ed. Philadelphia: Wolters Kluwer; 2019. p. 248–95.

    Google Scholar 

  14. Bishop JA, Behn AW, Gardner MJ. Principles and biomechanics of internal fixation. In: Tornetta III P, Ricci W, Ostrum RF, McQueen MM, McKee MD, Court Brown CM, editors. Rockwood and Green’s fractures in adults. 9th ed. Philadelphia: Wolters Kluwer; 2019. p. 362–90.

    Google Scholar 

  15. Watson JT. Principles of external fixation. In: Tornetta III P, Ricci W, Ostrum RF, McQueen MM, McKee MD, Court Brown CM, editors. Rockwood and Green’s fractures in adults. 9th ed. Philadelphia: Wolters Kluwer; 2019. p. 296–361.

    Google Scholar 

  16. Schmitz MR, DeHart MM, Qazi Z, Shuler FD. Orthopaedic biology. In: Miller MD, Thompson SR, editors. Miller’s review of orthopaedics. 7th ed. Philadelphia, PA: Elsevier; 2015. p. 83–104.

    Google Scholar 

  17. Hak DJ, Mauffrey C. Trauma: biomechanics of fracture healing & biomechanics of open reduction and internal fixation. In: Miller MD, Thompson SR, editors. Miller’s review of orthopaedics. 7th ed. Philadelphia, PA: Elsevier; 2015. p. 775–8.

    Google Scholar 

  18. Bates P, Moller-Madsen B, Noorani A, Ramachandran M. The basics of bone. In: Ramachandran M, editor. Basic orthopaedic sciences. 2nd ed. Boca Raton: CRC Press; 2017. p. 193–204.

    Google Scholar 

  19. Bates P, Yeo A, Ramachandran M. Bone injury, healing and grafting. In: Ramachandran M, editor. Basic orthopaedic sciences. 2nd ed. Boca Raton: CRC Press; 2017. p. 205–22.

    Google Scholar 

  20. Chatterjee S, Baring T, Blunn G. Biomaterial behaviour. In: Ramachandran M, editor. Basic orthopaedic sciences. 2nd ed. Boca Raton: CRC Press; 2017. p. 257–66.

    Google Scholar 

  21. Ramachandran M, Lee P. Basic concepts in biomechanics. In: Ramachandran M, editor. Basic orthopaedic sciences. 2nd ed. Boca Raton: CRC Press; 2017. p. 233–44.

    Google Scholar 

  22. Court Brown C, McQueen MM, Tornetta P III. Nonunions and bone defects. In: Tornetta III P, Einhorn T, editors. Trauma. Philadelphia: Lippincott Williams & Wilkins; 2006.

    Google Scholar 

  23. Clark D, Nakamura M, Miclau T, Marcucio R. Effects of aging on fracture healing. Curr Osteoporos Rep. 2017;15(6):601–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gibon E, Lu L, Goodman SB. Aging, inflammation, stem cells, and bone healing. Stem Cell Res Ther. 2016;7:44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Rettig AC, Ryan R, Shelbourne KD, McCarroll JR, Johnson F Jr, Ahlfeld SK. Metacarpal fractures in the athlete. Am J Sports Med. 1989;17(4):567–72.

    Article  CAS  PubMed  Google Scholar 

  26. Ekegren CL, Gabbe BJ, Finch CF. Sports injury surveillance systems: a review of methods and data quality. Sports Med. 2016;46(1):49–65.

    Article  PubMed  Google Scholar 

  27. Court-Brown CM, Wood AM, Aitken S. The epidemiology of acute sports-related fractures in adults. Injury. 2008;39(12):1365–72.

    Article  PubMed  Google Scholar 

  28. Aitken SA, Watson BS, Wood AM, Court-Brown CM. Sports-related fractures in South East Scotland: an analysis of 990 fractures. J Orthop Surg (Hong Kong). 2014;22(3):313–7.

    Article  Google Scholar 

  29. Larsson D, Ekstrand J, Karlsson MK. Fracture epidemiology in male elite football players from 2001 to 2013: ‘How long will this fracture keep me out?’. Br J Sports Med. 2016;50(12):759–63.

    Article  PubMed  Google Scholar 

  30. Junge A, Dvorak J. Injury surveillance in the World Football Tournaments 1998-2012. Br J Sports Med. 2013;47(12):782–8.

    Article  PubMed  Google Scholar 

  31. Junge A, Dvorak J. Football injuries during the 2014 FIFA World Cup. Br J Sports Med. 2015;49(9):599–602.

    Article  PubMed  Google Scholar 

  32. Dvorak J, Junge A, Grimm K, Kirkendall D. Medical report from the 2006 FIFA World Cup Germany. Br J Sports Med. 2007;41(9):578–81; discussion 81.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Junge A, Dvorak J, Graf-Baumann T, Peterson L. Football injuries during FIFA tournaments and the Olympic Games, 1998-2001: development and implementation of an injury-reporting system. Am J Sports Med. 2004;32(1 Suppl):80S–9S.

    Article  PubMed  Google Scholar 

  34. Junge A, Engebretsen L, Alonso JM, Renstrom P, Mountjoy M, Aubry M, et al. Injury surveillance in multi-sport events: the International Olympic Committee approach. Br J Sports Med. 2008;42(6):413–21.

    Article  CAS  PubMed  Google Scholar 

  35. Best JP, McIntosh AS, Savage TN. Rugby World Cup 2003 injury surveillance project. Br J Sports Med. 2005;39(11):812–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ricci W. Principles of nonunion and bone defect treatment. In: Tornetta III P, Ricci W, Ostrum RF, McQueen MM, Mckee MD, Court Brown CM, editors. Rockwood and Green’s fractures in adults. 9th ed. Philadelphia: Wolters Kluwer; 2019. p. 835–83.

    Google Scholar 

  37. Calcei JG, Rodeo SA. Orthobiologics for bone healing. Clin Sports Med. 2019;38(1):79–95.

    Article  PubMed  Google Scholar 

  38. Bray CC, Walker CM, Spence DD. Orthobiologics in pediatric sports medicine. Orthop Clin North Am. 2017;48(3):333–42.

    Article  PubMed  Google Scholar 

  39. Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012;8(4):114–24.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Toogood PA, Bahney C, Marcucio R, Miclau T. Biologic and biophysical technologies for the enhancement of fracture repair. In: Tornetta III P, Ricci WM, Ostrum RF, McQueen MM, MD MK, Court-Brown C, editors. Rockwood and Green’s fractures in adults. 9th ed. Philadelphia: Wolters Kluwer Health; 2019. p. 61–79.

    Google Scholar 

  41. Aitken S, Court-Brown CM. The epidemiology of sports-related fractures of the hand. Injury. 2008;39(12):1377–83.

    Article  PubMed  Google Scholar 

  42. Swenson DM, Henke NM, Collins CL, Fields SK, Comstock RD. Epidemiology of United States high school sports-related fractures, 2008-09 to 2010-11. Am J Sports Med. 2012;40(9):2078–84.

    Article  PubMed  Google Scholar 

  43. Swenson DM, Yard EE, Collins CL, Fields SK, Comstock RD. Epidemiology of US high school sports-related fractures, 2005-2009. Clin J Sport Med. 2010;20(4):293–9.

    Article  PubMed  Google Scholar 

  44. Wood AM, Robertson GA, Rennie L, Caesar BC, Court-Brown CM. The epidemiology of sports-related fractures in adolescents. Injury. 2010;41(8):834–8.

    Article  PubMed  Google Scholar 

  45. Brooks JH, Fuller CW, Kemp SP, Reddin DB. Epidemiology of injuries in English professional rugby union: part 1 match injuries. Br J Sports Med. 2005;39(10):757–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brooks JH, Fuller CW, Kemp SP, Reddin DB. Epidemiology of injuries in English professional rugby union: part 2 training injuries. Br J Sports Med. 2005;39(10):767–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bowers AL, Baldwin KD, Sennett BJ. Athletic hand injuries in intercollegiate field hockey players. Med Sci Sports Exerc. 2008;40(12):2022–6.

    Article  PubMed  Google Scholar 

  48. Dick R, Hootman JM, Agel J, Vela L, Marshall SW, Messina R. Descriptive epidemiology of collegiate women’s field hockey injuries: National Collegiate Athletic Association Injury Surveillance System, 1988-1989 through 2002-2003. J Athl Train. 2007;42(2):211–20.

    PubMed  PubMed Central  Google Scholar 

  49. Karam MD, Marsh JL. Classification of fractures. In: Tornetta III P, Ricci W, Ostrum RF, McQueen MM, McKee MD, Court Brown CM, editors. Rockwood and Green’s fractures in adults. 9th ed. Philadelphia: Wolters Kluwer; 2019. p. 104–22.

    Google Scholar 

  50. Meinberg EG, Agel J, Roberts CS, Karam MD, Kellam JF. Fracture and dislocation classification compendium-2018. J Orthop Trauma. 2018;32(Suppl 1):S1–S170.

    Article  PubMed  Google Scholar 

  51. Wood AM, Robertson GAJ, MacLeod K, Porter A, Court-Brown CM. Epidemiology of open fractures in sport: one centre’s 15-year retrospective study. World J Orthop. 2017;8(7):545–52.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gustilo RB, Anderson JT. Prevention of infection in the treatment of one thousand and twenty-five open fractures of long bones: retrospective and prospective analyses. J Bone Joint Surg Am. 1976;58(4):453–8.

    Article  CAS  PubMed  Google Scholar 

  53. Court-Brown CM, Caesar B. Epidemiology of adult fractures: a review. Injury. 2006;37(8):691–7.

    Article  PubMed  Google Scholar 

  54. Hon WH, Kock SH. Sports related fractures: a review of 113 cases. J Orthop Surg (Hong Kong). 2001;9(1):35–8.

    Article  Google Scholar 

  55. Court-Brown CM, Bugler KE, Clement ND, Duckworth AD, McQueen MM. The epidemiology of open fractures in adults. A 15-year review. Injury. 2012;43(6):891–7.

    Article  PubMed  Google Scholar 

  56. Murtaugh K. Injury patterns among female field hockey players. Med Sci Sports Exerc. 2001;33(2):201–7.

    Article  CAS  PubMed  Google Scholar 

  57. Parkkari J, Kujala UM, Kannus P. Is it possible to prevent sports injuries? Review of controlled clinical trials and recommendations for future work. Sports Med. 2001;31(14):985–95.

    Article  CAS  PubMed  Google Scholar 

  58. Shaw AD, Gustilo T, Court-Brown CM. Epidemiology and outcome of tibial diaphyseal fractures in footballers. Injury. 1997;28(5–6):365–7.

    Article  CAS  PubMed  Google Scholar 

  59. Lauge-Hansen N. Fractures of the ankle. II. Combined experimental-surgical and experimental-roentgenologic investigations. Arch Surg. 1950;60(5):957–85.

    Article  CAS  Google Scholar 

  60. Roche AJ, Calder JD. Treatment and return to sport following a Jones fracture of the fifth metatarsal: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2013;21(6):1307–15.

    Article  PubMed  Google Scholar 

  61. Robinson CM, Goudie EB, Murray IR, Jenkins PJ, Ahktar MA, Read EO, et al. Open reduction and plate fixation versus nonoperative treatment for displaced midshaft clavicular fractures: a multicenter, randomized, controlled trial. J Bone Joint Surg Am. 2013;95(17):1576–84.

    Article  CAS  PubMed  Google Scholar 

  62. Goudie EB, Clement ND, Murray IR, Lawrence CR, Wilson M, Brooksbank AJ, et al. The influence of shortening on clinical outcome in healed displaced midshaft clavicular fractures after nonoperative treatment. J Bone Joint Surg Am. 2017;99(14):1166–72.

    Article  CAS  PubMed  Google Scholar 

  63. Robertson GA, Wood AM, Oliver CW. Displaced middle-third clavicle fracture management in sport: still a challenge in 2018. Should you call the surgeon to speed return to play? Br J Sports Med. 2018;52(6):348–9.

    Article  PubMed  Google Scholar 

  64. Shaftel ND, Capo JT. Fractures of the digits and metacarpals: when to splint and when to repair? Sports Med Arthrosc Rev. 2014;22(1):2–11.

    Article  PubMed  Google Scholar 

  65. Henn CM, Wolfe SW. Distal radius fractures in athletes: approaches and treatment considerations. Sports Med Arthrosc. 2014;22(1):29–38.

    Article  PubMed  Google Scholar 

  66. Geissler WB. Operative fixation of metacarpal and phalangeal fractures in athletes. Hand Clin. 2009;25(3):409–21.

    Article  PubMed  Google Scholar 

  67. Gaston RG, Chadderdon C. Phalangeal fractures: displaced/nondisplaced. Hand Clin. 2012;28(3):395–401, x.

    Article  PubMed  Google Scholar 

  68. Rajasekaran S, Devendra A, Ramesh P, Dheenadhayalan J, Kamal CA. Initial management of open fractures. In: Tornetta III P, Ricci W, Ostrum RF, McQueen MM, McKee MD, Court Brown CM, editors. Rockwood and Green’s fractures in adults. 9th ed. Philadelphia: Wolters Kluwer; 2019. p. 484–530.

    Google Scholar 

  69. Chatterjee S, Stammers J, Blunn G. Biomaterials. In: Ramachandran M, editor. Basic orthopaedic sciences. 2nd ed. Boca Raton: CRC Press; 2017. p. 257–66.

    Google Scholar 

  70. Hagglund M, Walden M, Bahr R, Ekstrand J. Methods for epidemiological study of injuries to professional football players: developing the UEFA model. Br J Sports Med. 2005;39(6):340–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ekstrand J, Hagglund M, Walden M. Injury incidence and injury patterns in professional football: the UEFA injury study. Br J Sports Med. 2011;45(7):553–8.

    Article  CAS  PubMed  Google Scholar 

  72. Junge A, Langevoort G, Pipe A, Peytavin A, Wong F, Mountjoy M, et al. Injuries in team sport tournaments during the 2004 Olympic Games. Am J Sports Med. 2006;34(4):565–76.

    Article  PubMed  Google Scholar 

  73. Yard EE, Collins CL, Comstock RD. A comparison of high school sports injury surveillance data reporting by certified athletic trainers and coaches. J Athl Train. 2009;44(6):645–52.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kerr ZY, Dompier TP, Snook EM, Marshall SW, Klossner D, Hainline B, et al. National collegiate athletic association injury surveillance system: review of methods for 2004-2005 through 2013-2014 data collection. J Athl Train. 2014;49(4):552–60.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Templeton PA, Farrar MJ, Williams HR, Bruguera J, Smith RM. Complications of tibial shaft soccer fractures. Injury. 2000;31(6):415–9.

    Article  CAS  PubMed  Google Scholar 

  76. Chang WR, Kapasi Z, Daisley S, Leach WJ. Tibial shaft fractures in football players. J Orthop Surg Res. 2007;2:11.

    Article  PubMed  PubMed Central  Google Scholar 

  77. FIFA TFIdFA. F-MARC: football medicine manual. 2nd ed; 2016.

    Google Scholar 

  78. Headey J, Brooks JH, Kemp SP. The epidemiology of shoulder injuries in English professional rugby union. Am J Sports Med. 2007;35(9):1537–43.

    Article  PubMed  Google Scholar 

  79. Kaul A, Abbas A, Smith G, Manjila S, Pace J, Steinmetz M. A revolution in preventing fatal craniovertebral junction injuries: lessons learned from the head and neck support device in professional auto racing. J Neurosurg Spine. 2016;25(6):756–61.

    Article  PubMed  Google Scholar 

  80. Bigdon SF, Gewiess J, Hoppe S, Exadaktylos AK, Benneker LM, Fairhurst PG, et al. Spinal injury in alpine winter sports: a review. Scand J Trauma Resusc Emerg Med. 2019;27(1):69.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Giza E, Micheli LJ. Soccer injuries. Med Sport Sci. 2005;49:140–69.

    Article  PubMed  Google Scholar 

  82. Wong P, Hong Y. Soccer injury in the lower extremities. Br J Sports Med. 2005;39(8):473–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Court-Brown CM, McBirnie J. The epidemiology of tibial fractures. J Bone Joint Surg Br. 1995;77(3):417–21.

    Article  CAS  PubMed  Google Scholar 

  84. Francisco AC, Nightingale RW, Guilak F, Glisson RR, Garrett WE Jr. Comparison of soccer shin guards in preventing tibia fracture. Am J Sports Med. 2000;28(2):227–33.

    Article  CAS  PubMed  Google Scholar 

  85. Tatar Y, Ramazanoglu N, Camliguney AF, Saygi EK, Cotuk HB. The effectiveness of shin guards used by football players. J Sports Sci Med. 2014;13(1):120–7.

    PubMed  PubMed Central  Google Scholar 

  86. Lawson GM, Hajducka C, McQueen MM. Sports fractures of the distal radius-epidemiology and outcome. Injury. 1995;26(1):33–6.

    Article  CAS  PubMed  Google Scholar 

  87. Banerjee R, Palumbo MA, Fadale PD. Catastrophic cervical spine injuries in the collision sport athlete, part 1: epidemiology, functional anatomy, and diagnosis. Am J Sports Med. 2004;32(4):1077–87.

    Article  PubMed  Google Scholar 

  88. Boden BP, Jarvis CG. Spinal injuries in sports. Phys Med Rehabil Clin N Am. 2009;20(1):55–68, vii.

    Article  PubMed  Google Scholar 

  89. Torg JS, Guille JT, Jaffe S. Injuries to the cervical spine in American football players. J Bone Joint Surg Am. 2002;84(1):112–22.

    Article  PubMed  Google Scholar 

  90. Reboursiere E, Bohu Y, Retiere D, Sesboue B, Pineau V, Colonna JP, et al. Impact of the national prevention policy and scrum law changes on the incidence of rugby-related catastrophic cervical spine injuries in French Rugby Union. Br J Sports Med. 2018;52(10):674–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Review

Review

1.1 Questions

  1. 1.

    Which treatment method demonstrates primary fracture healing?

    1. (a)

      Intra-Medullary Nailing

    2. (b)

      K-Wire Fixation

    3. (c)

      Bridge Plate Fixation

    4. (d)

      Cast Immobilisation

    5. (e)

      Lag Screw and Neutralisation Plate Fixation

  2. 2.

    Which fracture pattern results from a tension force?

    1. (a)

      Transverse

    2. (b)

      Oblique

    3. (c)

      Spiral

    4. (d)

      Simple Wedge

    5. (e)

      Comminuted

  3. 3.

    What is the recommended treatment method for an undisplaced tibial diaphyseal fracture in a professional soccer player?

    1. (a)

      Cast Immobilisation

    2. (b)

      Sarmiento Brace Immobilisation

    3. (c)

      External Frame Fixation

    4. (d)

      Intra-Medullary Nail Fixation

    5. (e)

      Bed Rest with Skeletal Traction

  4. 4.

    Which practice results in the greatest risk reduction of catastrophic cervical spine injuries in Rugby Union?

    1. (a)

      The Implementation of Non-Impact Scrum Laws

    2. (b)

      Routine Scrum Cap Usage

    3. (c)

      Regular Lower Limb Proprioception Training

    4. (d)

      Routine Shoulder Pad Usage

    5. (e)

      Playing on Grass Surface Pitches

1.2 Answers

  1. 1.

    (e)—All the other treatment methods demonstrate secondary fracture healing (i.e. endochondral ossification with periosteal bridging callus).

  2. 2.

    (a)—Tension forces result in transverse fracture patterns (e.g. at the patella, olecranon and medial malleolus). Pure bending forces can also result in transverse fracture patterns (e.g. at the tibia diaphysis). None of the other listed fracture patterns result from tension forces.

  3. 3.

    (d)—An undisplaced tibial diaphyseal fracture is an unstable fracture pattern. In a professional soccer player, this should undergo ‘internal’ surgical stabilisation i.e. Intra-Medullary Nail Fixation. The other options either provide conservative management or ‘external’ surgical stabilisation – these would result in a delayed rehabilitation and a prolonged return to sport.

  4. 4.

    (a)—The implementation of non-impact scrum laws, in rugby union, has been found to result in a 44% reduction in catastrophic cervical spine injuries. None of the other injury prevention measures have been proven to reduce catastrophic cervical spine injuries.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Robertson, G.A.J., Wood, A.M., Ahluwalia, R.S., Keenan, G.F. (2021). Acute Fracture Injuries in Sport. In: Robertson, G.A.J., Maffulli, N. (eds) Fractures in Sport. Springer, Cham. https://doi.org/10.1007/978-3-030-72036-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72036-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72035-3

  • Online ISBN: 978-3-030-72036-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics