Skip to main content

Abstract

Cryptocurrency has grown outstandingly in recent years. Additional events throughout the planet have acknowledged the significance of embracing numeral benefits virtually with rapid advances seen in these directions. In today's financial market, the decision to buy or sell cryptocurrency is an interesting challenge faced by day traders. Over the year, it has reached unprecedented highs leading to thoughts explaining the trend in its growth. The idea of whether the movement of financial assets can be predicted has kept investors, economists, and researchers very engaged in recent years. Therefore, the paper used machine learning to construct a model for the Stock and Cryptocurrency price prediction using technical indicators that are most important for market trend study. This study learns how to adapt Long Short-Term Memory (LSTM) to build the cryptocurrency price prediction model. The key factors used are available price, close price, high price, low price, volume and market cap with the interdependencies amid some cryptocurrencies thus centers on measuring vital features that influence the trade’s unpredictability by applying the model to increase the effectiveness of the process. Nonetheless, the cryptocurrency market lacks firm regulatory structures and is unpredictable, making forecasting prices more difficult and complex. From the analysis, it was established that machine learning models provide better performance in predicting cryptocurrency price. The LSTM model outperformed other models in terms of Bitcoin, Ether and Litecoin cryptocurrencies. The proposed model is found to be efficient for cryptocurrency price prediction when compared to similar models with 67.43% accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilmott, P. (2013). Paul Wilmott on quantitative finance. John Wiley & Sons.

    Google Scholar 

  2. Spilak, B. (2018). Deep neural networks for cryptocurrencies price prediction (Master’s thesis, Humboldt-Universität zu Berlin).

    Google Scholar 

  3. Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research, 270(2), 654–669.

    Article  MathSciNet  MATH  Google Scholar 

  4. Seasholes, M. S., & Zhu, N. (2010). Individual investors and local bias. The Journal of Finance, 65(5), 1987–2010.

    Article  Google Scholar 

  5. Bogle, J. C. (2017). The little book of common sense investing: The only way to guarantee your fair share of stock market returns. John Wiley & Sons.

    Google Scholar 

  6. Ahmar, A. S., Rahman, A., Arifin, A. N. M., & Ahmar, A. A. (2017). Predicting movement of stock of “Y” using Sutte indicator. Cogent Economics & Finance, 5(1), 1347123.

    Article  Google Scholar 

  7. Adhami, S., Giudici, G., & Martinazzi, S. (2018). Why do businesses go crypto? An empirical analysis of initial coin offerings. Journal of Economics and Business, 100, 64–75.

    Article  Google Scholar 

  8. Mader, P. (2018). Contesting financial inclusion. Development and Change, 49(2), 461–483.

    Article  MathSciNet  Google Scholar 

  9. Mankiw, N. G. (2020). Principles of economics. Cengage Learning.

    Google Scholar 

  10. Caucutt, E. M., & Lochner, L. (2020). Early and late human capital investments, borrowing constraints, and the family. Journal of Political Economy, 128(3), 1065–1147.

    Article  Google Scholar 

  11. Shiller, R. J. (2003). From efficient markets theory to behavioral finance. Journal of Economic Perspectives, 17(1), 83–104.

    Article  Google Scholar 

  12. Madura, J. (2020). International financial management. Cengage Learning.

    Google Scholar 

  13. Basak, S., Kar, S., Saha, S., Khaidem, L., & Dey, S. R. (2019). Predicting the direction of stock market prices using tree-based classifiers. The North American Journal of Economics and Finance, 47, 552–567.

    Article  Google Scholar 

  14. Chatfield, C., & Xing, H. (2019). The analysis of time series: an introduction with R. CRC press.

    Google Scholar 

  15. Malini, H. (2019). Efficient market hypothesis and market anomalies of LQ 45 index in Indonesia stock exchange. SRIWIJAYA International Journal of Dynamic Economics and Business, 3(2), 107–121.

    Article  Google Scholar 

  16. Hileman, G., & Rauchs, M. (2017). Global cryptocurrency benchmarking study.

    Google Scholar 

  17. ElBahrawy, A., Alessandretti, L., Kandler, A., Pastor-Satorras, R., & Baronchelli, A. (2017). Evolutionary dynamics of the cryptocurrency market. Royal Society Open Science, 4(11), 170623.

    Article  MathSciNet  Google Scholar 

  18. Dwyer, G. P. (2015). The economics of Bitcoin and similar private digital currencies. Journal of Financial Stability, 17, 81–91.

    Article  Google Scholar 

  19. Böhme, R., Christin, N., Edelman, B., & Moore, T. (2015). Bitcoin: Economics, technology, and governance. Journal of Economic Perspectives, 29(2), 213–238.

    Article  Google Scholar 

  20. Hayes, A. S. (2017). Cryptocurrency value formation: An empirical study leading to a cost of production model for valuing bitcoin. Telematics and Informatics, 34(7), 1308–1321.

    Article  Google Scholar 

  21. Sæther, H. C. M., & Helland, E. J. (2018). A comparative analysis of cryptocurrency markets (Master’s thesis, University of Stavanger, Norway).

    Google Scholar 

  22. Cole, E. (2019). Cryptocurrency and the 1031 like kind exchange. Hastings Science and Technology LJ, 10, 75.

    Google Scholar 

  23. Hochstein, M. (2016). Why bitcoin matters to banks. American Banker.

    Google Scholar 

  24. Tapscott, D., & Tapscott, A. (2016). Blockchain revolution: how the technology behind bitcoin is changing money, business, and the world. Penguin.

    Google Scholar 

  25. Feder, A., Gandal, N., Hamrick, J. T., Moore, T., & Vasek, M. (2018, June). The rise and fall of cryptocurrencies. In Workshop on the economics of information security.

    Google Scholar 

  26. Kristjanpoller, W., & Minutolo, M. C. (2018). A hybrid volatility forecasting framework integrating GARCH, artificial neural network, technical analysis and principal components analysis. Expert Systems with Applications, 109, 1–11.

    Article  Google Scholar 

  27. White, L. H. (2015). The market for cryptocurrencies. Cato Journal, 35, 383.

    Google Scholar 

  28. Viswanathan, M. (2017). Tax compliance in a decentralizing economy. Ga. St. UL Review, 34, 283.

    Google Scholar 

  29. Shapiro, D. C. (2018). Cryptocurrency and the Shifting IRS Enforcement Model. Stan. Journal of Blockchain L. & Pol’y, 1, 1.

    Google Scholar 

  30. Andreessen, M. (2014). Why bitcoin matters. New York Times21.

    Google Scholar 

  31. Van Alstyne, M. (2014). Why bitcoin has value. Communications of the ACM, 57(5), 30–32.

    Article  Google Scholar 

  32. Adebiyi, M. O., Ogundokun, R. O., & Abokhai, A. A. (2020). Machine learning–based predictive farmland optimization and crop monitoring system. Scientifica.

    Google Scholar 

  33. Ogundokun, R. O., Lukman, A. F., Kibria, G. B. M., Awotunde, J. B., & Aladeitan, B. B. (2020). Predictive modelling of COVID-19 confirmed cases in Nigeria. Infectious Disease Modelling, 5, 543–548.

    Article  Google Scholar 

  34. Lukman, A. F., Rauf, R. I., Abiodun, O., Oludoun, O., Ayinde, K., & Ogundokun, R. O. (2020). COVID-19 prevalence estimation: Four most affected African countries. Infectious Disease Modelling, 5, 827–838.

    Article  Google Scholar 

  35. Brown, D. E., Abbasi, A., & Lau, R. Y. (2015). Predictive analytics: Predictive modeling at the micro-level. IEEE Intelligent Systems, 30(3), 6–8.

    Article  Google Scholar 

  36. Jayanthi, N., Babu, B. V., & Rao, N. S. (2017). Survey on clinical prediction models for diabetes prediction. Journal of Big Data, 4(1), 26.

    Article  Google Scholar 

  37. Adegun, A. A., Ogundokun, R. O., Adebiyi, M. O., & Asani, E. O. (2020). CAD-based machine learning project for reducing human-factor-related errors in medical image analysis. In Handbook of research on the role of human factors in IT project management (pp. 164–172). IGI Global.

    Google Scholar 

  38. Gill, S. S., Tuli, S., Xu, M., Singh, I., Singh, K. V., Lindsay, D., Tuli, S., Smirnova, D., Singh, M., Jain, U., & Pervaiz, H. (2019). Transformative effects of IoT, Blockchain and artificial intelligence on cloud computing: Evolution, vision, trends and open challenges. Internet of Things, 8, 100118.

    Google Scholar 

  39. Popoola, S. I., Misra, S., & Atayero, A. A. (2018). Outdoor path loss predictions based on extreme learning machine. Wireless Personal Communications, 99(1), 441–460.

    Article  Google Scholar 

  40. Gavrishchaka, V. V., & Ganguli, S. B. (2003). Volatility forecasting from multiscale and high-dimensional market data. Neurocomputing, 55(1–2), 285–305.

    Article  Google Scholar 

  41. Heaton, J. B., Polson, N. G., & Witte, J. H. (2016). Deep learning in finance. arXiv:1602.06561.

  42. Tsantekidis, A., Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M., & Iosifidis, A. (2017, August). Using deep learning to detect price change indications in financial markets. In 2017 25th European Signal Processing Conference (EUSIPCO) (pp. 2511–2515). IEEE.

    Google Scholar 

  43. Tsantekidis, A., Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M., & Iosifidis, A. (2017, July). Forecasting stock prices from the limit order book using convolutional neural networks. In 2017 IEEE 19th Conference on Business Informatics (CBI) (Vol. 1, pp. 7–12). IEEE.

    Google Scholar 

  44. De Spiegeleer, J., Madan, D. B., Reyners, S., & Schoutens, W. (2018). Machine learning for quantitative finance: Fast derivative pricing, hedging and fitting. Quantitative Finance, 18(10), 1635–1643.

    Article  MathSciNet  MATH  Google Scholar 

  45. Thomas, L. (2005). Money, banking and financial markets. Cengage Learning.

    Google Scholar 

  46. Mishkin, F. S. (2007). The economics of money, banking, and financial markets. Pearson Education.

    Google Scholar 

  47. Yi, G. (2019). Money, banking, and financial markets in China. Routledge.

    Google Scholar 

  48. Greco, T. H. (2001). Understanding and creating alternatives to legal tender. White River JCT, VT: Chelsea Green Publishing.

    Google Scholar 

  49. Peicu, R. C. (2014). The digital currency phenomenon (Doctoral dissertation, uniwien).

    Google Scholar 

  50. Sandel, M. J. (2012). What money can't buy: The moral limits of markets. Macmillan.

    Google Scholar 

  51. Gillespie, R. (2019). What money cannot buy and what money ought not buy: dignity, motives, and markets in human organ procurement debates. Journal of Medical Humanities, 40(1), 101–116.

    Article  Google Scholar 

  52. Irwin, D. A. (2020). Free trade under fire. Princeton University Press.

    Google Scholar 

  53. Ahiakpor, J. C. (2003). Classical Macroeconomics: Some modern variations and distortions (Vol. 61). Psychology Press.

    Google Scholar 

  54. Byttebier, K. (2017). The debate about the ethics of money pursuit. In Towards a New International Monetary Order (pp. 81–352). Springer, Cham.

    Google Scholar 

  55. Seligman, B. B. (2020). Main currents in modern economics. Routledge.

    Google Scholar 

  56. Bockstael, N. E., Freeman, A. M., Kopp, R. J., Portney, P. R., & Smith, V. K. (2000). On measuring economic values for nature.

    Google Scholar 

  57. Keynes, J. M. (2018). The general theory of employment, interest, and money. Springer.

    Google Scholar 

  58. Tomlinson, M. (2018). Conceptions of the value of higher education in a measured market. Higher Education, 75(4), 711–727.

    Article  Google Scholar 

  59. Ali, R., Barrdear, J., Clews, R., & Southgate, J. (2014). The economics of digital currencies. Bank of England Quarterly Bulletin, Q3.

    Google Scholar 

  60. Yermack, D. (2015). Is bitcoin a real currency? An economic appraisal. In Handbook of digital currency (pp. 31–43). Academic Press

    Google Scholar 

  61. Ammous, S. (2018). Can cryptocurrencies fulfil the functions of money? The Quarterly Review of Economics and Finance, 70, 38–51.

    Article  Google Scholar 

  62. Kiyotaki, N., & Wright, R. (1989). On money as a medium of exchange. Journal of Political Economy, 97(4), 927–954.

    Article  Google Scholar 

  63. Walsh, A., & Lynch, T. (2008). The morality of money. Palgrave Macmillan.

    Google Scholar 

  64. Lietaer, B. (2013). The future of money. Random House.

    Google Scholar 

  65. Lietaer, B. A., & Dunne, J. (2013). Rethinking money: How new currencies turn scarcity into prosperity. Berrett-Koehler Publishers.

    Google Scholar 

  66. Dodgson, M., Gann, D., Wladawsky-Berger, I., Sultan, N., & George, G. (2015). Managing digital money.

    Google Scholar 

  67. Power, T. M. (2020). The economic value of the quality of life. Routledge.

    Google Scholar 

  68. Allen, J. G. (2020). Imagining Money. Culture & Theory, 210, 79.

    Google Scholar 

  69. Stiglitz, J. E. (2016). The euro: How a common currency threatens the future of Europe. WW Norton & Company.

    Google Scholar 

  70. Frisby, D. (2014). Bitcoin: The future of money? Unbound Publishing.

    Google Scholar 

  71. Pilkington, M. (2016). Blockchain technology: principles and applications. In Research handbook on digital transformations. Edward Elgar Publishing.

    Google Scholar 

  72. Miller, V. (2020). Understanding digital culture. SAGE Publications Limited.

    Google Scholar 

  73. Goodhart, C. A. (2000). Can central banking survive the IT revolution? International Finance, 3(2), 189–209.

    Article  Google Scholar 

  74. McLeay, M., Radia, A., & Thomas, R. (2014). Money creation in the modern economy. Bank of England Quarterly Bulletin, Q1.

    Google Scholar 

  75. Wheelock, D. C., & Wilson, P. W. (2000). Why do banks disappear? The determinants of US bank failures and acquisitions. Review of Economics and Statistics, 82(1), 127–138.

    Article  Google Scholar 

  76. Hilt, J. J., Hodges, R., Pardue, S. W., & Powar, W. L. (2000). US Patent No. 6,032,133. Washington, DC: US Patent and Trademark Office.

    Google Scholar 

  77. Kaplanov, N. (2012). Nerdy money: Bitcoin, the private digital currency, and the case against its regulation. Loy. Consumer L. Review, 25, 111.

    Google Scholar 

  78. Eveleth, R. (2015). The truth about the death of cash. BBC. 2015, 24 Jule.–Peжим дocтyпa: https://www.bbc.com/future/story/20150724-the-truth-about-the-death-of-cash.

  79. Wallace, B. (2011). The rise and fall of Bitcoin. Wired19(12).

    Google Scholar 

  80. Lawrence, C. J., & Mudge, S. L. (2019). Movement to market, currency to property: The rise and fall of Bitcoin as an anti-state movement, 2009–2014. Socio-Economic Review, 17(1), 109–134.

    Article  Google Scholar 

  81. Salah, K., Rehman, M. H. U., Nizamuddin, N., & Al-Fuqaha, A. (2019). Blockchain for AI: Review and open research challenges. IEEE Access, 7, 10127–10149.

    Article  Google Scholar 

  82. Peters, G. W., & Panayi, E. (2016). Understanding modern banking ledgers through blockchain technologies: Future of transaction processing and smart contracts on the internet of money. In Banking beyond banks and money (pp. 239–278). Springer, Cham

    Google Scholar 

  83. Niranjanamurthy, M., Nithya, B. N., & Jagannatha, S. (2019). Analysis of blockchain technology: Pros, cons and SWOT. Cluster Computing, 22(6), 14743–14757.

    Article  Google Scholar 

  84. Baynham-Herd, Z. (2017). Enlist blockchain to boost conservation. Nature, 548(7669), 523–523.

    Article  Google Scholar 

  85. Ahmed, S., & ten Broek, N. (2017). Blockchain could boost food security. Nature, 550(7674), 43–43.

    Article  Google Scholar 

  86. Maxmen, A. (2018). AI researchers embrace Bitcoin technology to share medical data. Nature555(7696).

    Google Scholar 

  87. Nakamoto, S. (2019). Bitcoin: A peer-to-peer electronic cash system. Manubot.

    Google Scholar 

  88. Omohundro, S. (2014). Cryptocurrencies, smart contracts, and artificial intelligence. AI Matters, 1(2), 19–21.

    Article  MathSciNet  Google Scholar 

  89. Batrinca, B., & Treleaven, P. C. (2015). Social media analytics: A survey of techniques, tools and platforms. Ai & Society, 30(1), 89–116.

    Article  Google Scholar 

  90. Koch, M. (2018). Artificial intelligence is becoming natural. Cell, 173(3), 533.

    Article  Google Scholar 

  91. Özdemir, V., & Hekim, N. (2018). Birth of industry 5.0: Making sense of big data with artificial intelligence, “the internet of things” and next-generation technology policy. Omics: A Journal of Integrative Biology22(1), 65–76.

    Google Scholar 

  92. Verma, D. C., & Bent, G. (2017, December). Policy enabled caching for distributed AI. In 2017 IEEE International Conference on Big Data (Big Data) (pp. 3017–3023). IEEE.

    Google Scholar 

  93. Dinh, T. N., & Thai, M. T. (2018). Ai and blockchain: A disruptive integration. Computer, 51(9), 48–53.

    Article  Google Scholar 

  94. Harris, J. D., & Waggoner, B. (2019, July). Decentralized and Collaborative AI on Blockchain. In 2019 IEEE International Conference on Blockchain (Blockchain) (pp. 368–375). IEEE.

    Google Scholar 

  95. Qi, Y., & Xiao, J. (2018). Fintech: AI powers financial services to improve people’s lives. Communications of the ACM, 61(11), 65–69.

    Article  Google Scholar 

  96. Mamoshina, P., Ojomoko, L., Yanovich, Y., Ostrovski, A., Botezatu, A., Prikhodko, P., Izumchenko, E., Aliper, A., Romantsov, K., Zhebrak, A., & Ogu, I. O. (2018). Converging blockchain and next-generation artificial intelligence technologies to decentralize and accelerate biomedical research and healthcare. Oncotarget9(5), 5665.

    Google Scholar 

  97. Ethereum, W. G. (2014). A secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper, 151, 1–32.

    Google Scholar 

  98. Lee, M., Yun, J. J., Pyka, A., Won, D., Kodama, F., Schiuma, G., Park, H., Jeon, J., Park, K., Jung, K., & Yan, M. R. (2018). How to respond to the fourth industrial revolution, or the second information technology revolution? Dynamic new combinations between technology, market, and society through open innovation. Journal of Open Innovation: Technology, Market, and Complexity4(3), 21.

    Google Scholar 

  99. Bughin, J., Seong, J., Manyika, J., Chui, M., & Joshi, R. (2018). Notes from the AI frontier: Modeling the impact of AI on the world economy. McKinsey Global Institute.

    Google Scholar 

  100. Herweijer, C., Waughray, D., & Warren, S. (2018). Building block (chain) s for a better planet. In World Economic Forum. https://www3.weforum.org/docs/WEF_Building-Blockchains.pdf.

  101. Kannengießer, N., Lins, S., Dehling, T., & Sunyaev, A. (2019). Mind the gap: trade-offs between distributed ledger technology characteristics. arXiv:1906.00861.

  102. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L. D., Monfort, M., Muller, U., Zhang, J., & Zhang, X. (2016). End to end learning for self-driving cars. arXiv:1604.07316.

  103. Chen, Z., Li, L., & Huang, X. (2020). Building an autonomous lane keeping simulator using real-world data and end-to-end learning. IEEE Intelligent Transportation Systems Magazine, 12(1), 47–59.

    Article  Google Scholar 

  104. Sünderhauf, N., Brock, O., Scheirer, W., Hadsell, R., Fox, D., Leitner, J., Upcroft, B., Abbeel, P., Burgard, W., Milford, M., & Corke, P. (2018). The limits and potentials of deep learning for robotics. The International Journal of Robotics Research, 37(4–5), 405-420.

    Google Scholar 

  105. Chen, A. I., Balter, M. L., Maguire, T. J., & Yarmush, M. L. (2020). Deep learning robotic guidance for autonomous vascular access. Nature Machine Intelligence, 2(2), 104–115.

    Article  Google Scholar 

  106. Milojkovic, M. (2018). Privacy-preserving framework for access control and interoperability of electronic health records using blockchain technology.

    Google Scholar 

  107. Sathiyabhama, B., Rajeswari, K. C., & Reenadevi, R. (2020). Preserving data privacy in electronic health records using blockchain technology. In Transforming businesses with bitcoin mining and blockchain applications (pp. 195–206). IGI Global

    Google Scholar 

  108. Sharma, B., Halder, R., & Singh, J. (2020, January). Blockchain-based interoperable healthcare using zero-knowledge proofs and proxy re-encryption. In 2020 international Conference on Communication Systems & Networks (COMSNETS) (pp. 1–6). IEEE.

    Google Scholar 

  109. Pandey, P., & Litoriya, R. (2020). Securing and authenticating healthcare records through blockchain technology. Cryptologia, 1–16.

    Google Scholar 

  110. Davi, L., Hatebur, D., Heisel, M., & Wirtz, R. (2019, September). Combining safety and security in autonomous cars using blockchain technologies. In International Conference on Computer Safety, Reliability, and Security (pp. 223–234). Springer, Cham.

    Google Scholar 

  111. Ali, N. A., Taha, A. E. M., & Barka, E. (2020). Integrating blockchain and IoT/ITS for safer roads. IEEE Network, 34(1), 32–37.

    Article  Google Scholar 

  112. Puri, V., Kumar, R., Van Le, C., Sharma, R., & Priyadarshini, I. (2020). A vital role of blockchain technology toward internet of vehicles. In Handbook of research on blockchain technology (pp. 407–416). Academic Press.

    Google Scholar 

  113. Fu, Y., Yu, F. R., Li, C., Luan, T. H., & Zhang, Y. (2020). Vehicular blockchain-based collective learning for connected and autonomous vehicles. IEEE Wireless Communications.

    Google Scholar 

  114. Hou, C., Zhou, M., Ji, Y., Daian, P., Tramer, F., Fanti, G., & Juels, A. (2019). SquirRL: Automating attack discovery on blockchain incentive mechanisms with deep reinforcement learning. arXiv:1912.01798.

  115. Hynes, N., Dao, D., Yan, D., Cheng, R., & Song, D. (2018). A demonstration of sterling: A privacy-preserving data marketplace. Proceedings of the VLDB Endowment, 11(12), 2086–2089.

    Article  Google Scholar 

  116. Marr, D. (1977). Artificial intelligence—A personal view. Artificial Intelligence, 9(1), 37–48.

    Article  Google Scholar 

  117. Haenlein, M., & Kaplan, A. (2019). A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. California Management Review, 61(4), 5–14.

    Article  Google Scholar 

  118. Ernst, C. (2020). Artificial intelligence and autonomy: self-determination in the age of automated systems. In Regulating Artificial Intelligence (pp. 53–73). Springer, Cham.

    Google Scholar 

  119. Burnashev, R. A., Gubajdullin, A. V., & Enikeev, A. I. (2018, March). Specialized case tools for the development of expert systems. In World Conference on Information Systems and Technologies (pp. 599–605). Springer, Cham.

    Google Scholar 

  120. Samek, W., Wiegand, T., & Müller, K. R. (2017). Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models. arXiv:1708.08296.

  121. Schluse, M., Priggemeyer, M., Atorf, L., & Rossmann, J. (2018). Experimentable digital twins—Streamlining simulation-based systems engineering for industry 4.0. IEEE Transactions on Industrial Informatics, 14(4), 1722–1731.

    Google Scholar 

  122. Bevilacqua, M., Bottani, E., Ciarapica, F. E., Costantino, F., Di Donato, L., Ferraro, A., Mazzuto, G., Monteriù, A., Nardini, G., Ortenzi, M., & Paroncini, M. (2020). Digital twin reference model development to prevent operators’ risk in process plants. Sustainability, 12(3), 1088.

    Google Scholar 

  123. Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., & Hutter, F. (2018, July). Practical automated machine learning for the automl challenge 2018. In International Workshop on Automatic Machine Learning at ICML (pp. 1189–1232).

    Google Scholar 

  124. Panarello, A., Tapas, N., Merlino, G., Longo, F., & Puliafito, A. (2018). Blockchain and IoT integration: A systematic survey. Sensors, 18(8), 2575.

    Article  Google Scholar 

  125. Mistry, I., Tanwar, S., Tyagi, S., & Kumar, N. (2020). Blockchain for 5G-enabled IoT for industrial automation: A systematic review, solutions, and challenges. Mechanical Systems and Signal Processing, 135, 106382.

    Article  Google Scholar 

  126. Kumar, K. D., Sudhakara, M., & Poluru, R. K. (2020). Towards the integration of blockchain and IoT for security challenges in IoT: A review. In Transforming Businesses with Bitcoin Mining and Blockchain Applications (pp. 45–67). IGI Global.

    Google Scholar 

  127. Sloman, A. (2019). The computer revolution in philosophy: Philosophy, science and models of mind. Author.

    Google Scholar 

  128. Kaplan, A., & Haenlein, M. (2020). Rulers of the world, unite! The challenges and opportunities of artificial intelligence. Business Horizons, 63(1), 37–50.

    Article  Google Scholar 

  129. Canhoto, A. I., & Clear, F. (2020). Artificial intelligence and machine learning as business tools: A framework for diagnosing value destruction potential. Business Horizons, 63(2), 183–193.

    Article  Google Scholar 

  130. Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., & Zhang, L. (2016, October). Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (pp. 308–318).

    Google Scholar 

  131. Chamikara, M. A. P., Bertok, P., Khalil, I., Liu, D., & Camtepe, S. (2019). Local differential privacy for deep learning. arXiv:1908.02997.

  132. Phan, N., Vu, M., Liu, Y., Jin, R., Dou, D., Wu, X., & Thai, M. T. (2019). Heterogeneous gaussian mechanism: preserving differential privacy in deep learning with provable robustness. arXiv:1906.01444.

  133. Goertzel, B. (2007). Artificial general intelligence (Vol. 2). In C. Pennachin (Ed.). New York: Springer.

    Google Scholar 

  134. Gao, C., Yan, J., Zhou, S., Varshney, P. K., & Liu, H. (2019). Long short-term memory-based deep recurrent neural networks for target tracking. Information Sciences, 502, 279–296.

    Article  Google Scholar 

  135. Fan, Z., Gu, X., Nie, S., & Chen, M. (2017, December). D2D power control based on supervised and unsupervised learning. In 2017 3rd IEEE International Conference on Computer and Communications (ICCC) (pp. 558–563). IEEE.

    Google Scholar 

  136. Ericson, K., & Pallickara, S. (2013). On the performance of high dimensional data clustering and classification algorithms. Future Generation Computer Systems, 29(4), 1024–1034.

    Article  Google Scholar 

  137. McNally, S., Roche, J., & Caton, S. (2018, March). Predicting the price of bitcoin using machine learning. In 2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP) (pp. 339–343). IEEE.

    Google Scholar 

  138. Sun Yin, H. H., Langenheldt, K., Harlev, M., Mukkamala, R. R., & Vatrapu, R. (2019). Regulating cryptocurrencies: A supervised machine learning approach to de-anonymizing the bitcoin blockchain. Journal of Management Information Systems, 36(1), 37–73.

    Article  Google Scholar 

  139. Dutta, A., Kumar, S., & Basu, M. (2020). A gated recurrent unit approach to bitcoin price prediction. Journal of Risk and Financial Management, 13(2), 23.

    Article  Google Scholar 

  140. Fang, F., Chung, W., Ventre, C., Basios, M., Kanthan, L., Li, L., & Wu, F. (2020). Ascertaining price formation in cryptocurrency markets with DeepLearningarXiv:2003.00803.

  141. Karafiloski, E., & Mishev, A. (2017, July). Blockchain solutions for big data challenges: A literature review. In IEEE EUROCON 2017–17th International Conference on Smart Technologies (pp. 763–768). IEEE.

    Google Scholar 

  142. Ferdous, M. S., Biswas, K., Chowdhury, M. J. M., Chowdhury, N., & Muthukkumarasamy, V. (2019). Integrated platforms for blockchain enablement. In Advances in Computers (Vol. 115, pp. 41–72). Elsevier.

    Google Scholar 

  143. Magazzeni, D., McBurney, P., & Nash, W. (2017). Validation and verification of smart contracts: A research agenda. Computer, 50(9), 50–57.

    Article  Google Scholar 

  144. Yuan, Y., & Wang, F. Y. (2018). Blockchain and cryptocurrencies: Model, techniques, and applications. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(9), 1421–1428.

    Article  Google Scholar 

  145. Brown, G., & Whittle, R. (2020). Algorithms, blockchain & cryptocurrency: Implications for the future of the workplace. Emerald Group Publishing.

    Google Scholar 

  146. Eevani, S. R., Suresh, R., & Srinivasan, R. (2020). US Patent Application No. 16/272,588.

    Google Scholar 

  147. Liu, Y., Yu, F. R., Li, X., Ji, H., & Leung, V. C. (2020). Blockchain and machine learning for communications and networking systems. IEEE Communications Surveys & Tutorials.

    Google Scholar 

  148. Josephy, I. T. (2019). Rechtsinformatiker GbR: Technical Notes–Blockchain/Ethereum.

    Google Scholar 

  149. Al-Mamun, A., & Zhao, D. (2020). SciChain: Trustworthy scientific data provenancearXiv:2002.00141.

  150. Marr, B. (2018). Artificial intelligence and blockchain: 3 major benefits of combining these two mega-trends. Forbes, Mar.

    Google Scholar 

  151. Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41.

    Article  Google Scholar 

  152. Janson, S., Merkle, D., & Middendorf, M. (2008). A decentralization approach for swarm intelligence algorithms in networks applied to multi swarm PSO. International Journal of intelligent computing and cybernetics.

    Google Scholar 

  153. Strobel, V., Castelló Ferrer, E., & Dorigo, M. (2018, July). Managing byzantine robots via blockchain technology in a swarm robotics collective decision making scenario. In Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems (pp. 541–549). International Foundation for Autonomous Agents and Multiagent Systems.

    Google Scholar 

  154. Ferrer, E. C. (2018, November). The blockchain: a new framework for robotic swarm systems. In Proceedings of the Future Technologies Conference (pp. 1037–1058). Springer, Cham.

    Google Scholar 

  155. Su, Z. Q., & Xu, Y. (2020). The information role of comment letters: Evidence from institutional investors’ informed trading. The Chinese Economy, 53(2), 133–157.

    Article  Google Scholar 

  156. Sockin, M., & Xiong, W. (2020). A model of cryptocurrencies (No. w26816). National Bureau of Economic Research.

    Google Scholar 

  157. Dhawan, A., & Putnins, T. (2020). A new wolf in town? Pump-and-dump manipulation in cryptocurrency markets.

    Google Scholar 

  158. Ni, H., & Yin, H. (2009). Exchange rate prediction using hybrid neural networks and trading indicators. Neurocomputing, 72(13–15), 2815–2823.

    Article  Google Scholar 

  159. Pang, Y., Sundararaj, G., & Ren, J. (2019, December). Cryptocurrency price prediction using time series and social sentiment data. In Proceedings of the 6th IEEE/ACM International Conference on Big Data Computing, Applications and Technologies (pp. 35–41).

    Google Scholar 

  160. Pintelas, P., Kotsilieris, T., Livieris, I., Pintelas, E., & Stavroyiannis, S. (2020). Fundamental research questions and proposals on predicting cryptocurrency prices using DNNs.

    Google Scholar 

  161. Díaz-Robles, L. A., Ortega, J. C., Fu, J. S., Reed, G. D., Chow, J. C., Watson, J. G., & Moncada-Herrera, J. A. (2008). A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: The case of Temuco, Chile. Atmospheric Environment, 42(35), 8331–8340.

    Article  Google Scholar 

  162. Benhabib, J., Liu, X., & Wang, P. (2019). Financial markets, the real economy, and self-fulfilling uncertainties. The Journal of Finance, 74(3), 1503–1557.

    Article  Google Scholar 

  163. Bonatti, A., & Cisternas, G. (2020). Consumer scores and price discrimination. The Review of Economic Studies, 87(2), 750–791.

    Article  MathSciNet  MATH  Google Scholar 

  164. Alonso-Monsalve, S., Suárez-Cetrulo, A. L., Cervantes, A., & Quintana, D. (2020). Convolution on neural networks for high-frequency trend prediction of cryptocurrency exchange rates using technical indicators. Expert Systems with Applications, 149, 113250.

    Article  Google Scholar 

  165. Weissensteiner, A. (2019). Correlated noise: Why passive investment might improve market efficiency. Journal of Economic Behavior & Organization, 158, 158–172.

    Article  Google Scholar 

  166. Borovkova, S., & Tsiamas, I. (2019). An ensemble of LSTM neural networks for high-frequency stock market classification. Journal of Forecasting, 38(6), 600–619.

    Article  MathSciNet  Google Scholar 

  167. Amjad, M., & Shah, D. (2017, February). Trading bitcoin and online time series prediction. In NIPS 2016 Time Series Workshop (pp. 1–15).

    Google Scholar 

  168. Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. In Advances in neural information processing systems (pp. 3104–3112).

    Google Scholar 

  169. Yelowitz, A., & Wilson, M. (2015). Characteristics of Bitcoin users: An analysis of Google search data. Applied Economics Letters, 22(13), 1030–1036.

    Article  Google Scholar 

  170. Kristoufek, L. (2015). What are the main drivers of the Bitcoin price? Evidence from wavelet coherence analysis. PloS One, 10(4).

    Google Scholar 

  171. Hassani, H., Huang, X., & Silva, E. (2018). Big-Crypto: Big data, blockchain and cryptocurrency. Big Data and Cognitive Computing, 2(4), 34.

    Article  Google Scholar 

  172. Mallqui, D. C., & Fernandes, R. A. (2019). Predicting the direction, maximum, minimum and closing prices of daily Bitcoin exchange rate using machine learning techniques. Applied Soft Computing, 75, 596–606.

    Article  Google Scholar 

  173. Glaser, F., Zimmermann, K., Haferkorn, M., Weber, M. C., & Siering, M. (2014). Bitcoin-asset or currency? Revealing users’ hidden intentions. Revealing Users’ Hidden Intentions (April 15, 2014). ECIS.

    Google Scholar 

  174. Baek, C., & Elbeck, M. (2015). Bitcoins as an investment or speculative vehicle? A First Look Applied Economics Letters, 22(1), 30–34.

    Article  Google Scholar 

  175. Vidal-Tomás, D., & Ibañez, A. (2018). Semi-strong efficiency of Bitcoin. Finance Research Letters, 27, 259–265.

    Article  Google Scholar 

  176. Corbet, S., Meegan, A., Larkin, C., Lucey, B., & Yarovaya, L. (2018). Exploring the dynamic relationships between cryptocurrencies and other financial assets. Economics Letters, 165, 28–34.

    Article  Google Scholar 

  177. Katsiampa, P. (2017). Volatility estimation for bitcoin: A comparison of GARCH models. Economics Letters, 158, 3–6.

    Article  MathSciNet  MATH  Google Scholar 

  178. Kim, T. (2017). On the transaction cost of bitcoin. Finance Research Letters, 23, 300–305.

    Article  Google Scholar 

  179. Urquhart, A. (2017). Price clustering in bitcoin. Economics Letters, 159, 145–148.

    Article  MATH  Google Scholar 

  180. Corbet, S., Lucey, B., Urquhart, A., & Yarovaya, L. (2019). Cryptocurrencies as a financial asset: A systematic analysis. International Review of Financial Analysis, 62, 182–199.

    Article  Google Scholar 

  181. Ding, X., Zhang, Y., Liu, T., & Duan, J. (2015, June). Deep learning for event-driven stock prediction. In Twenty-fourth international joint conference on artificial intelligence.

    Google Scholar 

  182. Yoshihara, A., Fujikawa, K., Seki, K., & Uehara, K. (2014, December). Predicting stock market trends by recurrent deep neural networks. In Pacific Rim International Conference on Artificial Intelligence (pp. 759–769). Springer, Cham.

    Google Scholar 

  183. Adcock, R., & Gradojevic, N. (2019). Non-fundamental, non-parametric bitcoin forecasting. Physica A: Statistical Mechanics and Its Applications, 531, 121727.

    Article  Google Scholar 

  184. Moews, B., Herrmann, J. M., & Ibikunle, G. (2019). Lagged correlation-based deep learning for directional trend change prediction in financial time series. Expert Systems with Applications, 120, 197–206.

    Article  Google Scholar 

  185. Atsalakis, G. S., Atsalaki, I. G., Pasiouras, F., & Zopounidis, C. (2019). Bitcoin price forecasting with neuro-fuzzy techniques. European Journal of Operational Research, 276(2), 770–780.

    Article  MathSciNet  MATH  Google Scholar 

  186. Nakano, M., Takahashi, A., & Takahashi, S. (2018). Bitcoin technical trading with artificial neural network. Physica A: Statistical Mechanics and Its Applications, 510, 587–609.

    Article  Google Scholar 

  187. Adeyinka, A. A., Adebiyi, M. O., Akande, N. O., Ogundokun, R. O., Kayode, A. A., Oladele, T. O. (2019). A deep convolutional encoder-decoder architecture for retinal blood vessels segmentation. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11623 LNCS, pp. 180–189.

    Google Scholar 

  188. Awotunde, J. B., Ogundokun, R. O., Ayo, F. E., & Matiluko, O. E. (2020). Speech segregation in background noise based on deep learning. IEEE Access, 8, 169568–169575.

    Article  Google Scholar 

  189. Mäkinen, Y., Kanniainen, J., Gabbouj, M., & Iosifidis, A. (2019). Forecasting jump arrivals in stock prices: New attention-based network architecture using limit order book data. Quantitative Finance, 19(12), 2033–2050.

    Article  MathSciNet  MATH  Google Scholar 

  190. Sirignano, J., & Cont, R. (2019). Universal features of price formation in financial markets: Perspectives from deep learning. Quantitative Finance, 19(9), 1449–1459.

    Article  MathSciNet  MATH  Google Scholar 

  191. Zhang, Z., Zohren, S., & Roberts, S. (2019). DeepLOB: Deep convolutional neural networks for limit order books. IEEE Transactions on Signal Processing, 67(11), 3001–3012.

    Article  MATH  Google Scholar 

  192. Shintate, T., & Pichl, L. (2019). Trend prediction classification for high frequency bitcoin time series with deep learning. Journal of Risk and Financial Management, 12(1), 17.

    Article  Google Scholar 

  193. Lahmiri, S., & Bekiros, S. (2019). Cryptocurrency forecasting with deep learning chaotic neural networks. Chaos, Solitons & Fractals, 118, 35–40.

    Article  MathSciNet  MATH  Google Scholar 

  194. Bao, W., Yue, J., & Rao, Y. (2017). A deep learning framework for financial time series using stacked autoencoders and long-short term memory. PloS One12(7).

    Google Scholar 

  195. Nelson, D. M., Pereira, A. C., & de Oliveira, R. A. (2017, May). Stock market's price movement prediction with LSTM neural networks. In 2017 International Joint Conference on Neural Networks (IJCNN) (pp. 1419–1426). IEEE.

    Google Scholar 

  196. Wu, C. H., Lu, C. C., Ma, Y. F., & Lu, R. S. (2018, November). A new forecasting framework for bitcoin price with LSTM. In 2018 IEEE International Conference on Data Mining Workshops (ICDMW) (pp. 168–175). IEEE.

    Google Scholar 

  197. Kwon, D. H., Kim, J. B., Heo, J. S., Kim, C. M., & Han, Y. H. (2019). Time Series Classification of Cryptocurrency Price Trend Based on a Recurrent LSTM Neural Network. Journal of Information Processing Systems15(3).

    Google Scholar 

  198. Miura, R., Pichl, L., & Kaizoji, T. (2019, July). Artificial neural networks for realized volatility prediction in cryptocurrency time series. In International Symposium on Neural Networks (pp. 165–172). Springer, Cham.

    Google Scholar 

  199. Chong, E., Han, C., & Park, F. C. (2017). Deep learning networks for stock market analysis and prediction: Methodology, data representations, and case studies. Expert Systems with Applications, 83, 187–205.

    Article  Google Scholar 

  200. Das, S. R., Mokashi, K., & Culkin, R. (2018). Are markets truly efficient? Experiments using deep learning algorithms for market movement prediction. Algorithms, 11(9), 138.

    Article  MathSciNet  MATH  Google Scholar 

  201. Singh, R., & Srivastava, S. (2017). Stock prediction using deep learning. Multimedia Tools and Applications, 76(18), 18569–18584.

    Article  Google Scholar 

  202. Selvin, S., Vinayakumar, R., Gopalakrishnan, E. A., Menon, V. K., & Soman, K. P. (2017, September). Stock price prediction using LSTM, RNN and CNN-sliding window model. In 2017 International Conference on Advances in Computing, Communications And Informatics (icacci) (pp. 1643–1647). IEEE.

    Google Scholar 

  203. Hiransha, M., Gopalakrishnan, E. A., Menon, V. K., & Soman, K. P. (2018). NSE stock market prediction using deep-learning models. Procedia Computer Science, 132, 1351–1362.

    Article  Google Scholar 

  204. Sezer, O. B., & Ozbayoglu, A. M. (2018). Algorithmic financial trading with deep convolutional neural networks: Time series to image conversion approach. Applied Soft Computing, 70, 525–538.

    Article  Google Scholar 

  205. Valencia, F., Gómez-Espinosa, A., & Valdés-Aguirre, B. (2019). Price movement prediction of cryptocurrencies using sentiment analysis and machine learning. Entropy, 21(6). https://doi.org/10.3390/e21060589

  206. Alessandretti, L., Elbahrawy, A., Aiello, L. M., & Baronchelli, A. (2018). Anticipating cryptocurrency prices using machine learning. Complexity. https://doi.org/10.1155/2018/8983590

  207. Snow, D. (2019). Financial event prediction using machine learning. Available at SSRN 3481555.

    Google Scholar 

  208. Caruana, R., & Niculescu-Mizil, A. (2006, June). An empirical comparison of supervised learning algorithms. In Proceedings of the 23rd International Conference on Machine Learning (pp. 161–168).

    Google Scholar 

  209. Ma, X., Tao, Z., Wang, Y., Yu, H., & Wang, Y. (2015). Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transportation Research Part C: Emerging Technologies, 54, 187–197.

    Article  Google Scholar 

  210. Liu, Y. (2019). Novel volatility forecasting using deep learning–long short term memory recurrent neural networks. Expert Systems with Applications, 132, 99–109.

    Article  Google Scholar 

  211. Gers, F. A., Schmidhuber, J., & Cummins, F. (1999). Learning to forget: Continual prediction with LSTM.

    Google Scholar 

  212. Ogundokun, R. O., & Awotunde, J. B. (2020). Machine learning prediction for Covid 19 pandemic in India. medRxiv.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roseline Oluwaseun Ogundokun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Awotunde, J.B., Ogundokun, R.O., Jimoh, R.G., Misra, S., Aro, T.O. (2021). Machine Learning Algorithm for Cryptocurrencies Price Prediction. In: Misra, S., Kumar Tyagi, A. (eds) Artificial Intelligence for Cyber Security: Methods, Issues and Possible Horizons or Opportunities. Studies in Computational Intelligence, vol 972. Springer, Cham. https://doi.org/10.1007/978-3-030-72236-4_17

Download citation

Publish with us

Policies and ethics