Skip to main content

A Review on Remedial Techniques for Pharmaceutical Contaminants in Wastewater

  • Chapter
  • First Online:
Organic Pollutants

Abstract

Many pharmaceutical companies utilize confidentiality composition as a means to escape the norms imposed by the pollution regulation control. Derivatives of pharmaceutical compounds (hormones, volatile organic compounds, antibiotics, and surfactants) and their metabolites are toxic (ecosystem of aquatic, terrestrial, and human health), and antibiotic-resistant microbial species are wastewater sources from houses, pharmaceutical industry, and hospitals. The wastewater comprises large quantity of salt, organic matter, microbial toxicity creating COD and BOD, and ever-increasing innovations in the field of medicine also increases the usage of pharmaceutical drugs, thereby increasing the rate of pollution. Pollution begins from the production and processing of pharmaceutical products until the cycle of consumption. This chapter explicates pharmaceutical contamination and pollution created by personal care products and addresses the means of elimination by biological and chemical methods like adsorption / bioadsorption, activated carbon adsorption, sedimentation, coagulation, advanced oxidation processes, photooxidation, ozonation, biological treatment, and electrochemical processes. Eco-friendly approaches are derived from the biological treatment by microbial process (composting, vermicomposting, aerobic and anaerobic techniques), and they do not produce secondary waste and also convert the toxic to non-toxic form. This has also demonstrated the benefits and demerits of the removal measures. This chapter summarizes the important overviews of key publications on pharmaceutical products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhijit, D., Lokesh, K., Bejankiwar, R., & Gowda, T. (2005). Electrochemical oxidation of pharmaceutical effluent using cast iron electrode. Journal of Environmental Science and Engineering, 47, 21–24.

    CAS  Google Scholar 

  • Acero, J. L., Benitez, F. J., Real, F. J., & Roldan, G. (2010). Kinetics of aqueous chlorination of some pharmaceuticals and their elimination from water matrices. Water Research, 44(14), 4158–4170.

    Article  CAS  Google Scholar 

  • Aguilar, J. A. P., Andreu, V., Vazquez, P., & Pico, Y. (2014). Presence and spatial distribution of emerging contaminants (drugs of abuse) in protected agroecological systems (LAlbufera de Valencia Coastal Wetland, Spain). Environment and Earth Science, 71, 31–37.

    Article  Google Scholar 

  • Ahmadzadeh, S., & Dolatabadi, M. (2018). Electrochemical treatment of pharmaceutical wastewater through electrosynthesis of iron hydroxides for practical removal of metronidazole. Chemosphere, 212, 533–539.

    Article  CAS  Google Scholar 

  • Akhtar, J., Amin, N. A. S., & Shahzad, K. (2016). A review on removal of pharmaceuticals from water by adsorption. Desalination and Water Treatment, 57, 12842–12860.

    Article  CAS  Google Scholar 

  • Alharbi, S. K., Price, W. E., Kang, J., Fujioka, T., & Nghiem, L. D. (2016). Ozonation of carbamazepine, diclofenac, sulfamethoxazole and trimethoprim and formation of major oxidation products. Desalination and Water Treatment, 57, 1–12.

    Article  Google Scholar 

  • Ali, A. M., Rønning, H. T., Alarif, W., Kallenborn, R., & Al-Lihaibi, S. S. (2017). Occurrence of pharmaceuticals and personal care products in effluent-dominated Saudi Arabian coastal waters of the Red Sea. Chemosphere, 175, 505–513.

    Article  CAS  Google Scholar 

  • Alum, A., Yoon, Y., Westerhoff, P., & Abbaszadegan, M. (2004). Oxidation of bisphenol A, 17 β estradiol, and 17 α -ethynyl estradiol and byproduct estrogenicity. Environmental Toxicology, 19(3), 257–264.

    Google Scholar 

  • Amin, M. M., Zilles, J. L. S., Greiner, J., Charbonneau, S., Raskin, L., & Eberhard, M. (2006). Influence of the antibiotic erythromycin on anaerobic treatment of a pharmaceutical wastewater. Environmental Science & Technology, 40, 3971–3977.

    Article  CAS  Google Scholar 

  • Andreozzi, R., Raffaele, M., & Nicklas, P. (2003). Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere, 50(10), 1319–1330.

    Google Scholar 

  • Arana, J., Herrera Melian, J., Dona Rodriguez, J. Gonzalez Diaz, O., Viera, A., Perez Pena, J., Marrero Sosa, P., & Espino Jimenez, V. (2002). TiO2-photocatalysis as a tertiary treatment of naturally treated wastewater. Catalysis Today, 76(2–4), 279–289.

    Google Scholar 

  • Arnnok, P., Singh, R. R., Burakham, R., Perez-Fuentetaja, A., & Aga, D. S. (2017). Selective uptake and bioaccumulation of antidepressants in fish from effluent-impacted Niagara River. Environmental Science & Technology, 51, 10652–10662.

    Article  CAS  Google Scholar 

  • Atkinsons, S., Atkinsons, M. J., & Tarrant, A. M. (2003). Estrogens from sewage in coastal marine environments. Environmental Health Perspectives and Supplements,111, 531–535.

    Google Scholar 

  • aus der Beek, T., Weber, F. A., Bergmann, A., Hickmann, S., Ebert, I., Hein, A., & Küster, A. (2016). Pharmaceuticals in the environment—Global occurrences and perspectives. Environmental Toxicology and Chemistry, 35(4), 823–835.

    Article  CAS  Google Scholar 

  • Awad, Y. M., Kim, S. C., Abd El-Azeem, S. A. M., Kim, K. H., Kim, K. R., Kim, K., Jeon, C., Lee, S. S., & Ok, Y. S. (2014). Veterinary antibiotics contamination in water, sediment, and soil near a swine manure composting facility. Environment and Earth Science, 71, 1433–1440.

    Article  CAS  Google Scholar 

  • Azuma, T., Otomo, K., Kunitou, M., Shimizu, M., Hosomaru, K., Mikata, S., Ishida, M., Hisamatsu, K., Yunoki, A., Mino, Y., & Hayashi, T. (2019). Environmental fate of pharmaceutical compounds and antimicrobial-resistant bacteria in hospital effluents, and contributions to pollutant loads in the surface waters in Japan. The Science of the Total Environment, 657, 476–484.

    Article  CAS  Google Scholar 

  • Babatunde, A. I., Bamgbola, E. P., & Oyelola, O. T. (2014). The effect of pharmaceutical effluents on the quality of groundwater: A case study of Ikeja industrial area of Lagos, Nigeria. International Journal of Medical Research and Health Sciences, 4, 1–8.

    Google Scholar 

  • Balcioglu, I. A., & Otker, M. (2003). Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes. Chemosphere, 50(1), 85–95.

    Article  Google Scholar 

  • Balla, W., Essadki, A., Gourich, B., Dassaa, A., Chenik, H., & Azzi, M. (2010). Electrocoagulation/electroflotation of reactive, disperse and mixture dyes in an external-loop airlift reactor. Journal of Hazardous Materials, 184, 710–716.

    Article  CAS  Google Scholar 

  • Baresel, C., Magnér, J., Magnusson, K., & Olshammar, M. (2017). Tekniska losningar for avancerad rening av avloppsreningsvatten (Report no. C 235). IVL Swedish Environmental Research Institute. As commissioned by the Swedish EPA.

    Google Scholar 

  • Baumgarten, S., Schröder, H. F., Charwath, C., Lange, M., Beier, S., & Pinnekamp, J. (2007). Evaluation of advanced treatment technologies for the elimination of pharmaceutical compounds. Water Science and Technology, 56, 1–8.

    Article  CAS  Google Scholar 

  • Bhatnagar, R., Joshi, H., Mall, I. D., & Srivastava, V. C. (2013). Electrochemical treatment of acrylic dye bearing textile wastewater: Optimization of operating parameters. Desalination and Water Treatment, 23, 1–12.

    Google Scholar 

  • Biel-Maeso, M., Corada-Fernandez, C., & Lara-Martin, P. A. (2018). Monitoring the occurrence of pharmaceuticals in soils irrigated with reclaimed wastewater. Environmental Pollution, 235, 312–321.

    Article  CAS  Google Scholar 

  • Bisarya, S. C., & Patil, D. M. (1993). Determination of salicylic-acid and phenol (ppm level) in effluent from aspirin plant. Research and Industry, 38, 170–172.

    CAS  Google Scholar 

  • Bonnineau, C., Guasch, H., Proia, L., Ricart, M., Geiszinger, A., Romanı´, A., & Sabater, S. (2010). Fluvial biofilms: A pertinent tool to assess b-blockers toxicity. Aquatic Toxicology, 96, 225–233.

    Article  CAS  Google Scholar 

  • Boxall, A. B., Rudd, M. A., Brooks, B. W., Caldwell, D. J., Choi, K., Hickmann, S., Innes, E., Ostapyk, K., Staveley, J. P., & Verslycke, T. (2012). Pharmaceuticals and personal care products in the environment: What are the big questions? Environmental Health Perspectives, 120, 1221–1229.

    Article  Google Scholar 

  • Brezina, E., Prasse, C., Meyer, J., Mückter, H., & Ternes, T. A. (2017). Investigation and risk evaluation of the occurrence of carbamazepine, oxcarbazepine, their human metabolites and transformation products in the urban water cycle. Environmental Pollution, 225, 261–269.

    Article  CAS  Google Scholar 

  • Buitron, G., Melgoza, R. M., & Jimenez, L. (2003). Journal of Environmental Science and Health, 38, 2077–2088.

    Article  Google Scholar 

  • Burket, S. R., White, M., Ramirez, A. J., Stanley, J. K., Banks, K. E., Waller, W. T., Chambliss, C. K., & Brooks, B. W. (2019). Corbicula fluminea rapidly accumulate pharmaceuticals from an effluent dependent urban stream. Chemosphere, 224, 873–883.

    Article  CAS  Google Scholar 

  • Buser, H., Poiger, T., & Müller, M. D. (1998). Occurrence and fate of the pharmaceutical drug diclofenac in surface waters: Rapid photodegradation in a lake. Environmental Science & Technology, 32, 3449–3456.

    Article  CAS  Google Scholar 

  • Cabrita, I., Ruiz, B., Mestre, A. S., Fonseca, I. M., Carvalho, A. P., & Ania, C. O. (2010). Removal of an analgesic using activated carbons prepared from urban and industrial residues. Chemical Engineering Journal, 163, 249–255.

    Article  CAS  Google Scholar 

  • Carp, O. (2004). Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32(1-2), 33–177.

    Google Scholar 

  • Cetecioglu, Z., Ince, B., Gros, M., Rodriguez-Mozaz, S., Barceló, D., Ince, O., et al. (2015). Biodegradation and reversible inhibitory impact of sulfamethoxazole on the utilization of volatile fatty acids during anaerobic treatment of pharmaceutical industry wastewater. The Science of the Total Environment, 536, 667–674.

    Article  CAS  Google Scholar 

  • Chatterjee, D., & Dasgupta, S. (2005). Visible light induced photocatalytic degradation of organic pollutants. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 6(2-3), 186–205.

    Google Scholar 

  • Chelliapan, S., Wilby, T., Yuzir, A., & Sallis, P. J. (2011). Influence of organic loading on the performance and microbial community structure of an anaerobic stage reactor treating pharmaceutical wastewater. Desalination, 271, 257–264.

    Article  CAS  Google Scholar 

  • Chen, J. Q., Shang, C., & Cai, X. L. (2013). Application of cyclonic floatation integrated technology in low oil content sewage treatment. Journal China Petroleum Machinery, 41(9), 62–66.

    Google Scholar 

  • Chen, Z., Ren, N., Wang, A., Zhang, Z., & Shi, Y. (2008). A novel application of TPAD-MBR system to the pilot treatment of chemical synthesis-based pharmaceutical wastewater. Water Research, 42, 3385–3392.

    Article  CAS  Google Scholar 

  • Chen, Z., Xu, J., Hu, D., Cui, Y., Wu, P., Ge, H., Jia, F., Xiao, T., Li, X., Su, H., Wang, H., & Zhang, Y. (2018). Performance and kinetic model of degradation on treating pharmaceutical solvent wastewater at psychrophilic condition by a pilot-scale anaerobic membrane bioreactor. Bioresource Technology, 269, 319–328.

    Article  CAS  Google Scholar 

  • Cheng, H., Xu, W., Liu, J., Wang, H., He, Y., & Chen, G. (2007). Pretreatment of wastewater from triazine manufacturing by coagulation, electrolysis, and internal microelectrolysis. Journal of Hazardous Materials, 146, 385–392.

    Article  CAS  Google Scholar 

  • Clements, W. H., & Newman, M. C. (2002). Community ecotoxicology (p. 336). Chichester: Wiley.

    Book  Google Scholar 

  • Coimbra, R. N., Calisto, V., Ferreira, C. I. A., Esteves, V. I., & Otero, M. (2015). Removal of pharmaceuticals from municipal wastewater by adsorption onto pyrolyzed pulp mill sludge. Arabian Journal of Chemistry, 12(8), 3611–3620.

    Article  Google Scholar 

  • Cui, C. W., Ji, S. L., & Ren, H. Y. (2006). Determination of steroid estrogens in wastewater treatment plant of a contraceptives producing factory. Environmental Monitoring and Assessment, 121, 409–419.

    Article  CAS  Google Scholar 

  • Cunningham, J. H., & Lin, L. (2010). Fate of amoxicillin in mixed-culture bioreactors and its effects on microbial growth and resistance to silver ions. Environmental Science & Technology, 44, 1827–1832.

    Article  CAS  Google Scholar 

  • Dalrymple, O. K., Yeh, D. H., & Trotz, M. A. (2007). Removing pharmaceuticals and endocrine-disrupting compounds from wastewater by photocatalysis. Journal of Chemical Technology & Biotechnology, 82(2), 121–134.

    Google Scholar 

  • Daughton, C. G. (2003). Cradle-to-cradle stewardship of drugs for minimizing their environmental disposition while promoting human health. I. Rationale for and avenues toward a green pharmacy. Environmental Health Perspectives, 111, 757–774.

    Article  CAS  Google Scholar 

  • Deborde, M., & von Gunten, U. (2008). Reactions of chlorine with inorganic and organic compounds during water treatment kinetics and mechanisms: A critical review. Water Research, 42,13–51.

    Google Scholar 

  • De Luca, P., De Luca, P., Candamano, S., Macario, A., Crea, F., & Nagy, J. (2018). Preparation and characterization of plasters with photodegradative action. Buildings, 8(9), 122.

    Article  Google Scholar 

  • Deshpande, A., Satyanarayan, S., & Ramakant, S. (2010). Treatment of high-strength pharmaceutical wastewater by electrocoagulation combined with anaerobic process. Water Science and Technology, 61, 463–472.

    Article  CAS  Google Scholar 

  • Dhananjay, B., Pangarkar, V., & Beenackers, A. (2001). Photocatalytic degradation for environmental application-a review. Journal of Chemical Technology & Biotechnology, 77, 102–116.

    Google Scholar 

  • Dorigo, U., Bourrain, X., Bérard, A., et al. (2004). Seasonal changes in the sensitivity of river microalgae to atrazine and isoproturon along a contamination gradient. The Science of the Total Environment, 318, 101–114.

    Article  CAS  Google Scholar 

  • Dorigo, U., & Leboulanger, C. (2001). A PAM fluorescence-based method for assessing the effects of photosystem II herbicides on freshwater periphyton. Journal of Applied Phycology, 13, 509–515.

    Article  CAS  Google Scholar 

  • Ebele, A. J., Abdallah, M. A.-E., & Harrad, S. (2017). Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerging Contaminants, 3, 1–16.

    Article  Google Scholar 

  • Eckenfelder, W. W., Jr. (2000). Industrial water pollution control (3rd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Enick, O. V., & Moore, M. M. (2007). Assessing the assessments: Pharmaceuticals in the environment. Environmental Impact Assessment Review, 27, 707–729.

    Article  Google Scholar 

  • Ensano, B. M. B., Borea, L., Naddeo, V., Belgiorno, V., De Luna, M. D. G., & Ballesteros, F. C. (2017). Removal of pharmaceuticals from wastewater by intermittent electrocoagulation. Water, 9, 85.

    Article  Google Scholar 

  • Falas, P., Longree, P., Jansen, J. L. C., Siegrist, H., Hollender, J., & Joss, A. (2013). Micropollutant removal by attached and suspended growth in a hybrid biofilm-activated sludge process. Water Research, 47, 4498–4506.

    Article  CAS  Google Scholar 

  • Farhadi, S., Aminzadeh, B., Torabian, A., Khatibikamal, V., & Alizadeh Fard, M. (2012). Comparison of COD removal from pharmaceutical wastewater by electrocoagulation, photoelectrocoagulation, peroxielectrocoagulation and peroxiphotoelectrocoagulation processes. Journal of Hazardous Materials, 219–220, 35–42.

    Article  Google Scholar 

  • Fent, K., Weston, A. A., & Caminada, D. (2006). Ecotoxicology of human pharmaceuticals. Aquatic Toxicology, 76, 122–159.

    Article  CAS  Google Scholar 

  • Ferrando-Climent, L., Rodriguez-Mozaz, S., & Barceló, D. (2014). Incidence of anticancer drugs in an aquatic urban system: From hospital effluents through urban wastewater to natural environment. Environmental Pollution, 193, 216–223.

    Article  CAS  Google Scholar 

  • Fountoulakis, M. S., Stamatelatou, K., & Lyberatos, G. (2008). The effect of pharmaceuticals on the kinetics of methanogenesis and acetogenesis. Bioresource Technology, 99, 7083–7090.

    Article  CAS  Google Scholar 

  • Fox, P., & Venkatasubbiah, V. (1996). Couple anaerobic/aerobic treatment of high-sulfate wastewater with sulfate reduction and biological sulfide oxidation. Water Science and Technology, 34, 359–366.

    Article  CAS  Google Scholar 

  • Franz, S., Altenburger, R., Heilmeier, H., & Schmitt-Jansen, M. (2008). What contributes to the sensitivity of microalgae to triclosan? Aquatic Toxicology, 90, 102–108.

    Article  CAS  Google Scholar 

  • Gadipelly, C., Pérez-González, A., Yadav, G. D., Ortiz, I., Ibáñez, R., Rathod, V. K., et al. (2014). Pharmaceutical industry wastewater: Review of the technologies for water treatment and reuse. Industrial and Engineering Chemistry Research, 53, 11571–11592.

    Article  CAS  Google Scholar 

  • Gherardini, L., Michaud, P., Panizza, M., Comninellis, C., & Vatistas, N. (2001). Electrochemical oxidation of 4-chlorophenol for wastewater treatment: Definition of normalized current efficiency (ϕ). Journal of the Electrochemical Society, 148, D78.

    Article  CAS  Google Scholar 

  • Gome, A., & Upadhyay, K. (2013). Biodegradability assessment of pharmaceutical wastewater treated by ozone. International Research Journal of Environmental Sciences, 2(4), 21–25.

    Google Scholar 

  • Gonzalez-Gil, G., Sougrat, R., Behzad, A. R., Lens, P. N. L., & Saikaly, P. E. (2015). Microbial community composition and ultrastructure of granules from a full-scale anammox reactor. Microbial Ecology, 70, 118–131.

    Article  CAS  Google Scholar 

  • Gros, M., Petrovic, M., Ginebreda, A., & Barceló, D. (2010). Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environment International, 36(1), 15–26.

    Article  CAS  Google Scholar 

  • Guasch, H., Navarro, E., Serra, A., & Sabater, S. (2004). Phosphate limitation influences the sensitivity to copper in periphytic algae. Freshwater Biology, 49, 463–473.

    Article  CAS  Google Scholar 

  • Gulde, R., Helbling, D. E., Scheidegger, A., & Fenner, K. (2014). pH-dependent biotransformation of ionizable organic micropollutants in activated sludge. Environmental Science & Technology, 48, 13760–13768.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Carrott, P. J. M., Carrott, M. M. L. R., & Suhas, T. L. (2009). Low-cost adsorbents: Growing approach to wastewater treatment-a review. Critical Reviews in Environmental Science and Technology, 39, 783–842.

    Article  Google Scholar 

  • Hata, T., Kawai, S., Okamura, H., & Nishida, T. (2010). Removal of diclofenac and mefenamic acid by the white rot fungus Phanerochaete sordida YK-624 and identification of their metabolites after fungal transformation. Biodegradation, 21, 681–689.

    Article  CAS  Google Scholar 

  • Herrmann, J. (2005). Heterogeneous photoatalysis: State of the art and present applications. Topics in Catalysis, 34(1-4), 49–65.

    Google Scholar 

  • Hill, A. B. (1965). The environment and disease: Association or causation. Proceedings of the Royal Society of Medicine, 58, 295–300.

    Article  CAS  Google Scholar 

  • Hong, B., Lin, Q., Yu, S., Chen, Y., Chen, Y., & Chiang, P. (2018). Urbanization gradient of selected pharmaceuticals in surface water at a watershed scale. The Science of the Total Environment, 634, 448–458.

    Article  CAS  Google Scholar 

  • Hurlbert, S. H. (1984). Pseudoreplication and the design of ecological field experiments. Ecological Monographs, 54, 187–211.

    Article  Google Scholar 

  • Ileri, R., Sengil, I. A., Kulac, S., & Damar, Y. (2003). Treatment of mixed pharmaceutical industry and domestic wastewater by sequencing batch reactor. Journal of Environmental Science and Health, Part A, 38(10), 2101–2111.

    Article  CAS  Google Scholar 

  • Inyang, M., Flowers, R., McAvoy, D., & Dickenson, E. (2016). Biotransformation of trace organic compounds by activated sludge from a biological nutrient removal treatment system. Bioresource Technology, 216, 778–784.

    Article  CAS  Google Scholar 

  • Joss, A., Andersen, H., Ternes, T., Richle, P. R., & Siegrist, H. (2004). Removal of estrogens in municipal wastewater treatment under aerobic and anaerobic conditions: Consequences for plant optimization. Environmental Science & Technology, 38(11), 3047–3055.

    Article  CAS  Google Scholar 

  • Joss, A., Zabczynski, S., Gobel, A., Hoffmann, B., Lofflerc, D., McArdella, C. S., Ternesc, T. A., Thomsena, A., & Siegrista, H. (2006). Biological degradation of pharmaceuticals in municipal wastewater treatment: Proposing a classification scheme. Water Research, 40, 1686–1696.

    Article  CAS  Google Scholar 

  • Kamaraj, R., & Vasudevan, S. (2016). Facile one-pot synthesis of nano-zinc hydroxide by electro dissolution of zinc as a sacrificial anode and the application for adsorption of Th 4+, U 4+, and Ce 4+ from aqueous solution. Research on Chemical Intermediates, 42, 4077–4095.

    Article  CAS  Google Scholar 

  • Kanakaraju, D., Glass, B. D., & Oelgemoller, M. (2018). Advanced oxidation process mediated removal of pharmaceuticals from water: A review. Journal of Environmental Management, 219, 189–207.

    Article  CAS  Google Scholar 

  • Kim, M., Guerra, P., Shah, A., Parsa, M., Alaee, M., & Smyth, S. A. (2014). Removal of pharmaceuticals and personal care products in a membrane bioreactor wastewater treatment plant. Water Science and Technology, 69(11), 2221–2229.

    Article  CAS  Google Scholar 

  • Kummerer, K. (2001). Drugs in the environment: Emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources—A review. Chemosphere, 45, 957–969.

    Article  CAS  Google Scholar 

  • Lang, X. M. (2006). Pharmaceutical wastewater treatment with hydrolysis acidifying-UNITANK-BAF process (Ph.D. thesis). Northeast University, China, pp. 1–12.

    Google Scholar 

  • Larsson, D. G. J., de Pedro, C., & Paxeus, N. (2007). Effluent from drug manufactures contains extremely high levels of pharmaceuticals. Journal of Hazardous Materials, 148, 751–755.

    Article  CAS  Google Scholar 

  • Laviale, M., Prygiel, J., & Creach, A. (2010). Light modulated toxicity of isoproturon toward natural stream periphyton photosynthesis: A comparison between constant and dynamic light conditions. Aquatic Toxicology, 97, 334–342.

    Article  CAS  Google Scholar 

  • Lee, Y., Gerrity, D., Lee, M., Gamage, S., Pisarenko, A., Trenholm, R. A., Canonica, S., Snyder, S. A., & Von Gunten, U. (2016). Organic contaminant abatement in reclaimed water by UV/H2O2 and a combined process consisting of O3/H2O2 followed by UV/H2O2: Prediction of abatement efficiency, energy consumption, and byproduct formation. Environmental Science & Technology, 50, 3809–3819.

    Article  CAS  Google Scholar 

  • Lefebvre, O., & Moletta, R. (2006). Treatment of organic pollution in industrial saline wastewater: A literature review. Water Research, 40(20), 3671–3682.

    Article  CAS  Google Scholar 

  • Li, D., Yang, M., Hu, J., Ren, L., Zhang, Y., & Li, K. (2008). Determination and fate of oxytetracycline and related compounds in oxytetracycline production wastewater and the receiving river. Environmental Toxicology and Chemistry, 27, 80–86.

    Article  CAS  Google Scholar 

  • Lillenberg, M., Yurchenko, S., Kipper, K., Herodes, K., Pihl, V., Lõhmus, R., Ivask, M., Kuu, A., Kutti, S., Litvin, S. V., & Nei, L. (2010). Presence of fluoroquinolones and sulfonamides in urban sewage sludge and their degradation as a result of composting. Journal of Environmental Science and Technology, 7(2), 307–312.

    CAS  Google Scholar 

  • Liu, Y.-J., Lo, S.-L., Liou, Y.-H., & Hu, C.-Y. (2015). Removal of nonsteroidal anti-inflammatory drugs (NSAIDs) by electrocoagulation–flotation with a cationic surfactant. Separation and Purification Technology, 152, 148–154.

    Article  CAS  Google Scholar 

  • Lokhande, R. S., Singare, P. U., & Pimple, D. S. (2011). Quantification study of toxic heavy metals pollutants in sediment samples collected from Kasardi river flowing along the Taloja industrial area of Mumbai, India. The New York Science Journal, 4(9), 66–71.

    Google Scholar 

  • Madukasi, E. I., Dai, X., He, C., & Zhou, J. (2010). Potentials of phototrophic bacteria in treating pharmaceutical wastewater. International Journal of Environmental Science and Technology, 7(1), 165–174.

    Article  CAS  Google Scholar 

  • Majumdar, D., Patel, J., Bhatt, N., & Desai, P. (2006). Emission of methane and carbon dioxide and earthworm survival during composting of pharmaceutical sludge and spent mycelia. Bioresource Technology, 97, 648–658.

    Article  CAS  Google Scholar 

  • Maskaoui, K., & Zhou, J. L. (2010). Colloids as a sink for certain pharmaceuticals in the aquatic environment. Environmental Science and Pollution Control Series, 17, 898–907.

    CAS  Google Scholar 

  • Mehrabad, J. T., Aghazadeh, M., Maragheh, M. G., Ganjali, M. R., & Norouzi, P. (2016). α-Co (OH)2 nanoplates with excellent supercapacitive performance: Electrochemical preparation and characterization. Materials Letters, 184, 223–226.

    Article  CAS  Google Scholar 

  • Meredith-Williams, M., Carter, L. J., Fussell, R., Raffaelli, D., Ashauer, R., & Boxall, A. B. (2012). Uptake and depuration of pharmaceuticals in aquatic invertebrates. Environmental Pollution, 165, 250–258.

    Article  CAS  Google Scholar 

  • Merola, G., Martini, E., Tomassetti, M., & Campanella, L. (2014). New immunosensor for β-lactam antibiotics determination in river waste waters. Sensors and Actuators B Chemical, 199, 301–313.

    Article  CAS  Google Scholar 

  • Mestre, A. S., Pires, J., Nogueira, J. M. F., & Carvalho, A. P. (2007). Activated carbons for the adsorption of ibuprofen. Carbon, 45(10), 1979–1988.

    Google Scholar 

  • Michaud, P., Panizza, M., Ouattara, L., Diaco, T., Foti, G., & Comninellis, C. (2003). Electrochemical oxidation of water on synthetic boron-doped diamond thin film anodes. Journal of Applied Electrochemistry, 33, 151.

    Article  CAS  Google Scholar 

  • Misal, S. A., Lingojwar, D. P., Shinde, R. M., & Gawai, K. R. (2011). Purification and characterization of azoreductase from alkaliphilic strain Bacillus badius. Process Biochemistry, 46(6), 1264–1269.

    Article  CAS  Google Scholar 

  • Modak, D. M., Singh, K. P., Ahmed, S., & Ray, P. K. (1990). Trace metal ion in Ganga water system. Chemosphere, 21(1–2), 275–287.

    Article  CAS  Google Scholar 

  • Muir, D., Simmons, D., Wang, X., Peart, T., Villella, M., Miller, J., & Sherry, J. (2017). Bioaccumulation of pharmaceuticals and personal care product chemicals in fish exposed to wastewater effluent in an urban wetland. Scientific Reports, 7, 16999.

    Article  Google Scholar 

  • Munoz, I., Real, M., Guasch, H., et al. (2001). Effects of atrazine on periphyton under grazing pressure. Aquatic Toxicology, 55, 239–249.

    Article  CAS  Google Scholar 

  • Murshid, S., & Dhakshinamoorthy, G. P. (2019). Biodegradation of sodium diclofenac and mefenamic acid: Kinetic studies, identification of metabolites and analysis of enzyme activity. International Biodeterioration & Biodegradation, 144, 104756.

    Article  CAS  Google Scholar 

  • Naghdi, M., Taheran, M., Brar, S. K., Kermanshahi-pour, A., Verma, M., & Surampalli, R. Y. (2018). Biotransformation of carbamazepine by Laccase-mediator system: Kinetics, by-products and toxicity assessment, process biochemistry. Process Biochemistry, 67, 147–154.

    Article  CAS  Google Scholar 

  • Nandy, T., & Kaul, S. N. (2001). Anaerobic pre-treatment of herbal based pharmaceutical wastewater using fixed-film reactor with recourse to energy recovery. Water Research, 35(2), 351–362.

    Article  CAS  Google Scholar 

  • Nariyan, E., Aghababaei, A., & Sillanpaa, M. (2017). Removal of pharmaceutical from water with an electrocoagulation process; effect of various parameters and studies of isotherm and kinetic. Separation and Purification Technology, 188, 266–281.

    Article  CAS  Google Scholar 

  • Navarro, E., Guasch, H., & Sabater, S. (2002). Use of microbenthic algal communities in ecotoxicological tests for the assessment of water quality: The Ter river case study. Journal of Applied Phycology, 14, 41–48.

    Article  Google Scholar 

  • Ng, K. K., Shi, X. Q., Yao, Y. N., & Ng, H. Y. (2014). Bio-entrapped membrane reactor and salt marsh sediment membrane bioreactor for the treatment of pharmaceutical wastewater: Treatment performance and microbial communities. Bioresource Technology, 171, 265–273.

    Article  CAS  Google Scholar 

  • Nguyen, L. N., Hai, F. I., Kang, J., Price, W. E., & Nghiem, L. D. (2013). Removal of emerging trace organic contaminants by MBR-based hybrid treatment processes. International Biodeterioration and Biodegradation, 85, 474–482.

    Article  CAS  Google Scholar 

  • Nilambari, D., & Dhanashree, T. (2014). Isolation and 16s rRNA sequence analysis of beneficial microbes isolated from pharmaceutical effluent. Bionano Frontier, 7(2), 243–248.

    Google Scholar 

  • NRDC. (2009). Dosed without prescription: Preventing pharmaceutical contamination of our nation’s drinking water. New York: Report of the Natural Resources Defense Council.

    Google Scholar 

  • Ojemaye, C. Y., & Petrik, L. (2019). Occurrences, levels and risk assessment studies of emerging pollutants (pharmaceuticals, perfluoroalkyl and endocrine disrupting compounds) in fish samples from Kalk Bay harbour, South Africa. Environmental Pollution, 252, 562–572.

    Article  CAS  Google Scholar 

  • Oktem, Y. A., Ince, O., Sallis, P., Donnelly, T., & Ince, B. K. (2008). Anaerobic treatment of a chemical synthesis-based pharmaceutical wastewater in a hybrid up-flow anaerobic sludge blanket reactor. Bioresource Technology, 99, 1089–1096.

    Article  CAS  Google Scholar 

  • Panizza, M., & Cerisola, G. (2005). Application of diamond electrodes to electrochemical processes. Electrochimica Acta, 51, 191.

    Article  CAS  Google Scholar 

  • Peng, X., Li, Y., Luan, Z., Di, Z., Wang, H., Tian, B., & Jia, Z. (2003). Adsorption of 1, 2-dichlorobenzene from water to carbon nanotubes. Chemical Physics Letters, 376(1–2), 154–158.

    Article  CAS  Google Scholar 

  • Pesce, S., Lissalde, S., Lavieille, D., et al. (2010a). Evaluation of single and joint toxic effects of diuron and its main metabolites on natural phototrophic biofilms using a pollution-induced community tolerance (PICT) approach. Aquatic Toxicology, 99, 492–499.

    Article  CAS  Google Scholar 

  • Pesce, S., Margoum, C., & Montuelle, B. (2010b). In situ relationship between spatio-temporal variations in diuron concentrations and phtotrophic biofilm tolerance in a contaminated river. Water Research, 44, 1941–1949.

    Article  CAS  Google Scholar 

  • Popper, K. R. (1972). The logic of scientific discovery (3rd ed.). London: Hutchinson.

    Google Scholar 

  • Prasertkulsak, S., Chiemchaisri, C., Chiemchaisri, W., & Yamamoto, K. (2019). Removals of pharmaceutical compounds at different sludge particle size fractions in membrane bioreactors operated under different solid retention times. Journal of Hazardous Materials, 368, 124–132.

    Article  CAS  Google Scholar 

  • Rafatullah, M., Ahmad, T., Ghazali, A., Sulaiman, O., & Danish, M. (2013). Oil palm biomass as a precursor of activated carbons: A review. Critical Reviews in Environmental Science and Technology, 43, 1117–11661.

    Article  CAS  Google Scholar 

  • Rajaraman, T. S., Parikh, S. P., & Gandhi, V. G. (2019). Black TiO2: A review of its properties and conflicting trends. Chemical Engineering Journal, 389, 123918.

    Google Scholar 

  • Ravi, S., Choi, Y., & Choe, J. K. (2020). Novel phenyl-phosphate-based porous organic polymers for removal of pharmaceutical contaminants in water. Chemical Engineering Journal, 379, 1–10.

    Article  Google Scholar 

  • Reddersen, K., Heberer, T., & Duennbier, U. (2002). Occurence and identification of phenazone drugs and their metabolites in ground- and drinking water. Chemosphere, 49, 539–544..

    Google Scholar 

  • Ricart, M., Guasch, H., Barcelo, D., Brix, R., Conceição, M. H., Geiszinger, A., López De Alda, M. J., Lopez-Doval, J. C., Munoz, I., Romaní, A. M., Villagrasa, M., & Sabater, S. (2010). Primary and complex stressors in polluted Mediterranean rivers: Pesticide effects on biological communities. Journal of Hydrology, 383, 52–61.

    Article  CAS  Google Scholar 

  • Ricart, M., Guasch, H., Barceló, D., Geiszinger, A., Lopez De Alda, M., Romanı, A. M., Vidal, G., Villagrasa, M., & Sabater, S. (2009). Effects of low concentrations of the phenylurea herbicide diuron on biofilm algae and bacteria. Chemosphere, 76, 1392–1401.

    Article  CAS  Google Scholar 

  • Rivera-Utrilla, J., Sanchez-Polo, M., Ferro-García, M. A., Prados-Joya, G., & Ocampo- Perez, R. (2013). Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere, 93, 1268–1287.

    Article  CAS  Google Scholar 

  • Rodriguez-Martinez, J., Garza-Garcia, Y., Aguilera-Carbo, A., Martinez-Amador, S. Y., & Sosa-Santillan, G. J. (2005). Influence of nitrate and sulphate on the anaerobic treatment of pharmaceutical wastewater. Engineering in Life Sciences, 5, 568–573.

    Article  CAS  Google Scholar 

  • Sacher, F., Lange, T. F., Brauch, H. J., & Blankenhorn, I. (2001). (mot) Pharmaceuticals in groundwaters. Analytical methods and results of a monitoring program in Baden-Wurttemberg, Germany. Journal of Chromatography A, 938, 199–210.

    Google Scholar 

  • Schluter-Vorberg, L., Prasse, C., Ternes, T. A., Mückter, H., & Coors, A. (2015). Toxification by transformation in conventional and advanced wastewater treatment: The antiviral drug acyclovir. Environmental Science & Technology Letters, 2(12), 342–346.

    Article  Google Scholar 

  • Schroder, H. F. (1999). Substance-specific detection and pursuit of non-eliminable compounds during biological treatment of waste water from the pharmaceutical industry. Waste Management, 19(2), 111–123.

    Article  CAS  Google Scholar 

  • Schwarzenbach, R. P., Escher, B. I., Fenner, K., Hofstetter, T. B., Johnson, C. A., Von Gunten, U., & Wehrli, B. (2006). The challenge of micropollutants in aquatic systems. Science, 313, 1072–1077.

    Article  CAS  Google Scholar 

  • Serra, A., Corcoll, N., & Guasch, H. (2009). Copper accumulation and toxicity in fluvial periphyton. Chemosphere, 5, 633–641.

    Article  Google Scholar 

  • Shah, K. J. & Chang, P. C. (2018). Shape-Control Synthesis and Photocatalytic Applications of CeO2 to Remediate Organic Pollutant Containing Wastewater: A Review, in Tayade, R. J., Gandhi, V. (Eds.), Photocatalytic nanomaterials for environmental applications. Materials Research Forum LLC, USA, (27), 316–342.

    Google Scholar 

  • Sharma, V. K. (2008). Oxidative transformations of environmental pharmaceuticals by Cl2, ClO2, O3, and Fe(VI): kinetics assessment. Chemosphere, 73, 1379–1386.

    Google Scholar 

  • Sharma, S., Mukhopadhyay, M., & Murthy, Z. V. P. (2013). Treatment of chlorophenols from wastewaters by advanced oxidation processes. Separation and Purification Reviews, 42(4), 263–295.

    Article  CAS  Google Scholar 

  • Shi, X., Lefebvre, O., Ng, K. K., & Ng, H. Y. (2014). Sequential anaerobic-aerobic treatment of pharmaceutical wastewater with high salinity. Bioresource Technology, 153, 79–86.

    Article  CAS  Google Scholar 

  • Sim, W.-J., Lee, J.-W., & Oh, J.-E. (2010). Occurrence and fate of pharmaceuticals in wastewater treatment plants and rivers in Korea. Environmental Pollution, 158(5), 1938–1947.

    Article  CAS  Google Scholar 

  • Singh, D., & Suthar, S. (2012). Vermicomposting of herbal pharmaceutical industry solid wastes. Ecological Engineering, 39, 1–6.

    Article  Google Scholar 

  • Sires, I., & Brillas, E. (2012). Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: A review. Environment International, 40, 212.

    Article  CAS  Google Scholar 

  • Sirtori, C., Zapata, A., Oller, I., Gernjak, W., Agüera, A., & Malato, S. (2009). Decontamination industrial pharmaceutical wastewater by combining solar photo-Fenton and biological treatment. Water Research, 43(3), 661–668.

    Article  CAS  Google Scholar 

  • Solak, M., Kılıç, M., Hüseyin, Y., & Şencan, A. (2009). Removal of suspended solids and turbidity from marble processing wastewaters by electrocoagulation: Comparison of electrode materials and electrode connection systems. Journal of Hazardous Materials, 172, 345–352.

    Article  CAS  Google Scholar 

  • Sotelo, J. L., Ovejero, G., Rodríguez, A., Álvarez, S., Galán, J., & García, J. (2014). Competitive adsorption studies of caffeine and diclofenac aqueous solutions by activated carbon. Chemical Engineering Journal, 240, 443–453.

    Article  CAS  Google Scholar 

  • Sotelo, J. L., Rodríguez, A., Álvarez, S., & García, J. (2012). Removal of caffeine and diclofenac on activated carbon in fixed bed column. Chemical Engineering Research and Design, 7, 967–974.

    Article  Google Scholar 

  • Steger-Hartmann, T., Kammerer, K., & Hartmann, A. (1997). Biological degradation of cyclophosphamide and its occurrence in sewage water. Ecotoxicology and Environmental Safety, 36, 174–179.

    Google Scholar 

  • Stumpf, M., Ternes, T. A., Wilken, R. D., Rodrigues, S.W., & Baumann, W. (1999). Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil. Science of The Total Environment, 225, 135–141.

    Google Scholar 

  • Suarez, S., Lema, J. M., & Omil, F. (2010). Removal of pharmaceutical and personal care products (PPCPs) under nitrifying and denitrifying conditions. Water Research, 44, 3214–3224.

    Google Scholar 

  • Suresh, A., & Abraham, J. (2018). Bioremediation of hormones from waste water. In C. M. Hussain (Ed.), Handbook of environmental materials management (pp. 1–31). Springer.

    Google Scholar 

  • Tanoue, R., Nomiyama, K., Nakamura, H., Kim, J. W., Isobe, T., Shinohara, R., Kunisue, T., & Tanabe, S. (2015). Uptake and tissue distribution of pharmaceuticals and personal care products in wild fish from treated-wastewater-impacted streams. Environmental Science & Technology, 49(19), 11649–11658.

    Article  CAS  Google Scholar 

  • Tixier, C., Singer, H. P., Oellers, S., & Muller, S. R. (2003). Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environmental Science and Technology, 37, 1061–1068.

    Google Scholar 

  • Ternes, T. A. (1998). Occurrence of drugs in German sewage treatment plants and rivers. Water Research, 32(11), 3245–3260.

    Google Scholar 

  • Ternes, T. A., Meisenheimer, M., McDowell, D., Sacher, F., Brauch, H.J., Haist-Gulde, B., Zulei-Seibert, N. (2002). Removal of Pharmaceuticals during Drinking Water Treatment. Environmental Science & Technology, 36(17), 3855–3863.

    Google Scholar 

  • Ternes, T., Stuber, J., Herrmann, N., McDowell, D., Ried, A., Kapmann, M., & Teiser, B. (2003). Ozonation: A tool for removal of pharmaceuticals, contrast media, and musk fragrances form wastewater. Water Research, 37, 1976–1982.

    Google Scholar 

  • Tlili, A., Dorigo, U., Montuelle, B., et al. (2008). Responses of chronically contaminated biofilms to short pulses of diuron an experimental study simulating flooding events in a small river. Aquatic Toxicology, 87, 252–263.

    Article  CAS  Google Scholar 

  • Tong, A. Y. C., Peake, B. M., & Braund, R. (2011). Disposal practices for unused medications around the world. Environment International, 37, 292–298.

    Article  Google Scholar 

  • Torres, L. G., Jaimes, J., Mijaylova, P., Ramírez, E., & Jimenez, B. (1997). Coagulation-flocculation pretreatment of high-load chemical pharmaceutical industry wastewater: Mixing aspects. Water Science and Technology, 36, 255–262.

    Article  CAS  Google Scholar 

  • Trovo, A. G., Melo, S. A. S., & Nogueira, R. F. P. (2008). Photodegradation of the pharmaceuticals amoxicillin, bezafibrate and paracetamol by the photo-Fenton process—Application to sewage treatment plant effluent. Journal of Photochemistry and Photobiology A: Chemistry, 198, 215–220.

    Article  CAS  Google Scholar 

  • Tzeng, T.-W., Liu, Y.-T., Deng, Y., Hsieh, Y.-C., Tan, C.-C., Wang, S.-L., Huang, S.-T., & Tzou, Y.-M. (2016). Removal of sulfamethazine antibiotics using cow manurebased carbon adsorbents. International journal of Environmental Science and Technology, 13, 973–984.

    Article  CAS  Google Scholar 

  • Venkata Mohan, S., Prakasham, R. S., Satyavathi, B., Annapurna, J., & Ramakrishna, S. V. (2001). Biotreatability studies of pharmaceutical wastewater using an anaerobic suspended film contact reactor. Water Science and Technology, 43, 271–276.

    Article  Google Scholar 

  • Verlicchi, P., Galletti, A., Petrovic, M., & Barceló, D. (2010). Hospital effluents as a source of emerging pollutants: An overview of micropollutants and sustainable treatment options. Journal of Hydrology, 389, 416.

    Article  CAS  Google Scholar 

  • Walters, E., McClellan, K., & Halden, R. U. (2010). Occurrence and loss over three years of 72 pharmaceuticals and personal care products from biosolids–soil mixtures in outdoor mesocosms. Water Research, 44(20), 6011–6020.

    Article  CAS  Google Scholar 

  • Wells, G. F., Park, H. D., Yeung, C. H., Eggleston, B., Francis, C. A., & Criddle, C. S. (2009). Ammonia-oxidizing communities in a highly aerated full-scale activated sludge bioreactor: Betaproteobacterial dynamics and low relative abundance of Crenarchaea. Environmental Microbiology, 11(9), 2310–2328.

    Article  CAS  Google Scholar 

  • Wen, A., Hang, T., Chen, S., Wang, Z., Ding, L., Tian, Y., Zhang, M., & Xu, X. (2008). Simultaneous determination of amoxicillin and ambroxol in human plasma by LC-MS/MS: Validation and application to pharmacokinetic study. Journal of Pharmaceutical and Biomedical Analysis, 48, 829–834.

    Article  CAS  Google Scholar 

  • Wilkinson, J. L., Hooda, P. S., Barker, J., Barton, S., & Swinden, J. (2016). Ecotoxic pharmaceuticals, personal care products, and other emerging contaminants: A review of environmental, receptor-mediated, developmental, and epigenetic toxicity with discussion of proposed toxicity to humans. Critical Reviews in Environmental Science and Technology, 46, 336–381.

    Article  CAS  Google Scholar 

  • Xiao, H., Li, J., & Zhang, Y. G. (2011). Treatment of high concentration pharmaceutical wastewater by coupling technique of electrochemical oxidation and internal-electrolysis. Journal of Tianjin Polytechnic University, 30(1), 55–59.

    Google Scholar 

  • Xue, W., Wu, C., Xiao, K., Huang, X., Zhou, H., Tsuno, H., & Tanaka, H. (2010). Elimination and fate of selected micro-organic pollutants in a full-scale anaerobic/anoxic/aerobic process combined with membrane bioreactor for municipal wastewater reclamation. Water Research, 44, 5999–6010.

    Article  CAS  Google Scholar 

  • Yan, C., Yang, Y., Zhou, J., Liu, M., Nie, M., Shi, H., & Gu, L. (2013). Antibiotics in the surface water of the Yangtze Estuary: Occurrence, distribution and risk assessment. Environmental Pollution, 175, 22–29.

    Article  CAS  Google Scholar 

  • Yang, G. C. C., Yen, C.-H., & Wang, C.-L. (2014). Monitoring and removal of residual phthalate esters and pharmaceuticals in the drinking water of Kaohsiung City, Taiwan. Journal of Hazardous Materials, 277, 53–61.

    Article  CAS  Google Scholar 

  • Yang, X., Sun, J., Fu, W., Shang, C., Li, Y., Chen, Y., Gan, W., & Fang, J. (2016). PPCP degradation by UV/chlorine treatment and its impact on DBP formation potential in real waters. Water Research, 98, 309–318.

    Google Scholar 

  • Yang, Z. H., Ding, X. F., Guo, Q. A., Wang, Y., Lu, Z. W., Ou, H. C., Luo, Z. F., & Lou, X. H. (2017). Second generation of signaling-probe displacement electrochemical aptasensor for detection of picomolar ampicillin and sulfadimethoxine. Sensors and Actuators B Chemical, 253, 1129–1136.

    Article  CAS  Google Scholar 

  • Yi, S., Gao, B., Sun, Y., Wu, J., Shi, X., Wu, B., & Hu, X. (2016). Removal of levofloxacin from aqueous solution using rice-husk and wood-chip biochars. Chemosphere, 150, 694–701.

    Article  CAS  Google Scholar 

  • Yu, H., Nie, E., Xu, J., Yan, S., Cooper, W., & Song, W. (2013). Degradation of diclofenac by advanced oxidation and reduction processes: Kinetic studies, degradation pathways and toxicity assessments. Water Research, 47, 1909.

    Article  CAS  Google Scholar 

  • Zaman, M. F., Akter, M. S., & Muhit, I. B. (2014). Pharmaceutical wastewater management (WWM): A review. In: 2nd International conference on advances in civil engineering (pp. 201–206).

    Google Scholar 

  • Zhao, J. L., Liu, Y. S., Liu, W. R., Jiang, Y. X., Su, H. C., Zhang, Q. Q., Chen, X. W., Yang, Y. Y., Chen, J., Liu, S. S., & Pan, C. G. (2015). Tissue-specific bioaccumulation of human and veterinary antibiotics in bile, plasma, liver and muscle tissues of wild fish from a highly urbanized region. Environmental Pollution, 198, 15–24.

    Article  Google Scholar 

  • Zhao, X., Hou, Y., Liu, H., Qiang, Z., & Qu, J. (2009). Electro-oxidation of diclofenac at boron doped diamond: Kinetics and mechanism. Electrochimica Acta, 54, 4172.

    Article  CAS  Google Scholar 

  • Zhou, A., Zhang, Y., Li, R., Su, X., & Zhang, L. (2016). Adsorptive removal of sulfa antibiotics from water using spent mushroom substrate, an agricultural waste. Desalination and Water Treatment, 57, 388–397.

    CAS  Google Scholar 

  • Zhou, P., Su, C., Li, B., & Qian, Y. (2006). Treatment of high strength pharmaceutical wastewater and removal of antibiotics in aerobic and anaerobic biological treatment processes. Journal of Environmental Engineering, 132, 129–136.

    Article  CAS  Google Scholar 

  • Zupanc, M., Kosjek, T., Petkovsek, M., Dular, M., Kompare, B., et al. (2013). Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment. Ultrasonics Sonochemistry, 20, 1104–1112.

    Article  CAS  Google Scholar 

  • Zwiener, C., & Frimmel, F. H. (2000). Oxidative treatment of pharmaceuticals in water. Water Research, 34, 1881–1885.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seenivasagan, R., Kasimani, R. (2022). A Review on Remedial Techniques for Pharmaceutical Contaminants in Wastewater. In: Vasanthy, M., Sivasankar, V., Sunitha, T.G. (eds) Organic Pollutants. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-72441-2_15

Download citation

Publish with us

Policies and ethics