Skip to main content

An Overview on Eco-friendly Remediation of Toxic Organic Contaminants from Textile Dyeing Industry Wastewater

  • Chapter
  • First Online:
Organic Pollutants

Abstract

Textile industries play a crucial role in Indian economy and also cause serious issues on environmental pollution. The demand of colors, fade-resistant garments, and other hue products are increasing in day-to-day lifestyle, triggering the blooming of dyeing industries. These factories utilize colossal volume of water and various chemical substances for dyeing process and release toxic organic pollutants such as organic azo-dyes, surfactants, and phenolic compounds with effluent to the environment which severely disturb the natural balance and affect all forms of living beings. Higher concentration of colored compounds in the effluent mixed with surface water reduces the flow of sunlight and prevents the photosynthetic process of aquatic vegetation. Also, it affects the fertility of agricultural land and health impacts in human and animals. The changes in physicochemical nature of surface and underground water quality due to textile effluent lead to water crisis. Conventional treatment methods are expensive and not sufficient in efficient removal of organic pollutants from the wastewater. Thus, economically and ecologically safe approaches are needed for the treatment of textile industry effluent to prevent and conserve natural resources without affecting the growth of this sector. In this chapter, eco-friendly techniques such as bioremediation, phytoremediation, coagulation process by natural coagulants, and biogenic nanomaterials applied for the removal of organic pollutants from the textile effluent are elaborately discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Khalek, M. A., Abdel Rahman, M. K., & Francis, A. A. (2017). Exploring the adsorption behavior of cationic and anionic dyes on industrial waste shells of egg. Journal of Environmental Chemical Engineering, 5(1), 319–327.

    CAS  Google Scholar 

  • Abdullah, H. A., & Jaeel, A. J. (2019). Chitosan as a widely used coagulant to reduce turbidity and color of model textile wastewater containing an anionic dye (acid blue). IOP Conference Series: Materials Science and Engineering, 584, 012036.

    CAS  Google Scholar 

  • Ahila, K. G., Vasanthy, M., & Thamaraiselvi, C. (2018a). Green synthesis of magnetic iron nanoparticle using Moringa oleifera Lam seeds and its application in textile effluent treatment. In S. K. Ghosh (Ed.), Utilization and management of bioresources. Springer Nature Singapore Pte Ltd.

    Google Scholar 

  • Ahila, K. G., Vasanthy, M., & Thamaraiselvi, C. (2018b). Preparation of iron magnetic nanoparticles using aquatic macrophyte Salvinia adnata Desv and its application in dye decolorization. International Journal of Advanced Research and Development, 3(2), 175–179.

    Google Scholar 

  • Al-Baldawi, I. A., Abdullah, S. R. S., Anuar, N., & Hasan, H. A. (2018). Phytotransformation of methylene blue from water using aquatic plant (Azolla pinnata). Environmental Technology and Innovation, 11, 15–22.

    Google Scholar 

  • Al-Baldawi, I. A., Abdullah, S. R. S., Anuar, N., Suja, F., & Mushrifah, I. (2015). Phytodegradation of total petroleum hydrocarbon (TPH) in diesel-contaminated water using Scirpus grossus. Ecological Engineering, 74, 463–473.

    Google Scholar 

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals: Concepts and applications. Chemosphere, 91, 869–881.

    CAS  Google Scholar 

  • Ali, I., Asim, M., & Khan, T. A. (2012). Low cost adsorbents for the removal of organic pollutants from wastewater. Journal of Environmental Management, 113, 170–183.

    CAS  Google Scholar 

  • Ali, S., Abbas, Z., Rizwan, M., Zaheer, I. E., Yava, I., Unay, A., Abdel-Daim, M. M., Bin-Jumah, M., Hasanuzzaman, M., & Kalderis, D. (2020). Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review. Sustainability, 12, 1927.

    CAS  Google Scholar 

  • Al-Kadhi, N. S. (2019). The kinetic and thermodynamic study of the adsorption Lissamine Green B dye by micro-particle of wild plants from aqueous solutions. Egyptian Journal of Aquatic Research, 45(3), 231–238.

    Google Scholar 

  • Altamirano-Corona, M., Cotes-Martinez, R., Flores-Gonzalez, D. S. F., & Alfaro-Cuevas-Villanueva, R. (2015). Decolorization of an effluent from textile industry using Moringa oleifera seed extract. The International Journal of Sciences: Basic and Applied Research, 19(2), 99–111.

    Google Scholar 

  • Anastasakis, K., Kalderis, D., & Diamadopoulos, E. (2009). Flocculation behavior of mallow and okra mucilage in treating wastewater. Desalination, 249(2), 786–791.

    CAS  Google Scholar 

  • Anjaneyulu, Y., Chary, N. S., & Raj, D. S. S. (2005). Decolourization of industrial effluents- Available methods and emerging technologies- A review. Reviews in Environmental Science and Biotechnology, 4, 245–273.

    CAS  Google Scholar 

  • Annamalai, S., Santhanam, M., Sundaram, M., & Curras, M. P. (2014). Electrokinetic remediation of inorganic and organic pollutants in textile effluent contaminated agricultural soil. Chemosphere, 117, 673–678.

    CAS  Google Scholar 

  • Ansari, S. A., Khan, M. M., Ansari, M. O., Lee, J., & Cho, M. H. (2013). Biogenic synthesis, photocatalytic, and photoelectrochemical performance of Ag–ZnO nanocomposite. Journal of Physical Chemistry C, 117, 27023–27030.

    CAS  Google Scholar 

  • Arifin, A., Ismail, I., Abdullah, A. H., Shafiee, F. N., Nazlan, R., & Ibrahim, I. R. (2017). Iron oxide nanoparticles derived from mill scale waste as potential scavenging agent in dye wastewater treatment for Batik industry. Solid State Phenomena, 268, 393–398.

    Google Scholar 

  • Arslan-Alaton, I., & Alaton, I. (2007). Degradation of xenobiotics originating from the textile preparation, dyeing, and finishing industry using ozonation and advanced oxidation. Ecotoxicology and Environmental Safety, 68(1), 98–107.

    CAS  Google Scholar 

  • Aziz, N., Faraz, M., Pandey, R., Shakir, M., Fatma, T., Varma, A., Barman, I., & Prasad, R. (2015). Facile algae-derived route to biogenic silver nanoparticles: Synthesis, antibacterial, and photocatalytic properties. Langmuir, 31, 11605–11612.

    CAS  Google Scholar 

  • Bafana, A., Chakrabarti, T., & Devi, S. S. (2008). Azoreductase and dye detoxification activities of Bacillus velezensis strain AB. Applied Microbiology and Biotechnology, 77, 1139–1144.

    CAS  Google Scholar 

  • Bayoumi, M. N., Al-Wasify, R. S., & Hamed, S. R. (2014). Bioremediation of textile wastewater dyes using local bacterial isolates. International Journal of Current Microbiology and Applied Sciences, 3(12), 962–970.

    Google Scholar 

  • Ben Mansour, H., Houas, I., Montassar, F., Ghedira, K., Barillier, D., Mosrati, R., & Chekir-Ghedira, L. (2012). Alteration of in vitro and acute in vivo toxicity of textile dyeing wastewater after chemical and biological remediation. Environmental Science and Pollution Research International, 19, 2634–2643.

    CAS  Google Scholar 

  • Benghazi, L., Record, E., & Suarez, A. (2014). Production of the Phanerochaete flavido-alba in Aspergillus niger for synthetic dyes decolorization and biotransformation. World Journal of Microbiology and Biotechnology, 30, 201–211.

    CAS  Google Scholar 

  • Beshkar, F., Zinatloo-Ajabshir, S., Bagheri, S., & Salavati-Niasari, M. (2017). Novel preparation of highly photocatalytically active copper chromite nanostructured material via a simple hydrothermal route. PLoS One, 12, 0158549.

    Google Scholar 

  • Bhakya, S., Muthukrishnan, S., Sukumaran, M., Muthukumar, M., Senthil Kumar, T., & Rao, M. V. (2015). Catalytic degradation of organic dyes using synthesized silver nanoparticles: A green approach. Journal of Bioremediation & Biodegradation, 6, 312. https://doi.org/10.4172/2155-6199.1000312

    Article  CAS  Google Scholar 

  • Bhargava, A., Jain, N., Khan, M. A., Pareek, V., Dilip, R. V., & Panwar, J. (2016). Utilizing metal tolerance potential of soil fungus for efficient synthesis of gold nanoparticles with superior catalytic activity for degradation of rhodamine B. Journal of Environmental Management, 183, 22–32.

    CAS  Google Scholar 

  • Bishnoi, S., Kumar, A., & Selvaraj, R. (2018). Facile synthesis of magnetic iron oxide nanoparticles using inedible Cynometra ramiflora fruit extract waste and their photocatalytic degradation of methylene blue dye. Materials Research Bulletin, 97, 121–127.

    CAS  Google Scholar 

  • Bisschops, I., & Spanjers, H. (2003). Literature review on textile wastewater characterization. Environmental Technology, 24, 1399–1411.

    CAS  Google Scholar 

  • Bodoprost, H., & Rosemeyer, J. (2007). Analysis of phenacylester derivatives of fatty acids from human skin surface sebum by RP-HPLC: Chromatographic mobility as a function of physico-chemical properties. International Journal of Molecular Sciences, 8, 1111–1124.

    CAS  Google Scholar 

  • Bonet, M., Bonfill, T., Nunez, M., De Verdonces, L., Mur, E., Gallardo, E., & Arenas, M. (2018). Curative radiation therapy for very elderly bladder cancer patients with localized disease. Clinical & Translational Oncology, 20, 899–905.

    CAS  Google Scholar 

  • Borah, P., Kumar, M., & Devi, P. (2020). Recent trends in the detection and degradation of organic pollutants. In Abstement of environmental pollutants: Trends and strategies (pp. 67–79). Elsevier.

    Google Scholar 

  • Buthelezi, S. P., Olaniran, A. O., & Pillay, B. (2012). Textile dye removal from wastewater using bioflocculants produced by indigenous bacterial isolates. Molecules, 17, 14260–14274.

    CAS  Google Scholar 

  • Carmen, Z., & Daniela, S. (2012). Textile organic dyes—Characteristics, polluting effects and separation/elimination procedures from industrial effluents—A critical overview. In Organic pollutants ten years after the Stockholm convention—Environmental and analytical update (pp. 55–86). IntechOpen.

    Google Scholar 

  • Chaibakhsh, N., Ahmadi, N., & Zanjanchi, M. A. (2014). Use of Plantago major L. as a natural coagulant for optimized decolorization of dye-containing wastewater. Industrial Crops and Products, 61, 169–175.

    Google Scholar 

  • Chandanshive, V. V., Kadam, S. K., Khandare, R. V., Kurade, M. B., Jeon, V. B., Jadhav, J. P., & Govindwar, S. P. (2018). In-situ phytoremediation of dyes from textile wastewater using garden ornamental plants, effect on soil quality and plant growth. Chemosphere, 210, 968–976.

    CAS  Google Scholar 

  • Chandanshive, V. V., Rane, N., Gholave, A., Patil, S., Jeon, B., & Givindwar, S. (2016). Efficient decolourization and detoxification of textile industry effluent by Salvinia molesta in lagoon treatment. Environmental Research, 150, 88–96.

    CAS  Google Scholar 

  • Chang, G., Yue, B., Gao, T., Yan, W., & Pan, G. (2019). Phytoremediation of phenol by Hydrilla verticillata (L.f.) Royle and associated effects on physiological parameters. Journal of Hazardous Materials, 388, 121569.

    Google Scholar 

  • Chanwala, J., Kaushik, G., Dar, M. A., Upadhyay, S., & Agarwal, A. (2019). Process optimization and enhanced decolorization of textile effluent by Planococcus sp. isolated from textile sludge. Environmental Technology and Innovation, 13, 122–129.

    Google Scholar 

  • Cheera, P. K., Sreenivasulu, V., Govinda, S., Himageerish, K. K., Deepa, T., Vasantha Jyothi, N. V. V., & Venkateswarlu, P. (2018). Biosynthesis of the Fe3O4 nanoparticles using Acacia nilotica leaf extract and their effect on degradation of Congo red dye in aqueous solution. Trends in Textile Engineering and Fashion Technology, 1(3), 1–4.

    Google Scholar 

  • Chen, S. H., & Ting, A. S. Y. (2015). Biodecolorization and biodegradation potential of recalcitrant triphenylmethane dyes by Coriolopsis sp. isolated from compost. Journal of Environmental Management, 150(1), 274–280.

    CAS  Google Scholar 

  • Chethana, M., Sorokhaibam, L. G., Bhandari, V. M., Raja, S., & Ranade, V. V. (2016). Green approach to dye wastewater treatment using biocoagulants. ACS Sustainable Chemistry & Engineering, 4(5), 2495–2507.

    CAS  Google Scholar 

  • Chin, S. F., Pang, S. C., & Tan, C. H. (2011). Green synthesis of magnetic nanoparticles (via thermal decomposition method) with controllable size and shape. Journal of Materials and Environmental Science, 2(3), 299–302.

    CAS  Google Scholar 

  • Choudhary, B. C., Paul, D., Gupta, T., Tetgure, S. R., Garole, V. J., Borse, A. U., & Garole, D. J. (2016). Photocatalytic reduction of organic pollutant under visible light by green route synthesized gold nanoparticles. Journal of Environmental Sciences, 00914, 1–13.

    Google Scholar 

  • Christian, P., Kammer, V. D., Baalousha, M., & Hofmann, T. (2008). Nanoparticles: Structure, properties, preparation and behavior in environmental media. Ecotoxicology, 17(5), 326–343.

    CAS  Google Scholar 

  • Dan, S., Rong, Y., Feng, L., & Anna, Z. (2018). Applications of magnetic nanoparticles in surface-enhanced Raman scattering (SERS) detection of environmental pollutants. Journal of Environmental Sciences, 80, 14–34.

    Google Scholar 

  • Davar, F., Majedi, A., & Mirzaei, A. (2015). Green synthesis of ZnO nanoparticles and its application in the degradation of some dyes. Journal of the American Ceramic Society, 98, 1739–1746.

    CAS  Google Scholar 

  • David, L., & Moldovan, B. (2020). Green synthesis of biogenic silver nanoparticles for efficient catalytic removal of harmful organic dyes. Nanomaterials, 10(202), 1–16.

    Google Scholar 

  • de Souza, M. T. F., Ambrosio, E., Freitas, T. K. F. S., Santos, L. B., Almeida, V. C., & Garcia, J. C. (2014). The use of a natural coagulant (Opuntia ficus-indica) in the removal for organic materials of textile effluents. Environmental Monitoring and Assessment, 186, 5261–5271.

    Google Scholar 

  • Degermenci, G. D., Degermenci, N., Ayvaoglu, V., Durmaz, E., Çakır, D., & Akan, E. (2019). Adsorption of reactive dyes on lignocellulosic waste; characterization, equilibrium, kinetic and thermodynamic studies. Journal of Cleaner Production, 225, 1220–1229.

    CAS  Google Scholar 

  • Deivasigamani, C., & Das, N. (2011). Biodegradation of Basic Violet 3 by Candida krusei isolated from textile wastewater. Biodegradation, 22, 1169–1180.

    CAS  Google Scholar 

  • Desai, S. A. (2017). Isolation and characterization dye degrading bacteria for detoxification of dark red 2B. Bioscience Discovery, 8(3), 426–431.

    Google Scholar 

  • Duran, N., Marcato, P. D., De Souza, G. I. H., Alves, O. L., & Esposito, E. (2007). Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. Journal of Biomedical Nanotechnology, 3, 203–208.

    CAS  Google Scholar 

  • Ekambaram, S. P., Perumal, S. S., Rajendran, D., Samivel, D., & Khan, M. N. (2018). New approach of dye removal in textile effluent: A cost effective management for cleanup of toxic dyes in textile effluent by water hyacinth. In E. Bidoia & R. Montagnolli (Eds.), Toxicity and biodegradation testing (pp. 241–267). New York: Humana Press.

    Google Scholar 

  • Fernandes, F. H., Botasso-Nasciutti, M. O., Svio, A. L. V., Souza, L. C. M., Fernandes Cal, J. R., Cardoso, F. F., Fontes, M. R. M., Albuquerque, A. F., Munari, C. C., & Kummrow, F. (2018). In vivo genotoxicity of a commercial C.I. Disperse Red 1 dye. Environmental and Molecular Mutagenesis, 59, 822–828.

    CAS  Google Scholar 

  • Fernandez, C., Larrechi, M. S., & Callao, M. P. (2010). An analytical overview of processes for removing organic dyes from wastewater effluents. Trends in Analytical Chemistry, 29(10), 1202–1211.

    CAS  Google Scholar 

  • Flaten, T. P. (2001). Aluminium as a risk factor in Alzheimer’s disease with emphasis on drinking water. Brain Research Bulletin, 55, 187–196.

    CAS  Google Scholar 

  • Freitas, T. K. F. S., Oliveira, V. M., de Souza, M. T. F., Geraldino, H. C. L., Almeida, V. C., Favaro, S. L., & Garcia, J. C. (2015). Optimization of coagulation-flocculation process for treatment of industrial textile wastewater using okra (A.esculentus) mucilage as natural coagulant. Industrial Crops and Products, 76, 538–544.

    CAS  Google Scholar 

  • Fulekar, M. H., Wadgaonkar, S. L., & Singh, A. (2013). Decolourization of dye compounds by selected bacterial strains isolated from dyestuff industrial area. International Journal of Advanced Research and Technology, 2(7), 182–192.

    Google Scholar 

  • Gautam, P. K., Singh, A., Misra, K., Sahoo, A. K., & Samanta, S. K. (2019). Synthesis and applications of biogenic nanomaterials in drinking and wastewater treatment. Journal of Environmental Management, 231, 734–748.

    CAS  Google Scholar 

  • Gelebo, G. G., & Ahmed, F. E. (2019). Removal of direct and reactive dyes from textile wastewater using Moringa stenopetala seed extract. Journal of Textile Engineering & Fashion Technology, 5(4), 184–191.

    Google Scholar 

  • Geoffroy, L., Frankart, C., & Eullaffroy, P. (2004). Comparison of different physiological parameter responses in Lemna minor and Scenedesmus obliquus exposed to herbicide flumioxazin. Environmental Pollution, 131(2), 233–241.

    CAS  Google Scholar 

  • Ghaedi, M., Fathi, M. R., Shokrollahi, A., & Shajarat, F. (2006). Highly selective and sensitive pre-concentration of mercury ion and determination by cold vapor atomic absorption spectroscopy. Analytical Letters, 39, 1171–1185.

    CAS  Google Scholar 

  • Ghorbani, H. R., Pazoki, H., & Rad, A. S. (2017). Synthesis of magnetite nanoparticles by biological technique. Biosciences, Biotechnology Research Asia, 14(2), 631–633.

    Google Scholar 

  • Ghosh, A., Dastidar, M. G., & Sreekrishnan, T. R. (2017). Bioremediation of chromium complex dyes and treatment of sludge generated during the process. International Biodeterioration and Biodegradation, 119, 448–460.

    CAS  Google Scholar 

  • Gita, S., Shukla, S. P., Saharan, N., Prakash, C., & Deshmukhe, G. (2019). Toxic effects of selected textile dyes on elemental composition, photosynthetic pigments, protein content and growth of a freshwater Chlorophycean alga Chlorella vulgaris. Bulletin of Environmental Contamination and Toxicology, 102, 795–801.

    CAS  Google Scholar 

  • Golmohammadi, M., Honarmand, M., & Ghanbari, S. (2019). A green approach to synthesis of ZnO nanoparticles using jujube fruit extract and their application in photocatalytic degradation of organic dyes. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 131(2), 233–241.

    Google Scholar 

  • Golob, V., Vinder, A., & Simonic, A. (2005). Efficiency of the coagulation/flocculation method for the treatment of dye bath effluents. Dyes and Pigments, 67, 93–97.

    CAS  Google Scholar 

  • Govindwar, S. P., & Kagalkar, A. N. (2010). Phytoremediation technologies for the removal of textile dyes: An overview and future prospectus (pp. 472–494). New York: Nova Science Publisher.

    Google Scholar 

  • Guibal, E., & Roussy, J. (2007). Coagulation and flocculation of dye containing solutions using a biopolymer (chitosan). Reactive and Functional Polymers, 67, 33–42.

    CAS  Google Scholar 

  • Gupta, V. K., & Suhas. (2009). Application of low-cost adsorbents for dye removal- A review. Journal of Environmental Management, 90, 2313–2342.

    CAS  Google Scholar 

  • Hamed, M. A. (2005). Pre-concentration and separation of Fe (III), Co (II), Ni (II) and Zn (II) by solid phase extraction using silica modified with N-propylsalicylaldimine. Egyptian Journal of Aquatic Research, 31(1), 31–41.

    Google Scholar 

  • Hilal, N. M., Ahmed, I. A., & Badr, E. E. (2012). Removal of acid dye (AR37) by adsorption onto potatoes and egg husk: A comparative study. Journal of American Science, 8, 341–348.

    Google Scholar 

  • Hu, J., Lo, I. M. C., & Chen, G. (2007). Comparative study of various magnetic nanoparticles for Cr (VI) removal. Separation and Purification Technology, 56, 249–256.

    CAS  Google Scholar 

  • Huang, H., Schwab, K., & Jacangelo, J. G. (2009). Pretreatment for low pressure membranes in water treatment: A review. Environmental Science & Technology, 43, 3011–3019.

    CAS  Google Scholar 

  • Huang, L., Weng, X., Chen, Z., Megharaj, M., & Naidu, R. (2014). Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 117, 801–804.

    CAS  Google Scholar 

  • Huang, X., Chang, X., He, Q., Cui, Y., Zhai, Y., & Jiang, N. (2008). Tris (2-aminiethyl) amine funtionalized silica gel for solid-phase extraction and pre-concentration of Cr (III), Cd (II) and Pb (II) from water. Journal of Hazardous Materials, 157, 154–160.

    CAS  Google Scholar 

  • Huang, Z., Li, Y., Chen, W., Shi, J., Zhang, N., Wang, X., Li, Z., Gao, L., & Zhang, Y. (2017). Modified bentonite adsorption of organic pollutants of dye wastewater. Materials Chemistry and Physics, 202, 266–276.

    CAS  Google Scholar 

  • Hunger, K. (2003). Industrial dyes: Chemistry, properties, application. Weinheim: Willey-VCH Verlag GmbH and Co.KGaA.

    Google Scholar 

  • Imron, M. F., Kurniawan, S. B., Soegianto, A., & Wahyudianto, F. E. (2019). Phytoremediation of methylene blue using duckweed (Lemna minor). Heliyon, 5, 02206.

    Google Scholar 

  • Imtiazuddin, S. M., Mumtaz, M., & Mallick, K. A. (2012). Pollutants of wastewater characteristics in textile industries. Journal of Basic and Applied Sciences, 8, 554–556.

    CAS  Google Scholar 

  • Jain, K., Johnson, J., Devpura, N., Rathour, R., Desai, C., Tiwari, O., & Madamwar, D. (2020). Emerging bioremediation technologies for the treatment of wastewater containing synthetic organic compounds. In Emerging technologies in environmental bioremediation (pp. 131–150). Elsevier.

    Google Scholar 

  • Jebali, A., Ramezani, F., & Kazemi, B. (2011). Biosynthesis of silver nanoparticles by Geotricum sp. Journal of Cluster Science, 22, 225–232.

    CAS  Google Scholar 

  • Jyoti, K., & Singh, A. (2016). A Green synthesis of nanostructured silver particles and their catalytic application in dye degradation. Journal, Genetic Engineering & Biotechnology, 14(311), 317.

    Google Scholar 

  • Kabra, A., Khandare, R., & Govindwar, S. (2013). Development of a bioreactor for remediation of textile effluent and dye mixture: A plant-bacterial synergistic strategy. Water Research, 47, 1035–1048.

    CAS  Google Scholar 

  • Kagalkar, A. N., Jagtap, U., Jadhav, J. P., & Bapat, V. A. (2009). Biotechnological strategies for phytoremediation of the sulfonated azo dye Direct Red 5B using Blumea malcolmii Hook. Bioresource Technology, 100(18), 4104–4110.

    CAS  Google Scholar 

  • Kagalkar, A. N., Jagtap, U. B., Jadhav, J. P., Govindwar, S. P., & Bapat, S. A. (2010). Studies on phytoremediation potentiality of Typhonium flagelliforme for the degradation of Brilliant Blue R. Planta, 232(1), 271–285.

    CAS  Google Scholar 

  • Kalaicelvi, A., Sivasathya, B., & Kavitha, K. K. (2016). Bioremediation of colour removal in dye effluent by Moringa oleifera seed powder. International Journal of Agricultural and Life Sciences, 2(4), 101–105.

    Google Scholar 

  • Kalme, S., Ghodake, G., & Govindwar, S. (2007). Red HE7B degradation using desulfonation by Pseudomonas desmolyticum NCIM 2112. International Biodeterioration & Biodegradation, 60, 327–333.

    CAS  Google Scholar 

  • Kalyani, D. C., Patil, P. S., Jadhav, J. P., & Govindwar, S. P. (2008). Biodegradation of reactive textile dye Red BLI by an isolated bacterium Pseudomonas sp. SUK1. Bioresource Technology, 99, 4635–4641.

    CAS  Google Scholar 

  • Kamat, R. B. (2014). Phytoremediation for dye decolorization (Ph.D. thesis). Kansas State University, Manhattan.

    Google Scholar 

  • Kang, M., Kamei, T., & Magara, Y. (2003). Comparing polyaluminium chloride and ferric chloride for antimony removal. Water Research, 37, 4171–4179.

    CAS  Google Scholar 

  • Khan, Z. U. H., Khan, A., Shah, A., Wan, P., Chen, Y., Khan, G. M., Khan, A. U., Tahir, K., Muhammad, N., & Khan, H. U. (2016). Enhanced photocatalytic and electrocatalytic applications of green synthesized silver nanoparticles. Journal of Molecular Liquids, 220, 248–257.

    Google Scholar 

  • Khataee, A. R., Movafeghi, A., Torbati, S., Lisar, S. S. Y., & Zarei, M. (2012). Phytoremediation potential of duckweed (Lemna minor L.) in degradation of C.I. Acid Blue 92: Artificial neural network modeling. Ecotoxicology and Environmental Safety, 80, 291–298.

    CAS  Google Scholar 

  • Khatoon, N., & Sardar, M. (2017). Efficient removal of toxic textile dyes using silver nanocomposites. Journal of Nanosciences: Current Research, 2, 2.

    Google Scholar 

  • Kiran, S., Rafique, M. A., & Iqbal, S. (2020). Synthesis of nickel nanoparticles using Citrullus colocynthis stem extract for remediation of Reactive Yellow 160 dye. Environmental Science and Pollution Research, 27, 32998–33007.

    CAS  Google Scholar 

  • Kocaman, S. (2020). Removal of methylene blue dye from aqueous solutions by adsorption on levulinic acid-modified natural shells. International Journal of Phytoremediation, 22, 885–895.

    CAS  Google Scholar 

  • Kumara, N., Sinhaa, S., Mehrotraa, T., Singha, R., Tandonb, S., & Thakur, I. S. (2019). Biodecolorization of azo dye Acid Black 24 by Bacillus pseudomycoides: Process optimization using Box Behnken design model and toxicity assessment. Bioresource Technology Reports, 8, 1–10.

    Google Scholar 

  • Kurita, K. (2006). Chitin and chitosan: Funtional bioploymers from marine crustaceans. Marine Biotechnology, 8, 203–226.

    CAS  Google Scholar 

  • Kyzas, G. Z., Fu, J., & Matis, K. A. (2013). The change from past to future for adsorbent materials in treatment of dyeing wastewaters. Materials, 6, 5131–5158.

    Google Scholar 

  • Laoufi, I., Saint Lager, M. C., Lazzari, R., Jupille, J., Robach, O., & Garaudee, S. (2011). Size and catalytic activity of supported gold nanoparticles: An in operand study during CO oxidation. Journal of Physical Chemistry C, 115, 4679–4679.

    Google Scholar 

  • Le Marechal, A. M., Križanec, B., Vajnhandl, S., & Valh, J. V. (2012). Textile finishing industry as an important source of organic pollutants. In T. Puzyn (Ed.), Organic pollutants ten years after the stockholm convention – Environmental and analytical update. InTech.

    Google Scholar 

  • Le, O. T. H., Tran, L. N., Doan, V. T., Pham, Q. V., Ngo, A. V., & Nguyen, H. H. (2020). Mucilage extracted from dragon fruit peel (Hylocereus undatus) as flocculant for treatment of dye wastewater by coagulation and flocculation process. International Journal of Polymer Science, 4, 1–9.

    Google Scholar 

  • Mahajan, P., & Kaushal, J. (2016). Phytoremediation potential of Hydrilla verticillata for the degradation of contaminants from textile effluent. Research Journal, 2(2), 69–74.

    Google Scholar 

  • Mahajan, P., Kaushal, J., Upmanyu, A., & Bhatti, J. (2019). Assessment of phytoremediation potential of Chara vulgaris to treat toxic pollutants of textile effluent. Journal of Toxicology, 2019, 1–11.

    Google Scholar 

  • Mahmood, Q., Zheng, P., Islam, E., Hayat, Y., Hassan, M. J., Jilani, G., & Jin, R. C. (2005). Lab scale studies on Water Hyacinth (Eichhornia crassipes Marts Solms) for biotreatment of textile wastewater. Caspian Journal of Environmental Sciences, 3(2), 83–88.

    Google Scholar 

  • Mahmood, R., Sharif, F., Ali, S., Hayyat, M. U., & Cheema, T. A. (2012). Isolation of indigenous bacteria and consortia development for decolorization of textile dyes. Biologia (Pakistan), 58(1–2), 53–60.

    Google Scholar 

  • Mahmoodi, N. M., Salehi, R., Arami, M., & Bahrami, H. (2011). Dye removal from coloured textile wastewater using chitosan in binary systems. Desalination, 267, 64–72.

    CAS  Google Scholar 

  • Mahmoudabadi, T. Z., Abbasi, F., & Talebi, P. J. M. (2019a). Effectiveness of Plantago major extract as a natural coagulant in removal of Reactive Blue 19 dye from wastewater. International journal of Environmental Science and Technology, 16, 1–8.

    Google Scholar 

  • Mahmoudabadi, T. Z., Talebi, P., & Jalili, M. (2019b). Removing Disperse red 60 and Reactive blue 19 dyes removal by using Alcea rosea root mucilage as a natural coagulant. AMB Express, 9, 113.

    Google Scholar 

  • Mamania, J. B., Costa-Filhob, A. J., Cornejoc, D. R., Vieirad, E. D., & Gamarraa, L. F. (2013). Synthesis and characterization of magnetite nanoparticles coated with lauric acid. Materials Characterization, 81, 28–36.

    Google Scholar 

  • Mandal, D., Bolander, M. E., Mukhopahyay, D., Sarkar, G., & Mukherjee, P. (2006). The use of microorganisms for the formation of metal nanoparticles and their application. Applied Microbiology and Biotechnology, 69, 485–492.

    CAS  Google Scholar 

  • Manholer, D. D., de Souza, M. T. F., Ambrosio, E., de Souza Freitas, T. K. F., Geraldino, H. C. L., & Garcia, J. C. (2019). Coagulation/flocculation of textile effluent using a natural coagulant extracted from Dillwnia indica. Water Science and Technology, 80(5), 979–988.

    CAS  Google Scholar 

  • Marcucci, M., Ciardelli, G., Matteucci, A., Ranieri, L., & Russo, M. (2002). Experimental campaigns on textile wastewater for reuse by means of different membrane processes. Desalination, 149(1–3), 137–143.

    CAS  Google Scholar 

  • Mattioli, D., Malpei, F., Borone, G., & Rozzi, A. (2002). Water minimisation and reuse in the textile industry. In P. Lens, L. H. Pol, P. Wilderer, & T. Asano (Eds.), Water recycling and resource recovery in industry. Cornwall: IWA Publishing.

    Google Scholar 

  • McHenry, M. E., & Laughlin, D. E. (2000). Nano-scale materials development for future magnetic applications. Acta Materialia, 48(1), 223–238.

    CAS  Google Scholar 

  • Miyah, Y., Lahrichi, A., Idrissi, M., Khalil, A., & Zerrouq, F. (2018). Adsorption of methylene blue dye from aqueous solutions onto walnut shells powder: Equilibrium and kinetic studies. Surfaces and Interfaces, 11, 74–81.

    CAS  Google Scholar 

  • Munagapati, V. S., Wen, J. C., Pan, C. L., Gutha, Y., Wen, J. H., & Reddy, G. M. (2019). Adsorptive removal of anionic dye (Reactive Black 5) from aqueous solution using chemically modified banana peel powder: Kinetic, isotherm, thermodynamic, and reusability studies. International Journal of Phytoremediation, 22(3), 267–278.

    Google Scholar 

  • Muthusamy, S., Govindaraj, D., & Rajendran, D. (2018). Phytoremediation of textile dye effluents. In S. J. Varjani et al. (Eds.), Bioremediation: Applications for environmental protection and managements, energy, environment and sustainability (pp. 359–373). Springer Nature Singapore Pt Ltd., Springer.

    Google Scholar 

  • Nigam, P., Armour, G., Banat, I. M., Singh, D., & Marchan, R. (2000). Physical removal of textile dyes and solid state fermentation of dye-adsorbed agricultural residues. Bioresource Technology, 72, 219–226.

    CAS  Google Scholar 

  • Ozkan, Z. Y., Cakirgoz, M., Kaymak, E. S., & Erdim, E. (2017). Rapid decolorization of textile wastewater by green synthesized iron nanoparticles. Water Science and Technology, 77, 511–517.

    Google Scholar 

  • Paczkowska, M., Kozłowska, M., & Golinski, P. (2007). Oxidative stress enzyme activity in Lemna minor L. exposed to cadmium and lead. Acta Biologica Cracoviensia Series Botanica, 49(2), 33–37.

    Google Scholar 

  • Pandey, B. V., Dubey, M. K., & Upadhyay, R. S. (2019). Bioremediation of textile dye procion red yellow by using Pseudomonas fluorescens. Proceedings of the National Academy of Sciences / B. Section B, Biological Sciences, 90, 135–141.

    Google Scholar 

  • Park, Y., Hong, Y., Weyers, A., Kim, Y., & Linhardt, R. (2011). Polysaccharides and phytochemicals: A natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnology, 5, 69–78.

    CAS  Google Scholar 

  • Patel, H., & Vashi, R. T. (2010). Treatment of textile wastewater by adsorption and coagulation. European Journal of Chemistry, 7(4), 1468–1476.

    CAS  Google Scholar 

  • Patel, S. V., & Adhvaryu, R. M. (2016). Removal of textile dye by using Eichhornia spp. and Pistia spp. by Aquatic Macrophytes Treatment Systems (AMTS) – An eco-friendly technique. International Journal of Scientific and Engineering Research, 4(7), 62–66.

    Google Scholar 

  • Patil, S. M., Suryavanshi, M. V., Chandanshive, V. V., Kurade, M. B., Govindwar, S. P., & Jeon, B. H. (2020). Regeneration of textile wastewater deteriorated microbial diversity of soil microcosm through bioaugmentation. Chemical Engineering Journal, 380, 1–12.

    Google Scholar 

  • Pereira, L., & Alves, M. (2012). Dyes-environmental impact and remediation. In A. Malik & E. Grohmann (Eds.), Environmental protection strategies for sustainable development, strategies for sustainability (pp. 111–162). Springer.

    Google Scholar 

  • Phalakornkule, C., Polgumhaug, S., Tongdaung, W., Karakat, B., & Nuyut, T. (2010). Electrocoagulation of blue reactive, red disperse and mixed dyes and application in treating textile effluent. Journal of Environmental Management, 91, 918–926.

    CAS  Google Scholar 

  • Phugare, S. S., Kalyani, D. C., Patiol, A. V., & Jadhav, J. P. (2011). Textile dye degradation by bacterial consortium and subsequent toxicological analysis of dye and dye metabolites using cytotoxicity, genotoxicity and oxidative stress studies. Journal of Hazardous Materials, 186, 713–723.

    CAS  Google Scholar 

  • Ponnusamy, S. K. (2014). Adsorption of methylene blue dye onto surface modified cashew nut shell. Environmental Engineering and Management Journal, 13, 545–556.

    Google Scholar 

  • Punzi, M. (2015). Treatment of textile wastewater by combining biological process and advanced oxidation (Ph.D. thesis).

    Google Scholar 

  • Qasim, W., & Mane, A. V. (2013). Characterization and treatment of selected food industrial effluents by coagulation and adsorption techniques. Water Resources and Industry, 4, 1–12.

    Google Scholar 

  • Rafique, M., Shafiq, F., Gillani, S. S. A., Shakil, M., Tahir, M. B., & Sadaf, I. (2019). Eco-friendly green and biosynthesis of copper oxide nanoparticles using Citrofortunella microcarpa leaves extract for efficient photocatalytic degradation of Rhodamin B dye form textile wastewater. Optik, 99, 1313–1324.

    CAS  Google Scholar 

  • Rai, M. S., Bhat, P. R., Prajna, P. S., Jayadev, K., & Rao, P. S. V. (2014). Degradation of malachite green and congo red using Aloe barabadensis mill extract. International Journal of Current Microbiology and Applied Sciences, 3(4), 330–340.

    Google Scholar 

  • Raichurkar, P., & Ramachandran, N. (2015). Recent trends and development in textile industry in India. International Journal on Textile Engineering and Processes, 1(4), 47–50.

    Google Scholar 

  • Ramavandi, B. (2014). Treatment of water turbidity and bacteria by using a coagulant extracted from Plantago ovate. Water Resources and Industry, 6, 36–50.

    Google Scholar 

  • Rane, N., Chandanshive, V., Khandare, R., Gholave, A., Yadav, S., & Govindwar, S. (2014). Green remediation of textile dyes containing wastewater by Ipomoea hederifolia L. RSC Advances, 4, 36623–36632.

    CAS  Google Scholar 

  • Rane, N., Chandanshive, V., Watharkar, A., Khandare, R., Patil, T., Pawar, P., & Govindwar, S. (2015). Phytoremediation of sulfonated Remazol Red dye and textile effluents by Alternanthera philoxeroides: An anatomical, enzymatic and pilot scale study. Water Research, 83, 271–281.

    CAS  Google Scholar 

  • Rivera, M., Pazos, M., & Sanroman, M. A. (2011). Development of an electrochemical cell for the removal of Reactive Black 5. Desalination, 274(1), 39–43.

    CAS  Google Scholar 

  • Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluents: A critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77, 247–255.

    CAS  Google Scholar 

  • Rotello, V. M. (2004). Nanoparticles: Building blocks for nanotechnology. New York: Springer Science and Business Media.

    Google Scholar 

  • Roy, R., Fakhruddin, A. N. M., Khatuni, R., & Islam, M. S. (2010). Reduction of COD and pH of textile industrial effluents by aquatic macrophytes and algae. Journal of Bangladesh Academy of Sciences, 34(1), 9–14.

    CAS  Google Scholar 

  • Sachin, M. K., Gaikwad, R. W., & Misal, S. A. (2010). Low cost sugarcane bagasse ash as an adsorbent for dye removal from dye effluent. International Journal of Chemical Engineering and Applications, 1(4), 309–318.

    Google Scholar 

  • Saeed, A., Sharif, M., & Iqbal, M. (2010). Application potential of grapefruit peel as dye sorbent: Kinetics, equilibrium and mechanism of crystal violet adsorption. Journal of Hazardous Materials, 179, 564–572.

    CAS  Google Scholar 

  • Saif, S., Tahir, A., & Chen, Y. (2016). Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials, 6(209), 1–26.

    Google Scholar 

  • Sanghi, R., Bhatttacharya, B., Dixit, A., & Singh, V. (2006). Ipomoea dasysperma seed gum: An effective natural coagulant for the decolorisation of textile dye solutions. Journal of Environmental Management, 81, 36–41.

    CAS  Google Scholar 

  • Santhanama, M., Selvaraj, R., Veerasubbian, V., & Sundaram, M. (2019). Bacterial degradation of electrochemically oxidized textile effluent: Performance of oxic, anoxic and hybrid oxic-anoxic consortium. Chemical Engineer, 355, 186–195.

    Google Scholar 

  • Sapna, M. M., Sonal, G. C., & Raut, P. D. (2012). Use of Moringa oleifera (drumstick) seed as natural absorbent and an antimicrobial agent for ground water treatment. Research Journal of Recent Sciences, 1, 31–40.

    Google Scholar 

  • Saratale, R. G., Saratale, G. D., Chang, J. S., & Govindwar, S. P. (2011). Bacterial decolourization and degradation of azo dyes: A review. Journal of the Taiwan Institute of Chemical Engineers, 42, 138–157.

    CAS  Google Scholar 

  • Sathiyaraj, G., Ravindran, C. K., & Malik, Z. H. (2017). Physico-chemical characteristics of textile effluent collected from Erode, Pallipalayam and Bhavani polluted regions, Tamil Nadu, India. Journal of Ecobiotechnology, 9, 1–4.

    Google Scholar 

  • Senthilkumar, P., Varjani, S. J., & Suganya, S. (2018). Treatment of dye wastewater using an ultrasonic aided nanoparticle stacked activated carbon: Kinetic and isotherm modeling. Bioresource Technology, 250, 716–722.

    CAS  Google Scholar 

  • Sethi, S., Shubhum, Malviya, M. M., Sharma, N., & Gupta, S. (2012). Biodecolorization of Azo dye by microbial isolates from textile effluent and sludge. Universal Journal of Environmental Research and Technology, 2(6), 582–590.

    CAS  Google Scholar 

  • Shamsnejati, S., Chaibakhsh, N., Pendashteh, A. R., & Hayeripour, S. (2015). Mucilaginous seed of Ocimum basilicum as a natural coagulant for textile wastewater treatment. Industrial Crops and Products, 69, 40–47.

    CAS  Google Scholar 

  • Shanmugam, L., Ahire, M., & Nikam, T. (2019). Bacopa monnieri (L.) Pennell, a potential plant species for degradation of textile azo dyes. Environmental Science and Pollution Research, 27, 9349–9363.

    Google Scholar 

  • Sharma, B., & Deswal, R. (2018). Single pot synthesized gold nanoparticles using Hippophae rhamnoides leaf and berry extract showed shape-dependent differential nanobiotechnological applications. Artificial Cells, Nanomedicine, and Biotechnology, 46(2), 408–410.

    CAS  Google Scholar 

  • Shen, Y. F., Tang, J., Nie, Z. H., Wang, Y. D., Ren, Y., & Zuo, L. (2009). Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification. Separation and Purification Technology, 68, 312–319.

    CAS  Google Scholar 

  • Sinha, R. K., Herat, S., & Tandon, P. K. (2007). Phytoremediation: role of plants in contaminated site management. In S. N. Singh & R. D. Tripathi (Eds.), Environmental bioremediation technologies (pp. 315–330). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Sureshvarr, K., Bharathiraja, B., Jayakumar, M., Jayamuthunagai, J., & Balaji, L. (2010). Removal of azo dye compounds from paper industries waste using phytoremediation methodology. International Journal of Chemical Sciences, 8(1), 687–700.

    CAS  Google Scholar 

  • Taher, A., Mohsin, M., Farooqui, M., & Farooqui, M. (2010). Studies on the isotherms, kinetics and thermodynamics of adsorption of crystal violet on low cost materials. Journal of Advanced Scientific Research, 3, 36–44.

    Google Scholar 

  • Tangahu, B. V., Abdullah, S. R. S., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, 2011, 1–31.

    Google Scholar 

  • Tehrani-Bagha, N., & Mahmoodi, F. (2010). Degradation of a persistent organic dyes form colored textile wastewater by ozonation. Desalination, 260, 34–38.

    CAS  Google Scholar 

  • Telke, A. A., Joshi, S. M., Jadav, S. U., Tamboli, D. P., & Govindwar, S. P. (2009). Decolorization and detoxification of Congo red and textile industry effluent by an isolated bacterium Pseudomonas sp. SU-EBT. Biodegradation, 21, 283–296.

    Google Scholar 

  • Torok, A., Buta, E., Indolean, C., Tonk, S., Dumitrescu, L. S., & Majdik, C. (2015). Biological removal of Triphenylmethane dyes from aqueous solution by Lemna minor. Acta Chimica Slovenica, 62, 452–461.

    CAS  Google Scholar 

  • Ugya, A. Y., Hua, X., & Ma, J. (2017). Phytoremediation as a tool for the remediation of wastewater resulting from dyeing activities. Applied Ecology and Environmental Research, 17, 3723–3735.

    Google Scholar 

  • Vafaei, F., Khataee, A. R., Movafeghi, A., Lisar, S. Y. S., & Zarei, M. (2012). Bioremoval of an azo dye by Azolla filiculoides: Study of growth, photosynthetic pigments and antioxidant enzymes status. International Biodeterioration & Biodegradation, 75, 194–200.

    CAS  Google Scholar 

  • Vasanthy, M., Santhiya, M., Swabna, V., & Geetha, A. (2011). Phytodegradation of textile dyes by water Hyacinth (Eichhornia crassipes) from aqueous dye solutions. International Journal of Environmental Sciences, 1, 1702–1717.

    Google Scholar 

  • Velmurugan, P., Kumar, V. R., & Dhinakaran, G. (2011). Dye removal from aqueous solution using low cost adsorbent. International Journal of Environmental Sciences, 1(7), 1492.

    CAS  Google Scholar 

  • Verma, A. K., Dash, R. R., & Bhunia, P. (2012). A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 93(1), 154–168.

    CAS  Google Scholar 

  • Verma, A. K., Raghukumar, C., & Naik, C. G. (2011). A novel hybrid technology for remediation of molasses-based effluents. Bioresource Technology, 102, 2411–2418.

    CAS  Google Scholar 

  • Vieira, A. P., Santana, S. A. A., Bezerra, C. W. B., Silva, H. A. S., Chaves, J. A. P., Melo, J. C. P., Filho, E. C. S., & Airoldi, C. (2011). Removal of textile dyes from aqueous solution by babassu coconut epicarp, Orbignya speciosa. Chemical Engineering Journal, 173, 334–340.

    CAS  Google Scholar 

  • Vijayaraghavan, T., Sivakumar, A., & Kumar, V. (2011). Application of plant based coagulants for wastewater treatment. International Journal of Advanced Engineering Research and Studies, 1(1), 88–92.

    Google Scholar 

  • Vikranta, K., Giria, B. S., Razab, N., Roya, K., Kimd, K. H., Raia, B. N., & Singha, R. S. (2018). Recent advancements in bioremediation of dye: Current status and challenges. Bioresource Technology, 253, 355–367.

    Google Scholar 

  • Wadje, P. R. (2009). Textile-fiber to fabric processing. Journal of The Institution of Engineers (India): Series D, 90, 28–36.

    Google Scholar 

  • Wang, W., Yue, Q., Li, R., Song, W., Gao, B., & Shen, X. (2018). Investigating coagulation behavior of chitosan with different Al species dual-coagulants in dye wastewater treatment. Journal of the Taiwan Institute of Chemical Engineers, 78, 423–430.

    Google Scholar 

  • Watharkar, A. D., Kadam, S. K., Khandare, R. V., Kolekar, P. D., Jeon, B. H., Jadhav, J. P., & Govindwar, S. P. (2018). Asparagus densiflorus in a vertical subsurface flow phytoreactor for treatment of real textile effluent: A lab to land approach for in situ soil remediation. Ecotoxicology and Environmental Safety, 161, 70–77.

    CAS  Google Scholar 

  • Wu, J., Ma, L., Chen, Y., Cheng, Y., Liu, Y., & Zha, X. (2016). Catalytic ozonation of organic pollutants from bio-treated dyeing and finishing wastewater using recycled waste iron shavings as a catalyst: Removal and pathways. Water Research, 92, 140–148.

    CAS  Google Scholar 

  • Yang, C. F., Liu, S. H., Su, Y. M., Lin, Y. R., & Lin, K. L. (2019). Bioremediation capability evaluation of benzene and sulfolane contaminated groundwater: Determination of bioremediation parameters. The Science of the Total Environment, 648, 811–818.

    CAS  Google Scholar 

  • Yang, J. X., & Hong, G. B. (2018). Adsorption behavior of modified Glossogyne tenuifolia leaves as a potential biosorbent for the removal of dyes. Journal of Molecular Liquids, 252, 289–295.

    CAS  Google Scholar 

  • Yantasee, W., Warner, C. L., Sangvanich, T., Addleman, R. S., Carter, T. G., Wiacek, R. J., Fryxell, G. E., Timchalk, C., & Warner, M. G. (2007). Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environmental Science & Technology, 41(14), 5114–5119.

    CAS  Google Scholar 

  • Yaseen, D. A., & Scholz, M. (2018). Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. International journal of Environmental Science and Technology, 16, 1193–1226.

    Google Scholar 

  • Yin, C. Y. (2010). Emerging usage of plant-based coagulants for water and wastewater treatment. Process Biochemistry, 45, 1437–1444.

    CAS  Google Scholar 

  • Zaharia, C., Suteu, D., Muresan, A., Muresan, R., & Popescu, A. (2009). Textile wastewater treatment by homogenous oxidation with hydrogen peroxide. Environmental Engineering and Management Journal, 8(6), 1359–1369.

    CAS  Google Scholar 

  • Zahrim, A. Y., Tizaoui, C., & Hilal, N. (2011). Coagulation with polymers for nanofiltration pre-treatment of highly concentrated dyes: A review. Desalination, 266, 1–16.

    CAS  Google Scholar 

  • Zhou, L., Zhou, H., & Yang, X. (2019). Preparation and performance of a novel starch-based inorganic/organic composite coagulant for textile wastewater treatment. Separation and Purification Technology, 210, 93–99.

    CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Dr. M. Vasanthy, Associate Professor, Department of Environmental Biotechnology, Bharathidasan University, Trichy, for precious guidance.

Conflict of Interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahila, K.G., Vinodini, S.K., Ancy Jenifer, A., Thamaraiselvi, C. (2022). An Overview on Eco-friendly Remediation of Toxic Organic Contaminants from Textile Dyeing Industry Wastewater. In: Vasanthy, M., Sivasankar, V., Sunitha, T.G. (eds) Organic Pollutants. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-72441-2_17

Download citation

Publish with us

Policies and ethics