Skip to main content

Improving Search Efficiency and Diversity of Solutions in Multiobjective Binary Optimization by Using Metaheuristics Plus Integer Linear Programming

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2021)

Abstract

Metaheuristics for solving multiobjective problems can provide an approximation of the Pareto front in a short time, but can also have difficulties finding feasible solutions in constrained problems. Integer linear programming solvers, on the other hand, are good at finding feasible solutions, but they can require some time to find and guarantee the efficient solutions of the problem. In this work we combine these two ideas to propose a hybrid algorithm mixing an exploration heuristic for multiobjective optimization with integer linear programming to solve multiobjective problems with binary variables and linear constraints. The algorithm has been designed to provide an approximation of the Pareto front that is well-spread throughout the objective space. In order to check the performance, we compare it with three popular metaheuristics using two benchmarks of multiobjective binary constrained problems. The results show that the proposed approach provides better performance than the baseline algorithms in terms of number of the solutions, hypervolume, generational distance, inverted generational distance, and the additive epsilon indicator.

This research is partially funded by the Spanish Ministry of Economy and Competitiveness and FEDER under contract TIN2017-88213-R (6city); Universidad de Málaga, Consejería de Economía y Conocimiento de la Junta de Andaluía and FEDER under grant number UMA18-FEDERJA-003 (PRECOG); Spanish Ministry of Science, Innovation and Universities and FEDER under contracts RTC-2017-6714-5 (Eco-IoT) and RED2018-102472-T (SEBASENet 2.0); and TAILOR ICT-48 Network (No 952215) funded by EU Horizon 2020 research and innovation programme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Outputs for the ILP solver CPLEX 12.6.2.

  2. 2.

    Available in http://home.ku.edu.tr/~moolibrary/.

  3. 3.

    Available in https://sop.tik.ee.ethz.ch/download/supplementary/testProblemSuite/.

  4. 4.

    https://github.com/MiguelAngelDominguezRios/MOFeLS.

  5. 5.

    https://github.com/jMetal/jMetal.

References

  1. Asafuddoula, M., Ray, T., Sarker, R., Alam, K.: An adaptive constraint handling approach embedded MOEA/D. In: 2012 IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2012)

    Google Scholar 

  2. Ball, M.O.: Heuristics based on mathematical programming. Surv. Oper. Res. Manage. Sci. 16(1), 21–38 (2011)

    Google Scholar 

  3. Blum, C., Pereira, J.: Extension of the CMSA algorithm: an LP-based way for reducing sub-instances. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 285–292 (2016)

    Google Scholar 

  4. Blum, C., Pinacho, P., López-Ibáñez, M., Lozano, J.A.: Construct, merge, solve and adapt a new general algorithm for combinatorial optimization. Comput. Oper. Res. 68, 75–88 (2016)

    Article  MathSciNet  Google Scholar 

  5. Boschetti, M.A., Maniezzo, V., Roffilli, M., Bolufé Röhler, A.: Matheuristics: optimization, simulation and control. In: Blesa, M.J., Blum, C., Di Gaspero, L., Roli, A., Sampels, M., Schaerf, A. (eds.) HM 2009. LNCS, vol. 5818, pp. 171–177. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04918-7_13

    Chapter  Google Scholar 

  6. Chalmet, L., Lemonidis, L., Elzinga, D.: An algorithm for the bi-criterion integer programming problem. Eur. J. Oper. Res. 25(2), 292–300 (1986). https://doi.org/10.1016/0377-2217(86)90093-7

  7. Chicano, F., Whitley, D., Tinos, R.: Efficient hill climber for constrained pseudo-boolean optimization problems. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 309–316 (2016)

    Google Scholar 

  8. Dächert, K., Klamroth, K.: A linear bound on the number of scalarizations needed to solve discrete tricriteria optimization problems. J. Global Optim. 61(4), 643–676 (2014). https://doi.org/10.1007/s10898-014-0205-z

    Article  MathSciNet  MATH  Google Scholar 

  9. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45356-3_83

    Chapter  Google Scholar 

  10. Durillo, J.J., Nebro, A.J.: jMetal: a java framework for multi-objective optimization. Adv. Eng. Softw. 42(10), 760–771 (2011)

    Article  Google Scholar 

  11. Ehrgott, M., Tenfelde-Podehl, D.: Computation of ideal and nadir values and implications for their use in MCDM methods. Eur. J. Oper. Res. 151(1), 119–139 (2003). https://doi.org/10.1016/S0377-2217(02)00595-7

  12. Fonseca, C.M., Paquete, L., López-Ibáñez, M.: An improved dimension-sweep algorithm for the hypervolume indicator. In: Proceedings of the IEEE Congress on Evolutionary Computation, 2006. CEC 2006, pp. 1157–1163. IEEE (2006). https://doi.org/10.1109/CEC.2006.1688440

  13. Jiang, S., Ong, Y.S., Zhang, J., Feng, L.: Consistencies and contradictions of performance metrics in multiobjective optimization. IEEE Trans. Cybern. 44(12), 2391–2404 (2014). https://doi.org/10.1109/TCYB.2014.2307319

  14. Kirlik, G., Sayın, S.: A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems. Eur. J. Oper. Res. 232(3), 479–488 (2014). https://doi.org/10.1016/j.ejor.2013.08.001

  15. Klamroth, K., Lacour, R., Vanderpooten, D.: On the representation of the search region in multi-objective optimization. Eur. J. Oper. Res. 245(3), 767–778 (2015). https://doi.org/10.1016/j.ejor.2015.03.031

  16. Li, M., Yao, X.: Quality evaluation of solution sets in multiobjective optimisation: a survey. ACM Comput. Surv. 52(2), 1–38 (2019)

    Article  Google Scholar 

  17. Liefooghe, A., Derbel, B.: A correlation analysis of set quality indicator values in multiobjective optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, pp. 581–588 (2016)

    Google Scholar 

  18. Liu, Q., Li, X., Liu, H., Guo, Z.: Multi-objective metaheuristics for discrete optimization problems: a review of the state-of-the-art. Appl. Soft Comput. 93, 106382 (2020). https://doi.org/10.1016/j.asoc.2020.106382

  19. López-Ibáñez, M., Stützle, T.: Automatically improving the anytime behaviour of optimisation algorithms. Eur. J. Oper. Res. 235(3), 569–582 (2014). https://doi.org/10.1016/j.ejor.2013.10.043

  20. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)

    MathSciNet  Google Scholar 

  21. Mezura-Montes, E., Coello Coello, C.A.: Constraint-handling in nature-inspired numerical optimization: past, present and future. Swarm Evol. Comput. 1(4), 173–194 (2011). https://doi.org/10.1016/j.swevo.2011.10.001

    Article  Google Scholar 

  22. While, L., Bradstreet, L., Barone, L.: A fast way of calculating exact hypervolumes. IEEE Trans. Evol. Comput. 16(1), 86–95 (2012). https://doi.org/10.1109/TEVC.2010.2077298

  23. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  24. Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: on the design of pareto-compliant indicators via weighted integration. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 862–876. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2_64

    Chapter  Google Scholar 

  25. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm. TIK-report 103 (2001). https://doi.org/10.3929/ethz-a-004284029

  26. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms-a comparative case study. In: International Conference on Parallel Problem Solving from Nature, pp. 292–301. Springer (1998). https://doi.org/10.1007/BFb0056872

  27. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003). https://doi.org/10.1109/TEVC.2003.810758

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Ángel Domínguez-Ríos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Domínguez-Ríos, M.Á., Chicano, F., Alba, E. (2021). Improving Search Efficiency and Diversity of Solutions in Multiobjective Binary Optimization by Using Metaheuristics Plus Integer Linear Programming. In: Castillo, P.A., Jiménez Laredo, J.L. (eds) Applications of Evolutionary Computation. EvoApplications 2021. Lecture Notes in Computer Science(), vol 12694. Springer, Cham. https://doi.org/10.1007/978-3-030-72699-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72699-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72698-0

  • Online ISBN: 978-3-030-72699-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics