Skip to main content

Image Denoising Method Based on Curvelet Transform in Telemedicine

  • Conference paper
  • First Online:
Simulation Tools and Techniques (SIMUtools 2020)

Abstract

To resolve the problems that the traditional image denoising methods are easy to lose details such as edges and textures, a new method of image denoising was proposed. It based on the Curvelet denoising algorithm, using polynomial interpolation threshold method, combining with Wrapping and Cycle spinning techniques to determine the adaptive threshold of each Curvelet coefficient for denoising the medical images. Simulation experiments confirm that the new method reduces the pseudo Gibbs phenomenon, retains the details and texture of the image better, and obtains better visual effects and higher PSNR values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Papyan, V., Elad, V.: Multi-scale patch-based image restoration. IEEE Trans. Image Process. 25(1), 249–261 (2016)

    Article  MathSciNet  Google Scholar 

  2. Jiang, D., Wang, Y., Lv, Z., Wang, W., Wang, H.: An energy-efficient networking approach in cloud services for IIoT networks. IEEE J. Sel. Areas Commu-n. 38(5), 928–941 (2020)

    Article  Google Scholar 

  3. Jiang, D., Huo, L., Song, H.: Rethinking behaviors and activities of base stations in mobile cellular networks based on big data analysis. IEEE Trans. Netw. Sci. Eng. 7(1), 80–90 (2020)

    Article  MathSciNet  Google Scholar 

  4. Somasundaran, B.V., Soundararajan, R., Biswas, S.: Image denoising for image retrieval by casscading a deep quality assessment network. In: 25th IEEE International Conference on Image Processing (ICIP), pp. 525–529. IEEE (2017) https://doi.org/10.1109/ICIP.2018.8451132

  5. Ding, Y., Selesnick, I.W.: Artifact-free wavelet denoising: non-convex sparse regularization, Convex Optimization. IEEE Trans. Signal Process. 22(9), 1364–1368 (2015)

    Article  Google Scholar 

  6. Wu, Y., Gao, G., Cui, C.: Improved wavelet denoising by non-convex sparse regularization under double wavelet domains. IEEE Access 7, 30659–30671 (2019)

    Article  Google Scholar 

  7. Li, D., Xiao, L.Q., Tian, J., Sun, J.P.: Mine image stitching based on invariant feature and lifting wavelet. J. Chin. Comput. Syst. 35(07), 1671–1675 (2014)

    Google Scholar 

  8. Candes, E.J.: Ridgelet: theory and applications. Department of Statistics, Stanford University, USA (1998)

    Google Scholar 

  9. Mangaiyarkarasi, P., Arulselvi, S.: A new digital image watermarking based on Finite Ridgelet Transform and extraction using ICA. In: International Conference on Emerging Trends in Electrical and Computer Technology, pp. 837–841 (2011)

    Google Scholar 

  10. Mahdinejad, N., Mota, H.O., Silva, E.J., Adriano, R.: Improvement of system quality in a generalized finite-element method using the discrete curvelet transform. IEEE Trans. Magn. 53(6), 1–4 (2017). https://doi.org/10.1109/TMAG.2017.2659652

    Article  Google Scholar 

  11. Guo, J.M., Prasetyo, H., Farfoura, M.E., Lee, H.: Vehicle verification using features from curvelet transform and generalized gaussian distribution modeling. IEEE Trans. Intell. Transp. Syst. 16(4), 1989–1998 (2015)

    Google Scholar 

  12. Jeng-Miller, K.W., Yonekawa, Y.: Telemedicine and pediatric retinal disease. Int. Ophthalmol. Clin. 60(1), 47–56 (2020)

    Article  Google Scholar 

  13. Ray, K.N., Mehrotra, A., Yabes, J.G., Kahn, J.M.: Telemedicine and outpatient subspecialty visits among pediatric medicaid beneficiaries. Acad. Pediatr. 20(5), 642–651 (2020)

    Google Scholar 

  14. Huo, L., et al.: An intelligent optimization-based traffic information acquirement approach to software-defined networking. Comput. Intell. 36(1), 151–171 (2019)

    Google Scholar 

  15. Hernando-Requejo, V., Huertas-González, N., Lapeña-Motilva, J., Ogando-Durán, G.: The epilepsy unit during the covid-19 epidemic: the role of telemedicine and the effects of confinement on patients with epilepsy. Neurología (English Edition) 35(4), 274–276 (2020)

    Article  Google Scholar 

  16. Wang, F., Jiang, D., Qi, S.: An adaptive routing algorithm for integrated information networks. China Commun. 7(1), 196–207 (2019)

    Google Scholar 

  17. Huo, L., et al.: An AI-based adaptive cognitive modeling and measurement method of network traffic for EIS. Mob. Netw. Appl. pp. 1–11 (2019)

    Google Scholar 

  18. Jiang, D., et al.: Big data analysis based network behavior insight of cellular networks for industry 4.0 applications. IEEE Trans. Ind. Inform. 16(2), 1310–1320 (2020)

    Google Scholar 

  19. Liu, Y., Liu, S., Wang, Z.: A general framework for image fusion based on multi-scale transform and sparse representation. Inf. Fusion. 24, 147–164 (2015)

    Article  Google Scholar 

  20. Jiang, D., Huo, L., Li, Y.: Fine-granularity inference and estimations to network traffic for SDN. PLoS ONE 13(5), 1–23 (2018)

    Google Scholar 

  21. Hardalac, F., Yaşar, H., Akyel, A., Kutbay, U.: A novel comparative study using multi-resolution transforms and convolutional neural network (cnn) for contactless palm print verification and identification. Multimedia Tool Appl. 79, 22929–22963 (2020)

    Google Scholar 

  22. Ja’Afar, N.H.: Implementation of fast discrete curvelet transform using field-programmable gate array. Int. J. Adv. Trends Comput. Sci. Eng. 9(1.2), 167–173 (2020)

    Google Scholar 

  23. Vyas, R., Kanumuri, T., Sheoran, G., Dubey, P.: Efficient iris recognition through curvelet transform and polynomial fitting. Optik 185, 859–867 (2019)

    Article  Google Scholar 

  24. Jiang, D., Zhang, P., Lv, Z., et al.: Energy-efficient multi-constraint ligent optimization-brouting algorithm with load balancing for smart city applications. IEEE Internet Things J. 3(6), 1437–1447 (2016)

    Article  Google Scholar 

  25. Jiang, D., Li, W., Lv, H.: An energy-efficient cooperative multicast routing in multi-hop wireless networks for smart medical applications. Neurocomputing 220, 160–169 (2017)

    Article  Google Scholar 

  26. Khadilkar, S.P., Das, S.R., Assaf, M.H., Biswas, S.N.: Face identification based on discrete wavelet transform and neural networks. Int. J. Image Graph. 19(04), 634–654 (2019)

    Article  Google Scholar 

  27. Mahdinejad, N., Mota, H.O., Silva, E.J., Adriano, R.: Improvement of system quality in a generalized finite-element method using the discrete curvelet transform. IEEE Trans. Magn. 53(6) 1–4 (2017)

    Google Scholar 

  28. Yang, Y., Tong, S., Huang, S.Y., Lin, P., Fang, Y.M.: A hybrid method for multi-focus image fusion based on fast discrete curvelet transform. IEEE Access 5, 14898–14913 (2017)

    Article  Google Scholar 

  29. Ahmed, R., Riaz, M.M., Ghafoor, A.: Attack resistant watermarking technique based on fast curvelet transform and robust principal component analysis. Multimedia Tool Appl. 77(8), 9443–9453 (2018)

    Article  Google Scholar 

  30. Wang, K., Yang, X., Tian, Z., Du, T.: The finger vein recognition based on curvelet. In: Proceedings of the 33rd Chinese Control Conference, pp. 4706–4711. IEEE (2014)

    Google Scholar 

  31. Wang, Y., Jiang, D., Huo, L., Zhao, Y.: A new traffic prediction algorithm to software defined networking. Mob. Netw. Appl. pp. 1–10 (2019)

    Google Scholar 

  32. Chaki, J., Parekh, R., Bhattacharya, S.: Plant leaf recognition using texture and shape features with neural classifiers. Pattern Recogn. Lett. 58, 61–68 (2015)

    Google Scholar 

  33. Agrawal, D., Karar, V.: Generation of enhanced information image using curvelet-transform-based image fusion for improving situation awareness of observer during surveillance. Int. J. Image Data Fusion 10(1), 45–57 (2019)

    Article  Google Scholar 

  34. Qi, S., Jiang, D., Huo, L.: A prediction approach to end-to-end traffic in space information networks. Mob. Netw. Appl. 1–10 (2019)

    Google Scholar 

  35. Elnemr, H., Elnemr, H.A.: Color histogram with curvelet and cedd for content-based image retrieval. Int. J. Comput. Inf. Secur. 15(12) (2018)

    Google Scholar 

  36. Sharif, B., Dharmakumar, R., Labounty, T., Arsanjani, R., Shufelt, C., Thomson, L., et al.: Towards elimination of the dark-rim artifact in first-pass myocardial perfusion mri: removing gibbs ringing effects using optimized radial imaging. Magn. Reson. Med. 72(1), 124–136 (2014)

    Article  Google Scholar 

  37. Veraart, J., Fieremans, E., Jelescu, I.O., Knoll, F., Novikov, D.S.: Gibbs ringing in diffusion MRI. Magn. Reson. Med. 76(1), 301–314 (2016)

    Article  Google Scholar 

  38. Jiang, D., Huo, L., Lv, Z., Song, H., Qin, W.: A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking. IEEE Trans. Intell. Transp. Syst. 19(10), 3305–3319 (2018)

    Article  Google Scholar 

  39. Jiang, D., Wang, W., Shi, L., Song, H.: A compressive sensing-based approach to end-to-end network traffic reconstruction. IEEE Trans. Netw. Sci. Eng. 7(1), 507–519 (2020)

    Google Scholar 

  40. Bitunguhari, L., Manzi, O., Walker, T., Mukiza, J., Clerinx, J.: Pathological features seen on medical imaging in hospitalized patients treated for tuberculosis in a reference hospital in rwanda. Rwanda Med. J. 76(4), 1–9 (2020)

    Google Scholar 

Download references

Acknowledgement

This work is partly supported by the Science and Technology Project of Jiangsu Provincial Department of Housing and Construction (2019ZD039), Science and Technology Project of Jiangsu Provincial Department of Housing and Construction (2019ZD040).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, Y., Li, D., Wang, L., Liu, W., Zhang, K., An, Y. (2021). Image Denoising Method Based on Curvelet Transform in Telemedicine. In: Song, H., Jiang, D. (eds) Simulation Tools and Techniques. SIMUtools 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 370. Springer, Cham. https://doi.org/10.1007/978-3-030-72795-6_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72795-6_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72794-9

  • Online ISBN: 978-3-030-72795-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics