Skip to main content

Plastic Scintillator Detectors for Particle Physics

  • Chapter
  • First Online:
Plastic Scintillators

Abstract

A review of the use of plastic scintillator in large experimental installations for particle physics, with a special emphasis on calorimetry in multi-purpose collider experiments and neutrino physics, is given. The historical developments of the last four decades are summarized. Modern experiments and their design choices are described in the context of the technological and scientific advances which made them possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Topological representation and key information of these molecules are given in the Appendix section at the end of the book.

  2. 2.

    https://www.crystals.saint-gobain.com/sites/imdf.crystals.com/files/documents/fiber-product-sheet.pdf.

  3. 3.

    The superconducting super collider (SSC) was a proposed 40 TeV collider to be built in Texas, canceled by the US Congress in 1993.

  4. 4.

    http://kuraraypsf.jp/psf/sf.html, Kuraray Co. Ltd, Tokyo, Japan.

  5. 5.

    http://fiberopticpof.com/pdfs/ProductSpecs/SK40ProductInformation.pdf, Mitsubishi Chemical Holdings.

  6. 6.

    These photon traps are reminiscent of an arapuca, which is a South American bird trap.

References

  1. R. Wigmans, Nucl. Instr. Meth. A 259, 389 (1987)

    Article  ADS  Google Scholar 

  2. R. Wigmans, Nucl. Instr. Meth. A 265, 273 (1988)

    Article  ADS  Google Scholar 

  3. H. Abramowicz et al., Nucl. Instr. Meth. 180, 429 (1981)

    Article  Google Scholar 

  4. T. Åkesson et al., Nucl. Instr. Meth. A 262, 243 (1987)

    Article  ADS  Google Scholar 

  5. M. De Vincenzi et al., Nucl. Instr. Meth. A 243, 348 (1986)

    Article  ADS  Google Scholar 

  6. M. Catanesi et al., Nucl. Instr. Meth. A 260, 43 (1987)

    Article  ADS  Google Scholar 

  7. A. Astbury, Phys. Scripta 23, 397 (1981)

    Article  ADS  Google Scholar 

  8. D. Barber et al., Phys. Rep. 63, 337 (1980)

    Article  ADS  Google Scholar 

  9. T. Akesson et al., Nucl. Instr. Meth. A 241, 17 (1985)

    Article  ADS  Google Scholar 

  10. M.J. Corden et al., Phys. Scr. 25, 11 (1982)

    Article  ADS  Google Scholar 

  11. M. Corden et al., Nucl. Instr. Meth. A 238, 273 (1985)

    Article  ADS  Google Scholar 

  12. C. Cochet et al., Nucl. Instr. Meth. A 243, 45 (1986)

    Article  ADS  Google Scholar 

  13. A. Beer et al., Nucl. Instr. Meth. 224, 360 (1984)

    Article  Google Scholar 

  14. W. Hofmann et al., Nucl. Instr. Meth. 163, 77 (1979)

    Article  Google Scholar 

  15. W. Hofmann et al., Nucl. Instr. Meth. 195, 475 (1982)

    Article  Google Scholar 

  16. A. Drescher et al., Nucl. Instr. Meth. 216, 35 (1983)

    Article  Google Scholar 

  17. H. Albrecht et al., Nucl. Instr. Meth. A 275, 1 (1989)

    Article  ADS  Google Scholar 

  18. L. Balka et al., Nucl. Instr. Meth. A 267, 272 (1988)

    Article  ADS  Google Scholar 

  19. S. Bertolucci et al., Nucl. Instr. Meth. A 267, 301 (1988)

    Article  ADS  Google Scholar 

  20. J. Simon-Gillo et al., Nucl. Instr. Meth. A 309, 427 (1991)

    Article  ADS  Google Scholar 

  21. D. Fox et al., Nucl. Instr. Meth. A 317, 474 (1992)

    Article  ADS  Google Scholar 

  22. J. Sullivan et al., Nucl. Instr. Meth. A 324, 441 (1993)

    Article  ADS  Google Scholar 

  23. The DELPHI Collaboration, Nucl. Instr. Meth. A 303, 233 (1991)

    Article  ADS  Google Scholar 

  24. S. Alvsvåg et al., Nucl. Instr. Meth. A 290(2–3), 320 (1990)

    Article  ADS  Google Scholar 

  25. A. Devaux, Nucl. Phys. A 498, 509 (1989)

    Article  ADS  Google Scholar 

  26. D. Acosta et al., Nucl. Instr. Meth. A 294, 193 (1990)

    Article  ADS  Google Scholar 

  27. D. Acosta et al., Nucl. Instr. Meth. A 302, 36 (1991)

    Article  ADS  Google Scholar 

  28. D. Acosta et al., Nucl. Instr. Meth. A 305, 55 (1991)

    Article  ADS  Google Scholar 

  29. D. Acosta et al., Nucl. Instr. Meth. A 308, 481 (1991)

    Article  ADS  Google Scholar 

  30. D. Acosta et al., Nucl. Instr. Meth. A 309, 143 (1991)

    Article  ADS  Google Scholar 

  31. D. Acosta et al., Nucl. Instr. Meth. B 62, 116 (1991)

    Article  ADS  Google Scholar 

  32. D. Acosta et al., Nucl. Instr. Meth. A 314, 431 (1992)

    Article  ADS  Google Scholar 

  33. D. Acosta et al., Nucl. Instr. Meth. A 316, 184 (1992)

    Article  ADS  Google Scholar 

  34. D. Acosta et al., Nucl. Instr. Meth. A 320, 128 (1992)

    Article  ADS  Google Scholar 

  35. R. Wigmans, Ann. Rev. Nucl. Part. Sci. 41, 133 (1991)

    Article  ADS  Google Scholar 

  36. M. Livan, V. Vercesi, R. Wigmans, Scintillating-fibre calorimetry. CERN yellow report CERN-95-02, CERN, Geneva (1995)

    Google Scholar 

  37. M. Beck et al., Nucl. Instr. Meth. A 381, 330 (1996)

    Article  ADS  Google Scholar 

  38. D. Hertzog et al., Nucl. Instr. Meth. A 294, 446 (1990)

    Article  ADS  Google Scholar 

  39. A. Andresen et al., Nucl. Instr. Meth. A 309, 101 (1991)

    Article  ADS  Google Scholar 

  40. G. Drews et al., Nucl. Instr. Meth. A 290, 335 (1990)

    Article  ADS  Google Scholar 

  41. M. Derrick et al., Nucl. Instr. Meth. A 309, 77 (1991)

    Article  ADS  Google Scholar 

  42. T. Armstrong et al., Nucl. Instr. Meth. A 406, 227 (1998)

    Article  ADS  Google Scholar 

  43. V. Arena et al., Nucl. Instr. Meth. A 434, 271 (1999)

    Article  ADS  Google Scholar 

  44. S. Sedykh et al., Nucl. Instr. Meth. A 455, 346 (2000)

    Article  ADS  Google Scholar 

  45. B. Giacobbe, Nucl. Phys. B (Proc. Suppl.) 150, 257 (2006)

    Google Scholar 

  46. G. Avoni et al., Nucl. Instr. Meth. A 580, 1209 (2007)

    Article  ADS  Google Scholar 

  47. D. Babusci et al., Nucl. Instr. Meth. A 332, 444 (1993)

    Article  ADS  Google Scholar 

  48. A. Antonelli et al., Nucl. Instr. Meth. A 354, 352 (1995)

    Article  ADS  Google Scholar 

  49. F. Ambrosino et al., Nucl. Instr. Meth. A 598, 239 (2009)

    Article  ADS  Google Scholar 

  50. M. Adinolfi et al., Nucl. Instr. Meth. A 482(1–2), 364 (2002)

    Article  ADS  Google Scholar 

  51. L. Aphecetche et al., Nucl. Instr. Meth. A 499, 521 (2003)

    Article  ADS  Google Scholar 

  52. G. David et al., IEEE Trans. Nucl. Sci. 45, 692 (1998)

    Article  ADS  Google Scholar 

  53. V. Belousov et al., Nucl. Instr. Meth. A 369, 45 (1996)

    Article  ADS  Google Scholar 

  54. M. Beddo et al., Nucl. Instr. Meth. A 499, 725 (2003)

    Article  ADS  Google Scholar 

  55. C. Allgower et al., Nucl. Instr. Meth. A 499, 740 (2003)

    Article  ADS  Google Scholar 

  56. The ALICE Collaboration, J. Instrum. 3, S08002 (2008)

    Google Scholar 

  57. The ALICE Collaboration, The ALICE electromagnetic calorimeter. Technical design report l, CERN, Geneva (2008)

    Google Scholar 

  58. The ATLAS Collaboration, J. Instrum. 3, S08003 (2008)

    Google Scholar 

  59. The ATLAS Collaboration, Eur. Phys. J. C 70, 1193 (2010)

    Article  Google Scholar 

  60. The CMS Collaboration, J. Instrum. 3, S08004 (2008)

    Google Scholar 

  61. The CMS Collaboration, J. Instrum. 5, T03012 (2010)

    Google Scholar 

  62. I. Machikhiliyan, LHCb calorimeter group. J. Phys. Conf. Ser. 160 (2009)

    Google Scholar 

  63. R. Dzhelyadin, Nucl. Instr. Meth. A 494, 332 (2002)

    Article  ADS  Google Scholar 

  64. A.A. Alves et al., J. Instrum. 3, S08005 (2008)

    Google Scholar 

  65. G. Gallucci, J. Phys. Conf. Ser. 587 (2015)

    Google Scholar 

  66. C. Adloff et al., Nucl. Instr. Meth. A 714, 147 (2013)

    Article  ADS  Google Scholar 

  67. B. Leverington et al., Nucl. Instr. Meth. A 596, 327 (2008)

    Article  ADS  Google Scholar 

  68. S. Adhikari, et al., arXiv:2005.14272 (2020)

  69. C. Fabjan et al., Nucl. Instr. Meth. 141, 61 (1977)

    Article  Google Scholar 

  70. H. Gordon et al., Nucl. Instr. Meth. 196, 303 (1982)

    Article  Google Scholar 

  71. O. Botner et al., Nucl. Instr. Meth. 196, 315 (1982)

    Article  Google Scholar 

  72. A. Nigro, Nucl. Instr. Meth. A 263, 102 (1988)

    Article  ADS  Google Scholar 

  73. R. Wigmans, Calorimetry: Energy Measurement in Particle Physics, 2nd edn. (Oxford University Press, Oxford, 2017)

    Book  Google Scholar 

  74. Y. Sirois, R. Wigmans, Nucl. Instr. Meth. A 240, 262 (1985)

    Article  ADS  Google Scholar 

  75. B. Bicken, U. Holm, T. Marckmann, K. Wick, M. Rohde, IEEE Trans. Nucl. Sci. 38, 188 (1991)

    Article  ADS  Google Scholar 

  76. A. Bamberger, J. Lehmann, D. Schäcke, M. Wülker, Nucl. Instr. Meth. A 277, 46 (1989)

    Article  ADS  Google Scholar 

  77. J. Krüger, T.Z.C. Group, Nucl. Instr. Meth. A 315, 311 (1992)

    Google Scholar 

  78. I. Bohnet, N. Gendner, F. Goebel, T. Neumann, K. Wick, Proceedings of the 8th International Conference on Calorimetry in High Energy Physics (World Scientific, Lisbon, 1999), pp. 639–646

    Google Scholar 

  79. G. Atoian et al., Nucl. Instr. Meth. A 584, 291 (2008)

    Article  ADS  Google Scholar 

  80. M. Livan, RD1: Scintillating fibre calorimetry. CERN report CERN-PPE-93-22, CERN, Geneva (1993)

    Google Scholar 

  81. A. Asmone et al., Nucl. Instr. Meth. A 326, 477 (1993)

    Article  ADS  Google Scholar 

  82. H. Blumenfeld et al., Nucl. Instr. Meth. Phys. Res. 225, 518 (1984)

    Article  Google Scholar 

  83. CERN, Spaghetti detector. https://cds.cern.ch/record/759166 (1990)

  84. CERN, Spaghetti calorimeter. https://cds.cern.ch/record/759262 (1990)

  85. G. Anzivino et al., Nucl. Instr. Meth. A 357, 350 (1995)

    Article  ADS  Google Scholar 

  86. P. Cushman, B. Sherwood, Lifetime studies of the 19-channel hybrid photodiode for the CMS hadronic calorimeter. CERN report CMS-NOTE-2008-011, CERN, Geneva (2007)

    Google Scholar 

  87. Hamamatsu Photonics, Avalanche photodiodes. https://www.hamamatsu.com/us/en/product/optical-sensors/apd/ (2020)

  88. KETEK GmbH, SiPM working principle. https://www.ketek.net/sipm/technology/working-principle/ (2020)

  89. P. Cushman, et al., Supercollider, vol. 4, ed. by J. Nonte (Springer, Boston, MA, 1992), pp. 1217–1224

    Google Scholar 

  90. A. Teymourian et al., Nucl. Instr. Meth. A 654, 184 (2011)

    Article  ADS  Google Scholar 

  91. P. Cushman, A. Heering, A. Ronzhin, Nucl. Instr. Meth. A 418, 300 (1998)

    Article  ADS  Google Scholar 

  92. P. Cushman, A. Heering, A. Ronzhin, Nucl. Instr. Meth. A 442, 289 (2000)

    Article  ADS  Google Scholar 

  93. P. Cushman et al., Nucl. Instr. Meth. A 387, 107 (1997)

    Article  ADS  Google Scholar 

  94. The CMS Collaboration, The CMS electromagnetic calorimeter. Technical design report CERN-LHCC-97-033, CERN, Geneva (1997)

    Google Scholar 

  95. D. Renker, E. Lorenz, J. Instrum. 4, P04004 (2009)

    Article  Google Scholar 

  96. D. Michael et al., Nucl. Instr. Meth. A 596, 190 (2008)

    Article  ADS  Google Scholar 

  97. H. Wilkens, The ATLAS Collaboration. J. Phys. Conf. Ser. 160 (2009)

    Google Scholar 

  98. H.S. Budd, Nucl. Phys. B (Proc. Suppl.) 54, 191 (1997)

    Google Scholar 

  99. L. Fiorini, I. Korolkov, F. Vivès, Time calibration of TileCal modules with cosmic muons. ATLAS note ATL-TILECAL-PUB-2008-010, CERN, Geneva (2008)

    Google Scholar 

  100. T. Cormier, C.W. Fabjan, L. Riccati, H. de Groot, ALICE electromagnetic calorimeter: addendum to the ALICE technical proposal. CERN report CERN-LHCC-2006-014, CERN, Geneva (2006)

    Google Scholar 

  101. H. Abramowicz et al., Phys. Lett. B 718, 915 (2013)

    Article  ADS  Google Scholar 

  102. The CMS Collaboration, Particle-flow event reconstruction in CMS and performance for jets, taus, and MET. CERN report CMS-PAS-PFT-09-001, CERN, Geneva (2009)

    Google Scholar 

  103. F. Beaudette, Proceedings of 35th International Conference of High Energy Physics (Paris, 2010), p. 1

    Google Scholar 

  104. The CMS Collaboration, J. Instrum. 6, P11002 (2011)

    Article  Google Scholar 

  105. The CMS Collaboration, J. Instrum. 6, P09001 (2011)

    Google Scholar 

  106. D. Contardo, M. Klute, J. Mans, L. Silvestris, J. Butler, Technical proposal for the phase-ii upgrade of the CMS detector. Technical proposal CERN-LHCC-2015-010, CERN, Geneva (2015)

    Google Scholar 

  107. C. Adloff et al., J. Instrum. 9, P01004 (2014)

    Article  Google Scholar 

  108. The CALICE Collaboration, First stage analysis of the energy response and resolution of the scintillator ECAL in the beam test at FNAL. CALICE analysis note CAN-016, CERN, Geneva (2010)

    Google Scholar 

  109. The CALICE Collaboration, J. Instrum. 5, P05004 (2010)

    Google Scholar 

  110. The CALICE Collaboration, Update of the analysis of the test beam experiment of the CALICE ScECAL physics prototype. CALICE analysis note CAN-016c, CERN, Geneva (2014)

    Google Scholar 

  111. S. Uozumi, R&D status of the scintillator-strip based ECAL for the ILD (2014)

    Google Scholar 

  112. P. Buzhan et al., Nucl. Instr. Meth. A 504, 48 (2003)

    Article  ADS  Google Scholar 

  113. Y. Liu, J. Instrum. 12, C06040 (2017)

    Article  Google Scholar 

  114. The CMS Collaboration, The phase-2 upgrade of the CMS endcap calorimeter. Technical design report CERN-LHCC-2017-023, CERN, Geneva (2017)

    Google Scholar 

  115. S. Majewski et al., Nucl. Instr. Meth. A 281, 500 (1989)

    Article  ADS  Google Scholar 

  116. V. Hagopian et al., Rad. Phys. Chem. 41, 401 (1993)

    Article  ADS  Google Scholar 

  117. J. Mans, et al., CMS technical design report for the phase 1 upgrade of the hadron calorimeter. Technical design report CERN-LHCC-2012-015, CERN, Geneva (2012)

    Google Scholar 

  118. The CMS Collaboration, Results related to the Phase1 HE upgrade. Detector performance summary CMS-DP-2018-019, CERN, Geneva (2018)

    Google Scholar 

  119. The CMS Collaboration, J. Instrum. 15, P06009 (2020)

    Article  Google Scholar 

  120. M. Cascella, S. Franchino, S. Lee, Int. J. Mod. Phys. A 31, 1644024 (2016)

    Article  ADS  Google Scholar 

  121. I. Ambats, The MINOS Collaboration, The MINOS detectors. Fermilab report NuMI-L-337, Fermilab, Batavia, IL (1998)

    Google Scholar 

  122. L. Aliaga et al., Nucl. Instr. Meth. A 743, 130 (2014)

    Article  ADS  Google Scholar 

  123. J.C. Yun, A. Para, U.S. Patent 6,218,670, Apr 2001

    Google Scholar 

  124. E. Eskut et al., Nucl. Instr. Meth. A 401, 7 (1997)

    Article  ADS  Google Scholar 

  125. E. Di Capua et al., Nucl. Instr. Meth. A 378, 221 (1996)

    Article  ADS  Google Scholar 

  126. S. Buontempo et al., Nucl. Instr. Meth. A 349, 70 (1994)

    Article  ADS  Google Scholar 

  127. P. Annis et al., Nucl. Instr. Meth. A 367, 367 (1995)

    Article  ADS  Google Scholar 

  128. K. Nitta et al., Nucl. Instr. Meth. A 535, 147 (2004)

    Article  ADS  Google Scholar 

  129. S. Yamamoto et al., IEEE Trans. Nucl. Sci. 52, 2992 (2005)

    Article  ADS  Google Scholar 

  130. K. Abe et al., Nucl. Instr. Meth. A 694, 211 (2012)

    Article  ADS  Google Scholar 

  131. S. Assylbekov et al., Nucl. Instr. Meth. A 686, 48 (2012)

    Article  ADS  Google Scholar 

  132. Y. Kudenko, Nucl. Instr. Meth. A 598, 289 (2009)

    Article  ADS  Google Scholar 

  133. D. Allan et al., J. Instrum. 8, P10019 (2013)

    Article  Google Scholar 

  134. P.A. Amaudruz et al., Nucl. Instr. Meth. A 696, 1 (2012)

    Article  ADS  Google Scholar 

  135. S. Phan-Budd, Phys. Proc. 37, 1201 (2012)

    Article  ADS  Google Scholar 

  136. D. Ayres, et al., The NOvA technical design report. Technical design report FERMI-LAB-DESIGN-2007-01, Fermi National Accelerator Lab, Batavia, IL (2007)

    Google Scholar 

  137. S. Mufson et al., Nucl. Instr. Meth. A 799, 1 (2015)

    Article  ADS  Google Scholar 

  138. A. Pla-Dalmau, A. Bross, V. Rykalin, B. Wood, IEEE Nuclear Science Symposium Conference Record, 2005, vol. 3 (IEEE, Puerto Rico, 2005), pp. 1298–1300

    Google Scholar 

  139. K. Abe et al., Nucl. Instr. Meth. A 659, 106 (2011)

    Article  ADS  Google Scholar 

  140. D.M. Poehlmann, et al., arXiv:1812.11267 (2018)

  141. P. Agnes et al., Phys. Lett. B 743, 456 (2015)

    Article  ADS  Google Scholar 

  142. T.S. Collaboration), Phys. Rev. Lett. 112, 241302 (2014)

    Google Scholar 

  143. The SuperCDMS Collaboration, Phys. Rev. D 95 (2017)

    Google Scholar 

  144. C.E. Aalseth et al., Eur. Phys. J. C 133, 131 (2018)

    Google Scholar 

  145. S. Abdelhakim, et al., DarkSide-20k technical design report. DarkSide document 3381, LNGS, Gran Sasso (2019)

    Google Scholar 

  146. B. Abi, et al., arXiv:2002.02967 (2020)

  147. B. Abi, et al., arXiv:2002.03010 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priscilla Brooks Cushman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cushman, P.B., Poehlmann, DM. (2021). Plastic Scintillator Detectors for Particle Physics. In: Hamel, M. (eds) Plastic Scintillators. Topics in Applied Physics, vol 140. Springer, Cham. https://doi.org/10.1007/978-3-030-73488-6_15

Download citation

Publish with us

Policies and ethics