Skip to main content

Current Technologies on Electronics Cooling and Scope for Further Improvement: A Typical Review

  • Conference paper
  • First Online:
Proceedings of the International Conference on Industrial and Manufacturing Systems (CIMS-2020)

Abstract

The ongoing accentuation on laptops and PCs has resulted in a transformed enthusiasm for the improvement of higher performance cooling systems. The gigantic heat produced in laptops and PCs chip or enormous integrated circuit raises lots of exigent problems to be settled. The improvement within a cooling of electronic components needs the compact heat dissipation mechanism which gives higher performance. By the technological progression of several electronics equipment, liquid coolants were utilized progressively in PCs, servers, and supercomputers. This review article covers the characteristics of heat transfer for several cooling technologies with its possible applicability to the field of electronics cooling. Several cooling technologies like conventional air cooling method, indirect liquid cooling by single/two-phase methods, and heat pipes have been examined in the study. The characteristics for performance evaluated based on values of heat flux, temperature and flow rate of coolant; which serve as pointers for limitations of various heat transfer and power prerequisites of individual cooling arrangement. An increase in the heating load, higher will be a decrement in the temperature occurred due to the cooling mechanism. In consideration of common computing methods, air cooling remains a reasonable choice as heat loads of every processor are limited to 190 W, albeit different factors like operational cost, reliability of device and recovery of waste heat might even now energize a utilization of liquid cooling. The liquid cooling is relied upon to be important into future thermal management of the laptop, where both proficient cooling and incredibly lower energy utilization are of significant role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agostini, B., Revellin, R., Thome, J.R., Fabbri, M., Michel, B., Calmi, D., Kloter, U.: High heat flux flow boiling in silicon multi-microchannels—Part III: saturated critical heat flux of R236fa and two-phase pressure drops. Int. J. Heat Mass Transf. 51(21–22), 5426–5442 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2008.03.005

    Article  MATH  Google Scholar 

  2. Almoli, A., Thompson, A., Kapur, N., Summers, J., Thompson, H., Hannah, G.: Computational fluid dynamic investigation of liquid rack cooling in data centres. Appl. Energy 89(1), 150–155 (2012). https://doi.org/10.1016/j.apenergy.2011.02.003

    Article  Google Scholar 

  3. Anandan, S.S., Ramalingam, V.: Thermal management of electronics: a review of literature. Therm. Sci. 12(2), 5–25 (2008). https://doi.org/10.2298/TSCI0802005A

    Article  Google Scholar 

  4. Anthes, G.: Power Play: The Search for Energy-Efficient Chips, from https://www.computerworld.com/s/article/104017/Power_Play (2005)

  5. Asadi, M., Xie, G., Sunden, B.: A review of heat transfer and pressure drop characteristics of single and two-phase microchannels. Int. J. Heat Mass Transf. 79, 34–53 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.090

    Article  Google Scholar 

  6. Asetek: 2019. https://www.asetek.com

  7. Bar-Cohen, A.: Needs and future trends for enhanced phase change heat transfer-DARPA, PowerPoint presentation, International Workshop on Micro and Nano Structures for Phase Change Heat Transfer, Needham, MA, from https://micronano.mit.edu/presentations/Bar-Cohen.pdf (2013)

  8. Becker, S., Vershinin, S., Sartre, V., Laurien, E., Bonjour, J., Maydanik, Y.F.: Steady state operation of a copper-water LHP with a flat-oval evaporator. Appl. Therm. Eng. 31, 686–695 (2011). https://doi.org/10.1016/j.applthermaleng.2010.02.005

    Article  Google Scholar 

  9. Bertsch, S.S., Groll, E.A., Garimella, S.V.: Effects of heat flux, mass flux, vapor quality, and saturation temperature on flow boiling heat transfer in microchannels. Int. J. Multiph. Flow 35(2), 142–154 (2009). https://doi.org/10.1016/j.ijmultiphaseflow.2008.10.004

    Article  Google Scholar 

  10. Borgnakke, C., Sonntag, R.E.: Fundamentals of thermodynamics, 7th edn. Wiley, New Jersey (2008)

    Google Scholar 

  11. Cader, T., Westra, L., Sorel, V., Marquez, A.: Liquid cooling in data centers. ASHRAE Trans. 115(pt 1), 231–241 (2009)

    Google Scholar 

  12. Calame, J.P., Myers, R.E., Binari, S.C., Wood, F.N., Garven, M.: Experimental investigation of microchannel coolers for the high heat flux thermal management of GaN-on-SiC semiconductor devices. Int. J. Heat Mass Transf. 50(23–24), 4767–4779 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.013

    Article  Google Scholar 

  13. Chang, Y.W., Cheng, C.H., Wang, J.C., Chen, S.L.: Heat pipe for cooling of electronic equipment. Energy Convers. Manage. 49(11), 3398–3404 (2008). https://doi.org/10.1016/j.enconman.2008.05.002

    Article  Google Scholar 

  14. Chein, R., Chuang, J.: Experimental microchannel heat sink performance studies using nanofluids. Int. J. Therm. Sci. 46(1), 57–66 (2007). https://doi.org/10.1016/j.ijthermalsci.2006.03.009

    Article  Google Scholar 

  15. Chen, X., Ye, H., Fan, X., Ren, T., Zhang, G.: A review of small heat pipes for electronics. Appl. Therm. Eng. (2016). https://doi.org/10.1016/j.applthermaleng.2015.11.048

    Article  Google Scholar 

  16. Choi, J., Sung, B., Kim, C., Borca-Tasciuc, D.A.: Interface engineering to enhance thermal contact conductance of evaporators in miniature loop heat pipe systems. Appl. Therm. Eng. 60(1–2), 371–378 (2013). https://doi.org/10.1016/j.applthermaleng.2013.06.060

    Article  Google Scholar 

  17. Coolit systems: 2019. https://www.coolitsystems.com/

  18. Cushing, R., Doherty, J.: Next generation data centres. MSC Business Development Ltd. (2009)

    Google Scholar 

  19. Datacom equipment power trends and cooling applications, 2nd edn., American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (2012)

    Google Scholar 

  20. Dede, E.M., Liu, Y.: Experimental and numerical investigation of a multi-pass branching microchannel heat sink. Appl. Therm. Eng. 55(1–2), 51–60 (2013). https://doi.org/10.1016/j.applthermaleng.2013.02.038

    Article  Google Scholar 

  21. Dhande, H.K., Shelare, S.D., Khope, P.B.: Developing a mixed solar drier for improved postharvest handling of food grains. Agric. Eng. Int.: CIGR J. 22(4), 17–24 (2020)

    Google Scholar 

  22. Ebrahimi, K., Jones, G.F., Fleischer, A.S.: A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities. Renew. Sustain. Energy Rev. 31, 622–638 (2014). https://doi.org/10.1016/j.rser.2013.12.007

    Article  Google Scholar 

  23. Ebullient: 2020. https://www.ebullientcooling.com/product/

  24. Ellsworth, M.J., Campbell, L.A., Simons, R.E., Iyengar, M.K., Schmidt, R.R., Chu, R.C.: The evolution of water cooling for IBM large server systems: Back to the future. In: 2008 11th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, I-THERM, pp. 266–274 (2008). https://doi.org/10.1109/ITHERM.2008.4544279

  25. Ellsworth, M.J., Goth, G.F., Zoodsma, R.J., Arvelo, A., Campbell, L.A., Anderl, W.J.: An overview of the IBM Power 775 supercomputer water cooling system. J. Electron. Packag., Trans. ASME 134(2), 1–9 (2012). https://doi.org/10.1115/1.4006140

    Article  Google Scholar 

  26. Faghri, A.: Review and advances in heat pipe science and technology. J. Heat Transfer (2012). https://doi.org/10.1115/1.4007407

    Article  Google Scholar 

  27. Faghri, A.: Heat pipes: review, opportunities and challenges. Front. Heat Pipes 5(1) (2014). https://doi.org/10.5098/fhp.5.1

  28. Fakhim, B., Behnia, M., Armfield, S.W., Srinarayana, N.: Cooling solutions in an operational data centre: a case study. Appl. Therm. Eng. 31(14–15), 2279–2291 (2011). https://doi.org/10.1016/j.applthermaleng.2011.03.025

    Article  Google Scholar 

  29. Fu, B., Lee, C., Pan, C.: The effect of aspect ratio on flow boiling heat transfer of HFE-7100 in a microchannel heat sink. Int. J. Heat Mass Transf. 58(1–2), 53–61 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.050

    Article  Google Scholar 

  30. Gai, D., Liu, Z., Liu, W., Yang, J.: Operational characteristics of miniature loop heat pipe with flat evaporator. Heat Mass Transf. 46(2), 267–275 (2009). https://doi.org/10.1007/s00231-009-0563-0

    Article  Google Scholar 

  31. Gao, T., David, M., Geer, J., Schmidt, R., Sammakia, B.: Experimental and numerical dynamic investigation of an energy efficient liquid cooled chiller-less data center test facility. Energy Build. 91, 83–96 (2015). https://doi.org/10.1016/j.enbuild.2015.01.028

    Article  Google Scholar 

  32. Garimella, S.V., Yeh, L.T., Persoons, T.: Thermal management challenges in telecommunication systems and data centers. IEEE Trans. Comp., Packag. Manuf. Technol. 2(8), 1307–1316 (2012). https://doi.org/10.1109/TCPMT.2012.2185797

    Article  Google Scholar 

  33. Garner, S.D.: Heat pipes for electronics cooling applications. Electron Cool 2(3) (1996)

    Google Scholar 

  34. Geng, H.: Data center handbook. Wiley, New Jersey (2015)

    Google Scholar 

  35. Gess, J., Dreher, T., Bhavnani, S., Johnson, W.: Effect of flow guide integration on the thermal performance of high performance liquid cooled immersion server modules. In: ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, InterPACK 2015, collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, 1, 1–10 (2015). https://doi.org/10.1115/IPACK2015-48771

  36. Goth, G.F.: An overview of the IBM power 775 supercomputer water cooling system. J. Electron. Packag. 134, 020906 (2012)

    Article  Google Scholar 

  37. Grimshaw, J., McSweeney, M., Novotny, S., Gagnon, M.: Data center rack level cooling utilizing water-cooled, passive rear door heat exchangers (RDHx) as a cost effective alternative to CRAH air cooling, (December), 10 p (2011)

    Google Scholar 

  38. Gu, J.: Health assessment and prognostics for electronics products: an alternative to traditional reliability prediction methods, from https://www.electronics-cooling.com/2009/05/health-assessment-and-prognostics-of-electronic-products-an-alternative-to-traditional-reliability-prediction-methods/ (2009)

  39. Gunnasegaran, P., Abdullah, M.Z., Shuaib, N.H.: Influence of nanofluid on heat transfer in a loop heat pipe. Int. Commun. Heat Mass Transfer 47, 82–91 (2013). https://doi.org/10.1016/j.icheatmasstransfer.2013.07.003

    Article  Google Scholar 

  40. Ham, S.W., Kim, M.H., Choi, B.N., Jeong, J.W.: Simplified server model to simulate data center cooling energy consumption. Energy Build. 86, 328–339 (2015). https://doi.org/10.1016/j.enbuild.2014.10.058

    Article  Google Scholar 

  41. ITRS: 2009 ITRS, from https://www.itrs.net/Links/2009ITRS/Home2009.htm (2011)

  42. Iyengar, M., David, M., Parida, P., Kamath, V., Kochuparambil, B., Graybill, D., Chainer, T.: Server liquid cooling with chiller-less data center design to enable significant energy savings. In: Annual IEEE Semiconductor Thermal Measurement and Management Symposium, vol. 1, pp. 212–223 (2012). https://doi.org/10.1109/STHERM.2012.6188851

  43. Jawalekar, S.B., Shelare, S.D.: Development and performance analysis of low cost combined harvester for rabicrops. Agric. Eng. Int.: CIGR J. 22(1), 197–201 (2020)

    Google Scholar 

  44. Joung, W., Gam, K., Park, K., Ma, S., Lee, J.: Transient responses of the flat evaporator loop heat pipe. Int. J. Heat Mass Transf. 57(1), 131–141 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.025

    Article  Google Scholar 

  45. Kadam, S.T., Kumar, R.: Twenty first century cooling solution: microchannel heat sinks. Int. J. Therm. Sci. 85, 73–92 (2014). https://doi.org/10.1016/j.ijthermalsci.2014.06.013

    Article  Google Scholar 

  46. Katoh, T., Xu, G., Vogel, M., Novotny, S.: New attempt of forced-air cooling for high heat-flux applications. Thermo Mech. Phenomena Electron. Syst.-Proc. Intersoc. Conf. 2, 34–39 (2004). https://doi.org/10.1109/itherm.2004.1318249

    Article  Google Scholar 

  47. Kheirabadi, A.C., Groulx, D.: Cooling of server electronics: a design review of existing technology. Appl. Therm. Eng. 105, 62–638 (2016). https://doi.org/10.1016/j.applthermaleng.2016.03.056

    Article  Google Scholar 

  48. Kovar, J.F.: Power, environmental concerns driving data center design, 2012, https://www.crn.com/news/data-center/232600187/power-environmental-concerns-driving-data-center-design.htm. Accessed 20 Jan 2020

  49. Kumbhare, H., Shelare, S.: Innovative advancement in drone technology for water sample collections—a review. Int. J. Sci. Technol. Res. 9(03), 7266–7269 (2020)

    Google Scholar 

  50. Law, M., Lee, P.S.: A comparative study of experimental flow boiling heat transfer and pressure characteristics in straight- and oblique-finned microchannels. Int. J. Heat Mass Transf. 85, 797–810 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.137

    Article  Google Scholar 

  51. Law, M., Lee, P.S., Balasubramanian, K.: Experimental investigation of flow boiling heat transfer in novel oblique-finned microchannels. Int. J. Heat Mass Transf. 76, 419–431 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.045

    Article  Google Scholar 

  52. Leão, H.L.S.L., do Nascimento, F.J., Ribatski, G.: Flow boiling heat transfer of R407C in a microchannels based heat spreader. Exp. Therm. Fluid Sci. 59, 140–151 (2014). https://doi.org/10.1016/j.expthermflusci.2014.03.014

  53. Lee, J., Mudawar, I.: Fluid flow and heat transfer characteristics of low temperature two-phase micro-channel heat sinks—Part 1: experimental methods and flow visualization results. Int. J. Heat Mass Transf. 5117–18, 4315–4326 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2008.02.012

    Article  MATH  Google Scholar 

  54. Lee, J., Mudawar, I.: Fluid flow and heat transfer characteristics of low temperature two-phase micro-channel heat sinks—Part 2. Subcooled boiling pressure drop and heat transfer. Int. J. Heat Mass Transf. 51(17–18), 4327–4341 (2008b). https://doi.org/10.1016/j.ijheatmasstransfer.2008.02.013

  55. Lee, J., Mudawar, I.: Critical heat flux for subcooled flow boiling in micro-channel heat sinks. Int. J. Heat Mass Transf. 52(13–14), 3341–3352 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2008.12.019

    Article  Google Scholar 

  56. Lee, Y.J., Lee, P.S., Chou, S.K.: Experimental investigation of silicon-based oblique finned microchannel heat sinks. In: 2010 14th International Heat Transfer Conference, IHTC 14, vol. 6, pp. 283–291 (2010). https://doi.org/10.1115/IHTC14-23413

  57. Lee, Y.J., Singh, P.K., Lee, P.S.: Fluid flow and heat transfer investigations on enhanced microchannel heat sink using oblique fins with parametric study. Int. J. Heat Mass Transf. 81, 325–336 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.018

    Article  Google Scholar 

  58. Li, J., Wang, D., Peterson, G.P.: Experimental studies on a high performance compact loop heat pipe with a square flat evaporator. Appl. Therm. Eng. 30(6–7), 741–752 (2010). https://doi.org/10.1016/j.applthermaleng.2009.12.004

    Article  Google Scholar 

  59. Liu, Z., Gai, D., Li, H., Liu, W., Yang, J., Liu, M.: Investigation of impact of different working fluids on the operational characteristics of miniature LHP with flat evaporator. Appl. Therm. Eng. 31(16), 3387–3392 (2011). https://doi.org/10.1016/j.applthermaleng.2011.06.023

    Article  Google Scholar 

  60. Madhour, Y., Olivier, J., Costa-Patry, E., Paredes, S., Michel, B., Thome, J.R.: Flow boiling of R134a in a multi-microchannel heat sink with hotspot heaters for energy-efficient microelectronic CPU cooling applications. IEEE Trans. Comp., Packag. Manuf. Technol. 1(6), 873–883 (2011). https://doi.org/10.1109/TCPMT.2011.2123895

    Article  Google Scholar 

  61. Madhour, Y., Olivier, J., Costa-Patry, E., Paredes, S., Michel, B., Thome: Two-phase flow boiling of R134a in a multi-microchannel heat sink for microprocessor cooling. In: 16th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC) (2010), pp. 1–6

    Google Scholar 

  62. Mali, P.K., Sakhale, C.N., Shelare, S.D.: A literature review on design and development of maize thresher. Int. J. Pure Appl. Res. Eng. Technol. 3(9), 9–14 (2015)

    Google Scholar 

  63. Marcinichen, J.B., Olivier, J.A., Thome, J.R.: On-chip two-phase cooling of datacenters: cooling system and energy recovery evaluation. Appl. Therm. Eng. 41, 36–51 (2012). https://doi.org/10.1016/j.applthermaleng.2011.12.008

  64. Mathew, J.J., Sakhale, C.N., Shelare, S.D.: Latest trends in sheet metal components and its processes—a literature review. In: Algorithms for Intelligent Systems, pp. 565–574 (2020). https://doi.org/10.1007/978-981-15-0222-4_54

  65. Mauro, A.W., Thome, J.R., Toto, D., Vanoli, G.P.: Saturated critical heat flux in a multi-microchannel heat sink fed by a split flow system. Exp. Thermal Fluid Sci. 34(1), 81–92 (2010). https://doi.org/10.1016/j.expthermflusci.2009.09.005

    Article  Google Scholar 

  66. Maydanik, Y.F., Dmitrin, V.I., Pastukhov, V.G.: Compact cooler for electronics on the basis of a pulsating heat pipe. Appl. Therm. Eng. 29(17–18), 3511–3517 (2009). https://doi.org/10.1016/j.applthermaleng.2009.06.005

    Article  Google Scholar 

  67. Maydanik, Y.F., Vershinin, S.V., Pastukhov, V.G., Fried, S.S.: Loop heat pipes for cooling systems of servers. IEEE Trans. Compon. Packag. Technol. 33(2), 416–423 (2010). https://doi.org/10.1109/TCAPT.2009.2035514

    Article  Google Scholar 

  68. McGlen, R.J., Jachuck, R., Lin, S.: Integrated thermal management techniques for high power electronic devices. Appl. Therm. Eng. 24, 1143–1156 (2004). https://doi.org/10.1016/j.applthermaleng.2003.12.029

  69. Megahed, A.: Local flow boiling heat transfer characteristics in silicon microchannel heat sinks using liquid crystal thermography. Int. J. Multiph. Flow 39, 55–65 (2012). https://doi.org/10.1016/j.ijmultiphaseflow.2011.09.003

    Article  Google Scholar 

  70. Mochizuki, M., Nguyen, T., Mashiko, K., Saito, Y., Nguyen, T., Wuttijumnong, V.: A review of heat pipe application including new opportunities. Front Heat Pipe 2, 013001 (2011)

    Google Scholar 

  71. Mowade, S., Waghmare, S., Shelare, S., Tembhurkar, C.: Mathematical model for convective heat transfer coefficient during solar drying process of green herbs. In: Computing in Engineering and Technology, pp. 867–877 (2019). https://doi.org/10.1007/978-981-32-9515-5_81

  72. Nakayama, W.: Heat in computers: applied heat transfer in information technology. J. Heat Transf. 136(1) (2014)

    Google Scholar 

  73. Nascimento, F.J., Leão, H.L.S.L., Ribatski, G.: An experimental study on flow boiling heat transfer of R134a in a microchannel-based heat sink. Exp. Thermal Fluid Sci. 45, 117–127 (2013). https://doi.org/10.1016/j.expthermflusci.2012.10.014

    Article  Google Scholar 

  74. Oró, E., Depoorter, V., Garcia, A., Salom, J.: Energy efficiency and renewable energy integration in data centres. Strategies and modelling review. Renew. Sustain. Energy Rev. 42, 429–445 (2015). https://doi.org/10.1016/j.rser.2014.10.035

    Article  Google Scholar 

  75. Parida, P.R., David, M., Iyengar, M., Schultz, M., Gaynes, M., Kamath, V., Chainer, T.: Experimental investigation of water cooled server microprocessors and memory devices in an energy efficient chiller-less data center. In: Annual IEEE Semiconductor Thermal Measurement and Management Symposium, pp. 224–231 (2012). https://doi.org/10.1109/STHERM.2012.6188852

  76. Park, J.E., Thome, J.R.: Critical heat flux in multi-microchannel copper elements with low pressure refrigerants. Int. J. Heat Mass Transf. 53(1–3), 110–122 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2009.09.047

    Article  Google Scholar 

  77. Pranoto, I., Leong, K.C.: An experimental study of flow boiling heat transfer from porous foam structures in a channel. Appl. Therm. Eng. 70(1), 100–114 (2014). https://doi.org/10.1016/j.applthermaleng.2014.04.027

    Article  Google Scholar 

  78. Qu, W., Mudawar, I.: Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink. Int. J. Heat Mass Transf. 45(12), 2549–2565 (2002). https://doi.org/10.1016/S0017-9310(01)00337-4

    Article  Google Scholar 

  79. Rackcdu d2c liquid cooling, asetek; 2017. https://www.asetek.com/data-center/oem-data-center-coolers/rackcdu-d2c/

  80. Reyes, M., Arias, J.R., Velazquez, A., Vega, J.M.: Experimental study of heat transfer and pressure drop in micro-channel based heat sinks with tip clearance. Appl. Therm. Eng. 31(5), 887–893 (2011). https://doi.org/10.1016/j.applthermaleng.2010.11.011

    Article  Google Scholar 

  81. Rimbault, B., Nguyen, C.T., Galanis, N.: Experimental investigation of CuO-water nanofluid flow and heat transfer inside a microchannel heat sink. Int. J. Therm. Sci. 84, 275–292 (2014). https://doi.org/10.1016/j.ijthermalsci.2014.05.025

    Article  Google Scholar 

  82. Sahu, P., Shelare, S., Sakhale, C.: Smart cities waste management and disposal system by smart system: a review. Int. J. Sci. Technol. Res. 9(03), 4467–4470 (2020)

    Google Scholar 

  83. Saini, M., Webb, R.L.: Heat rejection limits of air cooled plane fin heat sinks for computer cooling. In: Inter Society Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITHERM, 1–8 Jan 2002 (2002). https://doi.org/10.1109/ITHERM.2002.1012431

  84. Shelare, S.D., Thakare, P.S., Handa, C.C.: Computer aided modelling and position analysis of crank and slotted lever mechanism. Int. J. Mech. Eng. Prod. Eng. Res. Dev. 2(2), 47–52 (2012)

    Google Scholar 

  85. Shelare, S.D., Kumar, R., Khope, P.B.: Formulation of a mathematical model for quantity of deshelled nut in charoli nut deshelling machine. In: Advances in Metrology and Measurement of Engineering Surfaces, pp. 89–97 (2020). https://doi.org/10.1007/978-981-15-5151-2_9

  86. Singh, R., Akbarzadeh, A., Dixon, C., Mochizuki, M., Riehl, R.R.: Miniature loop heat pipe with flat evaporator for cooling computer CPU. IEEE Trans. Compon. Packag. Technol. 30(1), 42–49 (2007). https://doi.org/10.1109/TCAPT.2007.892066

    Article  Google Scholar 

  87. Tembhurkar, C., Kataria, R., Ambade, S., Verma, J.: Transient Analysis of GTA-Welded Austenitic and Ferritic Stainless Steel. In: Advances in Materials Processing, pp. 59–65 (2020). https://doi.org/10.1007/978-981-15-4748-5_6

  88. Thermal guidelines for data processing environments, 3rd edn. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 2012

    Google Scholar 

  89. Tran, N., Zhang, C., Dang, T., Teng, J.T.: Numerical and experimental studies on pressure drop and performance index of an aluminum microchannel heat sink. In: Proceedings of 2012 International Symposium on Computer, Consumer and Control, IS3C 2012, pp. 252–257 (2012). https://doi.org/10.1109/IS3C.2012.71

  90. Tuma, P.E.: Fluoroketone C2F5C(O)CF(CF3)2 as a heat transfer fluid for passive and pumped 2-phase applications. In: Annual IEEE Semiconductor Thermal Measurement and Management Symposium, (4), pp. 173–179 (2008). https://doi.org/10.1109/STHERM.2008.4509386

  91. Tuma, P.E.: The merits of open bath immersion cooling of datacom equipment. In: Annual IEEE Semiconductor Thermal Measurement and Management Symposium, pp. 123–131 (2010). https://doi.org/10.1109/STHERM.2010.5444305

  92. Waghmare, S., Sirsat, P., Sakhale, C., Shelare, S., Awatade, S.: A case study on improvement of plant layout for effective production. Int. J. Mech. Prod. Eng. Res. Dev. 7(5), 155–160 (2017). https://doi.org/10.24247/ijmperdoct201716

  93. Waghmare, S.N., Sakhale, C.N., Tembhurkar, C.K., Shelare, S.D.: Assessment of average resistive torque for human-powered stirrup making process. In: Computing in Engineering and Technology, pp. 845–853 (2019). https://doi.org/10.1007/978-981-32-9515-5_79

  94. Waghmare, S., Mungle, N., Tembhurkar, C., Shelare, S., Sirsat, P., Pathare, N.: Design and analysis of power screw for manhole cover lifter. Int. J. Recent Technol. Eng. 8(2), 2782–2786 (2019). https://doi.org/10.35940/ijrte.B2628.078219

  95. Waghmare, S.N., Shelare, S.D., Tembhurkar, C.K., Jawalekar, S.B.: Development of a model for the number of bends during stirrup making process. In: Advances in Metrology and Measurement of Engineering Surfaces, pp. 69–78 (2020). https://doi.org/10.1007/978-981-15-5151-2_7

  96. Waghmare, S., Shelare, S., Sirsat, P., Pathare, N., Awatade, S.: Development of an innovative multi-operational furnace. Int. J. Sci. Technol. Res. 9(04), 885–889 (2020)

    Google Scholar 

  97. Wan, Z., Deng, J., Li, B., Xu, Y., Wang, X., Tang, Y.: Thermal performance of a miniature loop heat pipe using water-copper nanofluid. Appl. Therm. Eng. 78, 712–719 (2015). https://doi.org/10.1016/j.applthermaleng.2014.11.010

    Article  Google Scholar 

  98. Wang, G., Niu, D., Xie, F., Wang, Y., Zhao, X., Ding, G.: Experimental and numerical investigation of a microchannel heat sink (MCHS) with micro-scale ribs and grooves for chip cooling. Appl. Therm. Eng. 85, 61–70 (2015). https://doi.org/10.1016/j.applthermaleng.2015.04.009

    Article  Google Scholar 

  99. Xu, G., Guenin, B., Vogel, M.: Extension of air cooling for high power processors. Thermomech. Phenom. Electron. Syst. Proc. Intersoc. Conf. 1(858), 186–193 (2004). https://doi.org/10.1109/itherm.2004.1319172

    Article  Google Scholar 

  100. Xyber Technologies, https://www.xybertechnologies.com/

  101. Zhang, H.Y., Pinjala, D., Teo, P.S.: Thermal management of high power dissipation electronic packages: from air cooling to liquid cooling. In: Proceedings of 5th Electronics Packaging Technology Conference, EPTC 2003, (11), 620–625 (2003). https://doi.org/10.1109/EPTC.2003.1271593

  102. Zhang, H., Shao, S., Xu, H., Zou, H., Tian, C.: Free cooling of data centers: a review. Renew. Sustain. Energy Rev. 35, 171–182 (2014). https://doi.org/10.1016/j.rser.2014.04.017

    Article  Google Scholar 

  103. Zimbeck, W., Slavik, G., Cennamo, J., Kang, S., Yun, J., Kroliczek, E.: Loop heat pipe technology for cooling computer servers. In: 2008 11th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, I-THERM, pp. 19–25 (2008). https://doi.org/10.1109/ITHERM.2008.4544248

  104. Zimmermann, S., Meijer, I., Tiwari, M.K., Paredes, S., Michel, B., Poulikakos, D.: Aquasar: a hot water cooled data center with direct energy reuse. Energy 43(1), 237–245 (2012). https://doi.org/10.1016/j.energy.2012.04.037

    Article  Google Scholar 

  105. Zimmermann, S., Tiwari, M.K., Meijer, I., Paredes, S., Michel, B., Poulikakos, D.: Hot water cooled electronics: exergy analysis and waste heat reuse feasibility. Int. J. Heat Mass Transf. 55(23–24), 6391–6399 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.027

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aglawe, K.R., Yadav, R.K., Thool, S.B. (2022). Current Technologies on Electronics Cooling and Scope for Further Improvement: A Typical Review. In: Pratap Singh, R., Tyagi, D.M., Panchal, D., Davim, J.P. (eds) Proceedings of the International Conference on Industrial and Manufacturing Systems (CIMS-2020). Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-73495-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73495-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73494-7

  • Online ISBN: 978-3-030-73495-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics