Skip to main content

Effect of Hydrogen Sulfide on Osmotic Adjustment of Plants Under Different Abiotic Stresses

  • Chapter
  • First Online:
Hydrogen Sulfide and Plant Acclimation to Abiotic Stresses

Part of the book series: Plant in Challenging Environments ((PCE,volume 1))

Abstract

Hydrogen sulfide (H2S), a potent gaseous transmitter in plants, has myriads of positive roles, which involves a boost on plant growth and development and execution of plant stress tolerance mechanisms. Initially this molecule was rather considered as a toxin to the plant system, but presently it has been proved that H2S has immense role to play in abiotic stress responses in plants. Exposure of a plant to any form of abiotic stress leads to alteration of the cellular osmotic potential and activation of oxidative stress circuits. H2S signalling and metabolism can modulate the stress tolerance response and osmotic adjustment in plants to combat the adverse circumstances of different forms of abiotic stresses including drought, high and low temperature, salinity, water logging, hypoxic conditions, metal toxicity, etc. In order to bring about osmotic adjustment in plants, H2S can induce the accumulation of a range of plant osmolytes like proline, glycine betaine, polyamines, sugars, inorganic ions, etc. These osmolytes can in turn lead to stabilization of the differences in the osmotic potential between the cellular interior and the surroundings in response to the prevailing abiotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad P, Jaleel CA, Salem MA et al (2010) Roles of enzymatic and non-enzymatic antioxidants in plants during abiotic stress. Critical Rev Biotech 30:161–175

    Article  CAS  Google Scholar 

  • Akashi K, Miyake C, Yokota A (2001) Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger. FEBS Lett 508:438–442

    Article  CAS  PubMed  Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S et al (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344

    Article  CAS  Google Scholar 

  • Alia P, Pardha S, Prasanna M (1993) Proline in relation to free radical production in seedlings of Brassica juncea raised under sodium chloride stress. Plant Soil 155:497

    Article  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2018) Abiotic stress, generation of reactive oxygenspecies, and their consequences: an overview. In: Singh VP, Singh S, Tripathi D, Mohan Prasad S, Chauhan DK (eds) Revisiting the role of reactive oxygen species (ROS) in plants: ROS Boon or Bane for plants? Wiley, New York, pp 23–50

    Google Scholar 

  • Banerjee A, Tripathi DK, Roychoudhury A (2018) Hydrogen sulphide trapeze: environmental stress amelioration and phytohormone crosstalk. Plant Physiol Biochem 132:46–53

    Article  CAS  PubMed  Google Scholar 

  • Bao J, Ding TL, Jia WJ et al (2011) Effect of exogenous hydrogensulphide on wheat seed germination under salt stress. Mod Agri Sci Technol 20:40–42

    Google Scholar 

  • Bhatti KH, Anwar S, Nawaz K et al (2013) Effect of exogenous application of glycinebetaine on wheat (Triticum aestivum L.) under heavy metal stress. Middle East J Sci Res 14:130–137

    CAS  Google Scholar 

  • Chen TH, Murata N (2008) Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci 13:499–505

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Wang WH, Wu FH et al (2013) Hydrogen sulphide alleviates aluminium toxicity in barley seedlings. Plant Soil 362:301–318

    Article  CAS  Google Scholar 

  • Chen Y, Han YH, Cao Y et al (2017) Arsenic transport in rice and biological solutions to reduce arsenic risk from rice. Front Plant Sci 8:268

    PubMed  PubMed Central  Google Scholar 

  • Cheng W, Zhang L, Jiao CJ et al (2013) Hydrogen sulphide alleviates hypoxia-induced root tip death in Pisum sativum. Plant Physiol Biochem 70:278–286

    Article  CAS  PubMed  Google Scholar 

  • Christou A, Manganaris GA, Papadopoulos I et al (2011) The importance of hydrogen sulphide as a systemic priming agent in strawberry plants grown under keyabiotic stress factors. In: Proceedings of the 4th international conference: plant abiotic stress: from systems biology to sustainable agriculture. Limassol: 47

    Google Scholar 

  • Christou A, Manganaris GA, Papadopoulos I et al (2013) Hydrogen sulphide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways. J Exp Bot 64:1953–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christou A, Filippou P, Manganaris GA et al (2014) Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulationof heat shock proteins and aquaporin. BMC Plant Biol 14:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhir B, Nasim SA, Samantary S et al (2012) Assessment of Osmolyte accumulation in heavy metal exposed Salvinia natans. Int J Bot 8:153–158

    Article  CAS  Google Scholar 

  • Din J, Khan S, Ali I, Gurmani A (2011) Physiological and agronomic response of canola varieties to drought stress. J Anim Plant Sci 21:78–82

    Google Scholar 

  • Eastmond PJ (2004) Glycerol insensitive Arabidopsis mutants: gli1seedlings lack glycerol kinase, accumulate glycerol and are more resistant to abiotic stress. Plant J 37:617–625

    Article  CAS  PubMed  Google Scholar 

  • El- Sharkawy MA (2007) Physiological characteristics of cassava tolerance to prolonged drought in the tropics: implications for breeding cultivars adapted to seasonally dry and semiarid environments. Braz J Plant 19:1677

    Google Scholar 

  • Fahad S, Rehman A, Shahzad B et al (2019) Rice responses and tolerance to metal/metalloid toxicity. In: Advances in Rice research for abiotic stress tolerance. Woodhead Publishing, Cambridge, pp 299–312

    Chapter  Google Scholar 

  • Fotopoulos V, Christou A, Antoniou C et al (2015) Hydrogen sulphide: a versatile tool for the regulation of growth and defence responses in horticultural crops. J Hortic Sci Biotechnol 90:227–234

    Article  CAS  Google Scholar 

  • Fu PN, Wang WJ, Hou LX et al (2013) Hydrogen sulphide is involved in the chilling stress response in Vitis vinifera L. Acta Soc Bot Pol 82:295–302

    Article  CAS  Google Scholar 

  • García-Mata C, Lamattina L (2010) Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling. New Phytol 188:977–984

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Xiao T, Zhou H et al (2016) Hydrogen sulfide: a versatile regulator of environmental stress in plants. Acta Physiol Plant 38:16

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013) Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ecophysiology and responses of plants under salt stress. Springer, New York, pp 25–87

    Chapter  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN et al (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoque MA, Banu MN, Nakamura Y et al (2008) Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. J Plant Physiol 165:813–824

    Article  CAS  PubMed  Google Scholar 

  • Jin Z, Shen J, Qiao Z et al (2011) Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochem Biophys Res Commun 414:481–486

    Article  CAS  PubMed  Google Scholar 

  • Jin Z, Xue S, Luo Y et al (2013) Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis. Plant Physiol Biochem 62:41–46

    Article  CAS  PubMed  Google Scholar 

  • Kathuria H, Giri J, Nataraja KN et al (2009) Glycinebetaine-induced water-stress tolerance in codA-expressing transgenic indica rice is associated with up-regulation of several stress responsive genes. Plant Physiol Biochem 7:512–526

    CAS  Google Scholar 

  • Khan MI, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol Biochem 80:67–74

    Article  CAS  PubMed  Google Scholar 

  • Khedr AH, Abbas MA, Wahid AA et al (2003) Proline induces the expression of salt-stress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. J Exp Bot 54:2553–2562

    Article  CAS  PubMed  Google Scholar 

  • Kirchhoff H (2014) Structural changes of the thylakoid membrane network induced by high light stress in plant chloroplasts. Philos Trans R Soc B Biol Sci 369:20130225

    Article  CAS  Google Scholar 

  • Kishor PK, Sangam S, Amrutha R et al (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    CAS  Google Scholar 

  • Li ZG (2013a) Hydrogen sulfide: a multifunctional gaseous molecule in plants. Russ J Plant Physiol 6:733–740

    Article  CAS  Google Scholar 

  • Li ZG, Ding XJ, Du PF (2013b) Hydrogen sulphide donor sodium hydrosulfide-improvedheat tolerance in maize and involvement of proline. J Plant Physiol 170:741–747

    Article  CAS  PubMed  Google Scholar 

  • Li ZG (2015a) Analysis of some enzymes activities of hydrogen sulfide metabolism inplants. Methods Enzymol 555:253–269

    Article  CAS  PubMed  Google Scholar 

  • Li ZG (2015b) Synergistic effect of antioxidant system and osmolyte in hydrogen sulphide and salicylic acid crosstalk-induced heat tolerance in maize (Zea mays L.) seedlings. Plant Signal Behav 10:e1051278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li ZG, Long WB, Yang SZ et al (2015c) Endogenous hydrogen sulphide regulated by calcium is involved in thermotolerance in tobacco Nicotiana tabacum L. suspension cell cultures. Acta Physiol Plant 37:219

    Article  CAS  Google Scholar 

  • Li ZG, Xie LR, Li XJ (2015d) Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize (Zea mays L.) seedlings. J Plant Physiol 177:121–127

    Article  CAS  PubMed  Google Scholar 

  • Li J, Pandeya D, Nath K, Zulfugarov IS et al (2010) ZEBRA-NECROSIS, a thylakoid-bound protein, is critical for the photoprotection of developing chloroplasts during early leaf development. Plant J 62:713–725

    Article  CAS  PubMed  Google Scholar 

  • Li ZG, Gong M, Xie H et al (2012) Hydrogen sulphide donor sodium hydrosulfide- induced heat tolerance in tobacco (Nicotiana tabacum L.) suspension cultured cells and involvement of Ca2+ and calmodulin. Plant Sci 185–186:185–189

    Article  PubMed  CAS  Google Scholar 

  • Li YJ, Shi ZQ, Gan LJ et al (2014a) Hydrogen sulfide is a novel gasotransmitter with pivotal role in regulating lateral root formation in plants. Plant Signal Behav 9:e29127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li ZG, Yi XY, Li YT (2014b) Effect of pretreatment with hydrogen sulfide donor sodium hydrosulfide on heat tolerance in relation to antioxidant system in maize (Zea mays) seedlings. Biologia 69:1001–1009

    Article  CAS  Google Scholar 

  • Li D, Limwachiranon J, Li L et al (2016a) Involvement of energy metabolism to chilling tolerance induced by hydrogen sulfide in cold-stored banana fruit. Food Chem 208:272–278

    Article  CAS  PubMed  Google Scholar 

  • Li ZG, Min X, Zhou ZH (2016b) Hydrogen sulfide: a signal molecule in plant cross adaptation. Front Plant Sci 7:1621

    PubMed  PubMed Central  Google Scholar 

  • Li Y, Jin Q, Yang D et al (2018) Molybdenum sulphide induce growth enhancement effect of rice (Oryza sativa L.) through regulating the synthesis of chlorophyll and the expression of aquaporin gene. J Agric Food Chem 66:4013–4021

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Chen J, Wang GH et al (2016) Hydrogen sulphide alleviates zinc toxicity by reducing zinc uptake and regulating genes expression of antioxidative enzymes and metallothioneins in roots of the cadmium/zinc hyperaccumulator L. Plant Soil 400:177–192

    Article  CAS  Google Scholar 

  • Luo Z, Li D, Du R et al (2015) Hydrogen sulphide alleviates chilling injury of banana fruit by enhanced antioxidant system and proline content. Sci Hortic 183:144–151

    Article  CAS  Google Scholar 

  • Lutts S (2000) Exogenous glycinebetaine reduces sodium accumulation in salt-stressed rice plants. Int Rice Res Notes 25:39–40

    Google Scholar 

  • Ma L, Yang L, Zhao J et al (2015) Comparative proteomic analysis reveals the role of hydrogen sulphide in the adaptation of the alpine plant Lamiophlomis rotata to altitude gradient in the Northern Tibetan plateau. Planta 241:887–906

    Article  CAS  PubMed  Google Scholar 

  • Mäkelä P, Kärkkäinen J, Somersalo S (2000) Effect of Glycinebetaine on chloroplast ultrastructure, chlorophyll and protein content, and RuBISCO activities in tomato grown under drought or salinity. Biol Plant 43:471–475

    Article  Google Scholar 

  • Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278

    Article  CAS  PubMed  Google Scholar 

  • Mbarki S, Oksana S, Cerda A et al (2018) Strategies to mitigate the salt stress effects on photosynthetic apparatus and productivity of crop plants. In: Kumar V (ed) Salinity responses and tolerance in plants, vol 1. Springer, Cham, pp 85–136

    Chapter  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Parveen M, Asaeda T, Rashid MH (2017) Biochemical adaptations of four submerged macrophytes under combined exposure to hypoxia and hydrogen sulphide. PLoS One 12:e0182691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quan R, Shang M, Zhang H et al (2004) Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotech J 2:477–486

    Article  CAS  Google Scholar 

  • Reda F, Mandoura HMH (2011) Response of enzymes activities, photosynthetic pigments, proline to low or high temperature stressed wheat plant (Triticum aestivum L.) in the presence or absence of exogenous proline or cysteine. Int J Acad Res 3:108–115

    Google Scholar 

  • Sandhi A, Greger M, Landberg T et al (2017) Arsenic concentrations in local aromatic and high-yielding hybrid rice cultivars and the potential health risk: a study in an arsenic hotspot. Environ Monit Assess 189:184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Serraj R, Sinclair T (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25:333–341

    Article  PubMed  Google Scholar 

  • Sharma J, Chakraverty N (2013) Mechanism of plant tolerance in response to heavy metals. In: Das AB, Rout GR (eds) Molecular stress physiology of plants. Springer, Berlin, pp 289–308

    Chapter  Google Scholar 

  • Sharma A, Shahzad B, Kumar V et al (2019) Phytohormones regulate accumulation of Osmolytes under abiotic stress. Biomol Ther 9:1–36

    Google Scholar 

  • Shi H, Ye T, Chan Z (2013) Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in Bermuda grass (Cynodon dactylon (L). Pers.). Plant Physiol Biochem 71:226–234

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Ye T, Han N et al (2015) Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis. J Integr Plant Biol 57:628–640

    Article  CAS  PubMed  Google Scholar 

  • Sidhu GPS, Singh HP, Batish DR et al (2017) Appraising the role of environment friendly chelants in alleviating lead by Coronopus didymus from Pb contaminated soils. Chemosphere 182:129–136

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Kumar J, Singh S et al (2015a) Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Rev Environ Sci Biotechnol 14:407–426

    Article  CAS  Google Scholar 

  • Singh VP, Singh S, Kumar J et al (2015b) Hydrogen sulfide alleviates toxic effects of arsenate in pea seedlings through up-regulation of the ascorbate–glutathione cycle: possible involvement of nitric oxide. J Plant Physiol 181:20–29

    Article  CAS  PubMed  Google Scholar 

  • Sudhakar C, Lakshmi A, Giridarakumar S (2001) Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci 161:613–619

    Article  CAS  Google Scholar 

  • Sumithra K, Jutur P, Carmel BD et al (2006) Salinity-induced changes in two cultivars of Vigna radiata: responses of antioxidative and proline metabolism. J Plant Growth Regul 50:11–22

    Article  CAS  Google Scholar 

  • Tan W, Meng Q, Brestic M et al (2011) Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. J Plant Physiol 168:2063–2071

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Mu X, Shao H et al (2015) Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. Crit Rev Biotechnol 35:425–437

    Article  PubMed  CAS  Google Scholar 

  • Tewari AK, Tripathy BC (1998) Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat. Plant Physiol 117:851–858

    Article  CAS  Google Scholar 

  • Vaida J, Natalija B, Ramune K, Ausra B (2012) Effect of exogenous proline and de-acclimation treatment on cold tolerance in Brassica napus shoots cultured in vitro. J Food Agric Environ 10:327–330

    Google Scholar 

  • Van Dongen JT, Licausi F (2014) Low-oxygen stress in plants: oxygen sensing and adaptive responses to hypoxia. Springer, Wien

    Book  Google Scholar 

  • Wang R (2012) Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 92:791–896

    Article  CAS  PubMed  Google Scholar 

  • Wang YQ, Li L, Cui WT et al (2012) Hydrogen sulphide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway. Plant Soil 351:107–119

    Article  CAS  Google Scholar 

  • Wang Y, Zhang H, Hou P et al (2014) Foliar-applied salicylic acid alleviates heat and high light stress induced photoinhibition in wheat (Triticum aestivum) during the grain filling stage by modulating the psbA gene transcription and antioxidant defense. Plant Growth Regul 73:289–297

    Article  CAS  Google Scholar 

  • Wani SH, Singh NB, Haribhushan A et al (2013) Compatible solute engineering in plants for abiotic stresstolerance-role of glycine betaine. Curr Genomics 14:157–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada M, Morishita H, Urano K et al (2005) Effects of free proline accumulation in petunias under drought stress. J Exp Bot 5:1975–1981

    Article  CAS  Google Scholar 

  • Yamasaki H, Cohen MF (2016) Biological consilience of hydrogen sulfide and nitric oxide in plants: gases of primordial earth linking plant, microbial and animal physiologies. Nitric Oxide 5:91–100

    Article  CAS  Google Scholar 

  • Yancey PH (1994) Compatible and counteracting solutes. In: Strange K (ed) Cellular and molecular physiology of cell volume regulation. CRC Press, Boca Raton, pp 81–109

    Google Scholar 

  • Zhang J, Henry HT, Blum A (1999) Genetic analysis of osmotic adjustment in crop plants. J Exp Bot 50:291–302

    Article  CAS  Google Scholar 

  • Zhang H, Hu LY, Hu KD et al (2008) Hydrogen sulphide promotes wheat seed germination and alleviates oxidative damage against copper stress. J Integr Plant Biol 50:1518–1529

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Hu LY, Li P et al (2010a) Hydrogen sulfide alleviated chromium toxicity in wheat. Biol Plant 54:743–747

    Article  CAS  Google Scholar 

  • Zhang H, Tan ZQ, Hu LY et al (2010b) Hydrogen sulphide alleviates aluminium toxicity in germinating wheat seedlings. J Integr Plant Biol 52:556–567

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Wang MF, Hua LY et al (2010c) Hydrogen sulphide promotes wheat seed germination under osmotic stress. Russ J Plant Physiol 57:532–539

    Article  CAS  Google Scholar 

  • Zhang H, Hu SL, Zhang ZJ et al (2011) Hydrogen sulphide acts as a regulator of flower senescence in plants. Postharvest Biol Technol 60:251–257

    Article  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial assistance from Council of Scientific and Industrial Research (CSIR), Government of India, through the research grant [38(1387)/14/EMR-II], Science and Engineering Research Board, Government of India through the grant [EMR/2016/004799] and Department of Higher Education, Science and Technology and Biotechnology, Government of West Bengal, through the grant [264(Sanc.)/ST/P/S&T/1G-80/2017] to Dr. Aryadeep Roychoudhury is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aryadeep Roychoudhury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roychoudhury, A., Chakraborty, S. (2021). Effect of Hydrogen Sulfide on Osmotic Adjustment of Plants Under Different Abiotic Stresses. In: Khan, M.N., Siddiqui, M.H., Alamri, S., Corpas, F.J. (eds) Hydrogen Sulfide and Plant Acclimation to Abiotic Stresses. Plant in Challenging Environments, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-030-73678-1_5

Download citation

Publish with us

Policies and ethics