Skip to main content

Role of L-Arginine in Nitric Oxide Synthesis and Health in Humans

  • Chapter
  • First Online:
Amino Acids in Nutrition and Health

Abstract

As a functional amino acid (AA), L-arginine (Arg) serves not only as a building block of protein but also as an essential substrate for the synthesis of nitric oxide (NO), creatine, polyamines, homoarginine, and agmatine in mammals (including humans). NO (a major vasodilator) increases blood flow to tissues. Arg and its metabolites play important roles in metabolism and physiology. Arg is required to maintain the urea cycle in the active state to detoxify ammonia. This AA also activates cellular mechanistic target of rapamycin (MTOR) and focal adhesion kinase cell signaling pathways in mammals, thereby stimulating protein synthesis, inhibiting autophagy and proteolysis, enhancing cell migration and wound healing, promoting spermatogenesis and sperm quality, improving conceptus survival and growth, and augmenting the production of milk proteins. Although Arg is formed de novo from glutamine/glutamate and proline in humans, these synthetic pathways do not provide sufficient Arg in infants or adults. Thus, humans and other animals do have dietary needs of Arg for optimal growth, development, lactation, and fertility. Much evidence shows that oral administration of Arg within the physiological range can confer health benefits to both men and women by increasing NO synthesis and thus blood flow in tissues (e.g., skeletal muscle and the corpora cavernosa of the penis). NO is a vasodilator, a neurotransmitter, a regulator of nutrient metabolism, and a killer of bacteria, fungi, parasites, and viruses [including coronaviruses, such as SARS-CoV and SARS-CoV-2 (the virus causing COVID-19). Thus, Arg supplementation can enhance immunity, anti-infectious, and anti-oxidative responses, fertility, wound healing, ammonia detoxification, nutrient digestion and absorption, lean tissue mass, and brown adipose tissue development; ameliorate metabolic syndromes (including dyslipidemia, obesity, diabetes, and hypertension); and treat individuals with erectile dysfunction, sickle cell disease, muscular dystrophy, and pre-eclampsia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Amino acid

ADMA:

Asymmetric dimethylarginine

AMPK:

AMP-activated protein kinase

Arg:

L-arginine

BH4:

Tetrahydrobiopterin

BW:

Body weight

COVID-19:

Coronavirus disease-2019

eNOS:

Endothelial nitric oxide synthase

GTP-CH1:

GTP cyclohydrolase-I

NHANES:

National health and nutrition examination survey

iNOS:

Inducible nitric oxide synthase

NMMA:

NG-monomethylarginine

MTOR:

Mechanistic target of rapamycin

nNOS:

Neuronal nitric oxide synthase

NO:

Nitric oxide

PPAR:

Peroxisome proliferator-activated receptor

SARS-CoV:

Severe acute respiratory syndrome coronavirus

SARS-CoV-2:

Severe acute respiratory syndrome coronavirus 2

SCD:

Sickle cell disease

References

  • Agostinelli E (2020) Biochemical and pathophysiological properties of polyamines. Amino Acids 52:111–117

    Article  CAS  PubMed  Google Scholar 

  • Akaberi D, Krambrich J, Ling J, Luni C, Hedenstierna G, Jarhult JD, Lennerstrand J, Lundkvist Å (2020) Mitigation of the replication of SARS-CoV-2 by nitric oxide in vitro. Redox Biol 37:101734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Åkerström S, Mousavi-Jazi M, Klingström J, Leijon M, Lundkvist Å, Mirazimi A (2005) Nitric oxide inhibits the replication cycle of severe acute respiratory syndrome coronavirus. J Virol 79:1966–1969

    Article  PubMed  PubMed Central  Google Scholar 

  • Alderton WK, Cooper CE, Knowles RG (2001) NO synthases: structure, function and inhibition. Biochem J 357:593–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander JW, Supp DM (2014) Role of arginine and Omega-3 fatty acids in wound healing and Infection. Adv Wound Care 3:682–690

    Article  Google Scholar 

  • Alvares TS, Conte CA, Silva JT, Paschoalin VMF (2012a) Acute L-arginine supplementation does not increase NO production in healthy subjects. Nutr Metab 9:54

    Article  CAS  Google Scholar 

  • Alvares TS, Conte CA, Paschoalin VMF, Silva JT, Meirelles CM, Bhambhani YN, Gomes PSC (2012b) Acute L-arginine supplementation increases muscle blood volume but not strength performance. Appl Physiol Nutr Metab 37:115–126

    Article  CAS  PubMed  Google Scholar 

  • Arnal JF, Munzel T, Venema RC, James NL, Bai CL, Mitch WE, Harrison DG (1995) Interactions between L-arginine and L-glutamine change endothelial NO production. J Clin Invest 95:2565–2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey SJ, Winyard PG, Vanhatalo A, Blackwell JR, DiMenna FJ, Wilkerson DP, Jones AM (2010) Acute L-arginine supplementation reduces the O2 costs of moderate-intensity exercise and enhances high-intensity exercise tolerance. J Appl Physiol 109:1394–1403

    Article  CAS  PubMed  Google Scholar 

  • Baylis C, Vallance P (1998) Measurement of nitrite and nitrate levels in plasma and urine–what does this measure tell us about the activity of the endogenous NO system? Curr Opin Nephrol Hypertens 7:59–62

    Article  CAS  PubMed  Google Scholar 

  • Bazer FW, Johnson GA, Wu G (2015) Amino acids and conceptus development during the peri-implantation period of pregnancy. Adv Exp Med Biol 843:23–52

    Article  CAS  PubMed  Google Scholar 

  • Bazer FW, Seo H, Wu G, Johnson GA (2020) Interferon tau: Influences on growth and development of the conceptus. Theriogenology 150:75–83

    Article  CAS  PubMed  Google Scholar 

  • Becker RM, Wu G, Galanko JA, Chen W, Maynor AR, Bose CL, Rhoads JM (2000) Reduced serum amino acid concentrations in infants with necrotizing enterocolitis. J Pediatr 137:785–793

    Article  CAS  PubMed  Google Scholar 

  • Blake DJ, Weir A, Newey SE, Davies KE (2002) Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 82:291–329

    Article  CAS  PubMed  Google Scholar 

  • Bode-Boger SM, Boger RH, Galland A, Tsikas D, Frolich JC (1998) L-arginine-induced vasodilation in healthy humans: pharmacokinetic-pharmacodynamic relationship. Br J Clin Pharmacol 46:489–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bode-Böger SM (2006) Effect of L-arginine supplementation on NO production in man. Eur J Clin Pharmacol 62:91–99

    Article  CAS  Google Scholar 

  • Bollenbach A, Hanff E, Brunner G, Tsikas D (2019) Asymmetric dimethylation and citrullination of proteinic arginine and homoarginine synthesis in human Helicobacter pylori infection. Amino Acids 51:961–971

    Article  CAS  PubMed  Google Scholar 

  • Bronte V, Zanovello P (2005) Regulation of immune responses by L-arginine metabolism. Nature Rev Immunol 5:641–654

    Article  CAS  Google Scholar 

  • Burns RA, Milner JA, Corbin JE (1981) Arginine: an indispensable amino acid for mature dogs. J Nutr 111:1020–1124

    Article  CAS  PubMed  Google Scholar 

  • Castillo L, Chapman TE, Yu YM, Ajami A, Burke JF, Young VR (1993) Dietary arginine uptake by the splanchnic region in adult humans. Am J Physiol 265:E532-539

    CAS  PubMed  Google Scholar 

  • Chen J, Wollman Y, Chernichovsky T, Iaina A, Sofer M, Matzkin H (1999) Effect of oral administration of high-dose NO donor L-arginine in men with organic erectile dysfunction: results of a double-blind, randomized, placebo-controlled study. BJU Int 83:269–273

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Kim W, Henning SM, Carpenter CL, Li Z (2010) Arginine and antioxidant supplement on performance in elderly male cyclists: a randomized controlled trial. J Int Soc Sports Nutr 7:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarkson P, Adams MR, Powe AJ, Donald AE, McCredie R, Robinson J, McCarthy SN, Keech A, Celermajer DS, Deanfield JE (1996) Oral L-arginine improves endothelium-dependent dilation in hypercholesterolemic young adults. J Clin Invest 97:989–994

    Article  Google Scholar 

  • Closs EI, Scheld JS, Sharafi M, Forstermann U (2000) Substrate supply for NO synthase in macrophages and endothelial cells: role of cationic amino acid transporters. Mol Pharmacol 57:68–74

    CAS  PubMed  Google Scholar 

  • Cormio L, Siati MD, Lorusso F, Selvaggio O, Mirabella L, Sanguedolce F, Carrieri G (2011) Oral L-citrulline supplementation improves erection hardness in men with mild erectile dysfunction. Urology 77:119–122

    Article  PubMed  Google Scholar 

  • D’Aniello G, Tolino A, Fisher G (2001) Plasma L-arginine is markedly reduced in pregnant women affected by preeclampsia. J Chromatogr B 753:427–431

    Article  CAS  Google Scholar 

  • Dong J, Qin L, Zhang Z, Zhao Y, Wang J, Arigoni F, Zhang W (2011) Effect of oral L-arginine supplementation on blood pressure: a meta-analysis of randomized, double-blind, placebo-controlled trials. Am Heart J 162:959–965

    Article  CAS  PubMed  Google Scholar 

  • Dorniak-Wall T, Grivell RM, Dekker GA, Hague W, Dodd JM (2014) The role of L-arginine in the prevention and treatment of pre-eclampsia: a systematic review of randomised trials. J Human Hypert 28:230–235

    Article  CAS  Google Scholar 

  • Eleutério RMN, Nascimento FO, Araújo TG, Castro MF, Filho TPA, Filho PAM, Eleutério J, Elias DBD, Lemes RPG (2019) Double-blind clinical trial of arginine supplementation in the treatment of adult patients with sickle cell anaemia. Adv Hematol 2019:4397150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Evans RW, Fernstrom JD, Thompson J, Morris SM, Kuller LH (2004) Biochemical responses of healthy subjects during dietary supplementation with L-arginine. J Nutr Biochem 15:534–539

    Google Scholar 

  • Fahs CA, Heffernan KS, Fernhall B (2009) Hemodynamic and vascular response to resistance exercise with L-arginine. Med Sci Sports Exerc 41:773–779

    Article  CAS  PubMed  Google Scholar 

  • Fayh AP, Krause M, Rodrigues-Krause J, Luiz Ribeiro J, Ribeiro JP, Friedman R, Moreira JCF, Reischak-Oliveira A (2013) Effects of L-arginine supplementation on blood flow, oxidative stress status and exercise responses in young adults with uncomplicated type I diabetes. Eur J Nutr 52:975–983

    Article  CAS  PubMed  Google Scholar 

  • Fiorentino G (2021) https://clinicaltrials.gov/ct2/show/NCT04637906. Accessed 4 Mar 2021

  • Flynn NE, Meininger CJ, Haynes TE, Wu G (2002) The metabolic basis of arginine nutrition and pharmacotherapy. Biomed Pharmacother 56:427–438

    Article  CAS  PubMed  Google Scholar 

  • Förstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33:829–837

    Article  PubMed  CAS  Google Scholar 

  • Fu WJ, Haynes TE, Kohli R, Hu J, Shi W, Spencer TE, Carroll RJ, Meininger CJ, Wu G (2005) Dietary L-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr 135:714–721

    Article  CAS  PubMed  Google Scholar 

  • Green LC, Ruiz de Luzuriaga K, Wagner DA, Rand W, Istfan N, Young VR, Tannenbaum SR (1981) Nitrate biosynthesis in man. Proc Natl Acad Sci USA 78:7764–7768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimes JM, Khan S, Badeaux M, Rao RM, Rowlinson SW, Carvajal RD (2021) Arginine depletion as a therapeutic approach for patients with COVID-19. Int J Infect Dis 102:566–570

    Article  CAS  PubMed  Google Scholar 

  • Hadi A, Arab A, Moradi S, Pantovic A, Clark CCT, Ghaedi E (2019) The effect of l-arginine supplementation on lipid profile: a systematic review and meta-analysis of randomised controlled trials. Br J Nutr 122:1021–1032

    Article  CAS  PubMed  Google Scholar 

  • Hafner P, Bonati U, Erne B, Schmid M, Rubino D, Pohlman U et al (2016) Improved muscle function in Duchenne muscular dystrophy through L-arginine and metformin: an investigator-initiated, open-label, single-center, proof-of-concept-study. PLoS ONE 11:e0147634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanff E, Hafner P, Bollenbach A, Bonati U, Kayacelebi AA, Fischer D, Tsikas D (2018) Effects of single and combined metformin and L-citrulline supplementation on L-arginine-related pathways in Becker muscular dystrophy patients: possible biochemical and clinical implications. Amino Acids 50:1391–1406

    Article  CAS  PubMed  Google Scholar 

  • Herring CM, Bazer FW, Johnson GA, Wu G (2018) Impacts of maternal dietary protein intake on fetal survival, growth and development. Exp Biol Med 243:525–533

    Article  CAS  Google Scholar 

  • Hnia K, Gayraud J, Hugon G, Ramonatxo M, De La Porte S, Matecki S, Mornet D (2008) L-arginine decreases inflammation and modulates the nuclear factor-kappaB/matrix metalloproteinase cascade in mdx muscle fibers. Am J Pathol 172:1509–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoang HH, Padgham SV, Meininger CJ (2013) L-arginine, tetrahydrobiopterin, NO and diabetes. Curr Opin Clin Nutr Metab Care 16:76–82

    Article  CAS  PubMed  Google Scholar 

  • Hörster I, Weigt-Usinger K, Carmann C, Chobanyan-Jürgens K, Köhler C, Schara U et al (2015) The L-arginine/NO pathway and homoarginine are altered in Duchenne muscular dystrophy and improved by glucocorticoids. Amino Acids 47:1853–1863

    Article  PubMed  CAS  Google Scholar 

  • Hou YQ, Wu G (2017) Nutritionally nonessential amino acids: a misnomer in nutritional sciences. Adv Nutr 8:137–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou YQ, Yin YL, Wu G (2015) Dietary essentiality of “nutritionally nonessential amino acids” for animals and humans. Exp Biol Med 240:997–1007

    Article  CAS  Google Scholar 

  • Hou YQ, Hu SD, Jia SC, Nawaratna G, Che DS, Wang FL, Bazer FW, Wu G (2016) Whole-body synthesis of L-homoarginine in pigs and rats supplemented with L-arginine. Amino Acids 48:993–1001

    Article  CAS  PubMed  Google Scholar 

  • Hou YQ, He WL, Hu SD, Wu G (2019) Composition of polyamines and amino acids in plant-source foods for human consumption. Amino Acids 51:1153–1165

    Article  CAS  PubMed  Google Scholar 

  • Houben E, Hamer HM, Luypaerts A, De Preter V, Evenepoel P, Rutgeerts P, Verbeke K (2010) Quantification of [15N]-nitrate in urine with gas chromatography combustion isotope ratio mass spectrometry to estimate endogenous NO production. Anal Chem 82:601–607

    Article  CAS  PubMed  Google Scholar 

  • Hsu C-N, You-Lin Tain Y-L (2019) Impact of arginine nutrition and metabolism during pregnancy on offspring outcomes. Nutrients 11:1452

    Article  CAS  PubMed Central  Google Scholar 

  • Ignarro LJ, Cirino G, Casini A, Napoli C (1999) NO as a signalling molecule in the vascular system: an overview. J Cardiovasc Pharmacol 34:879–886

    Article  CAS  PubMed  Google Scholar 

  • IOM (Institute of Medicine, 2005) Dietary reference intakes for energy, carbohydrates, fiber, fat, fatty acids, cholesterol, proteins, and amino acids. The National Academies Press, Washington DC

    Google Scholar 

  • Jaja SI, Ogungbemi SO, Kehinde MO, Anigbogu CN (2016) Supplementation with l-arginine stabilizes plasma arginine and nitric oxide metabolites, suppresses elevated liver enzymes and peroxidation in sickle cell anaemia. Pathophysiology 23:81–85

    Article  CAS  PubMed  Google Scholar 

  • Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu G (2006) Regulatory role for the arginine-NO pathway in metabolism of energy substrates. J Nutr Biochem 17:571–588

    Article  CAS  PubMed  Google Scholar 

  • Jobgen WS, Jobgen SC, Li H, Meininger CJ, Wu G (2007) Analysis of nitrite and nitrate in biological samples using high-performance liquid chromatography. J Chromatogr B 851:71–82

    Article  CAS  Google Scholar 

  • Jobgen WJ, Meininger CJ, Jobgen SC, Li P, Lee MJ, Smith SB, Spencer TE, Fried SK, Wu G (2009a) Dietary L-arginine supplementation reduces white-fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats. J Nutr 139:230–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jobgen W, Fu WJ, Gao H, Li P, Meininger CJ, Smith SB, Spencer TE, Wu G (2009b) High fat feeding and dietary L-arginine supplementation differentially regulate gene expression in rat white adipose tissue. Amino Acids 37:187–198

    Article  CAS  PubMed  Google Scholar 

  • Kamada Y, Nagaretani H, Tamura S, Ohama T, Maruyama T, Hiraoka H, Yamashita S, Yamada A, Kiso S, Inui Y, Ito N, Kayanoki Y, Kawata S, Matsuzawa Y (2001) Vascular endothelial dysfunction resulting from L-arginine deficiency in a patient with lysinuric protein intolerance. J Clin Invest 108:717–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King DE, Mainous AG, Geesey ME (2008) Variation in L-arginine intake follow demographics and lifestyle factors that may impact cardiovascular disease risk. Nutr Res 28:21–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohli R, Meininger CJ, Haynes TE, Yan W, Self JT, Wu G (2004) Dietary L-arginine supplementation enhances endothelial NO synthesis in streptozotocin-induced diabetic rats. J Nutr 134:600–608

    Article  CAS  PubMed  Google Scholar 

  • Lassala A, Bazer FW, Cudd TA, Li P, Li XL, Satterfield MC, Spencer TE, Wu G (2009) Intravenous administration of L-citrulline to pregnant ewes is more effective than L-arginine for increasing arginine availability in the fetus. J Nutr 139:660–665

    Google Scholar 

  • Li P, Wu G (2020) Composition of amino acids and related nitrogenous nutrients in feedstuffs for animal diets. Amino Acids 52:523–542

    Google Scholar 

  • Li H, Meininger CJ, Hawker JR Jr, Haynes TE, Kepka-Lenhart D, Mistry SK, Morris SM, Wu G (2001) Regulatory role of arginase I and II in NO, polyamine, and proline syntheses in endothelial cells. Am J Physiol 280:E75–E82

    Article  CAS  Google Scholar 

  • Li P, Yin YL, Li DF, Kim SW, Wu G (2007) Amino acids and immune function. Br J Nutr 98:237–252

    Article  CAS  PubMed  Google Scholar 

  • Li XL, Bazer FW, Gao H, Jobgen W, Johnson GA, Li P, McKnight JR, Satterfield MC, Spencer TE, Wu G (2009) Amino acids and gaseous signaling. Amino Acids 37:65–78

    Article  PubMed  CAS  Google Scholar 

  • Liu TH, Wu CL, Chiang CW, Lo YW, Tseng HF, Chang CK (2009) No effect of short-term arginine supplementation on NO production, metabolism and performance in intermittent exercise in athletes. J Nutr Biochem 20:462–468

    Article  CAS  PubMed  Google Scholar 

  • Luiking YC, Ten Have GA, Wolfe RR, Deutz NE (2012) Arginine de novo and NO production in disease states. Am J Physiol 303:E1177-1189

    CAS  Google Scholar 

  • Ma X, Han M, Li D, Hu S, Gilbreath KR, Bazer FW, Wu G (2017) L-Arginine promotes protein synthesis and cell growth in brown adipocyte precursor cells via the mTOR signal pathway. Amino Acids 49:957–964

    Article  CAS  PubMed  Google Scholar 

  • Ma QQ, Hu SD, Bannai M, Wu G (2018) L-Arginine regulates protein turnover in porcine mammary epithelial cells to enhance milk protein synthesis. Amino Acids 50:621–628

    Article  CAS  PubMed  Google Scholar 

  • Marchesi S, Lupattelli G, Siepi D, Roscini AR, Vaudo G, Sinzinger H, Mannarino E (2001) Oral L-arginine administration attenuates postprandial endothelial dysfunction in young healthy males. J Clin Pharma Ther 26:343–349

    Article  CAS  Google Scholar 

  • Mariotti F (2020) Arginine supplementation and cardiometabolic risk. Curr Opion Clin Nutr Metab Care 23:29–34

    Article  CAS  Google Scholar 

  • Mariotti F, Petzke KJ, Bonnet D, Szezepanski I, Bos C, Huneau J-F, Fouillet H (2013) Kinetics of the utilization of dietary arginine for nitric oxide and urea synthesis: insight into the arginine-nitric oxide metabolic system in humans. Am J Clin Nutr 97:972–979

    Article  CAS  PubMed  Google Scholar 

  • Maxwell AJ, Cooke JP (2001) L-Arginine. In: Loscalzo J, Vita JA (ed) NO and the cardiovascular system. Humana Press, Totowa, NJ. pp 547–585

    Google Scholar 

  • McKnight JR, Satterfield MC, Jobgen WS, Smith SB, Spencer TE, Meininger CJ, McNeal CJ, Wu G (2010) Beneficial effects of L-arginine on reducing obesity: Potential mechanisms and important implications for human health. Amino Acids 39:349–357

    Article  CAS  PubMed  Google Scholar 

  • McNeal CJ, Wilson DP, Christou D, Bush RL, Shepherd LG, Santiago J, Wu GY (2009) The use of surrogate vascular markers in youth at risk for premature cardiovascular disease. J Pediatr Endocrinol Metab 22:195–211

    Article  CAS  PubMed  Google Scholar 

  • McNeal CJ, Meininger CJ, Reddy D, Wilborn CD, Wu G (2016) Safety and effectiveness of arginine in adults. J Nutr 146:2587S-2593S

    Article  CAS  PubMed  Google Scholar 

  • McNeal CJ, Meininger CJ, Wilborn CD, Tekwe CD, Wu G (2018) Safety of dietary supplementation with arginine in adult humans. Amino Acids 50:1215–1229

    Article  CAS  PubMed  Google Scholar 

  • McRae MP (2016) Therapeutic benefits of l-arginine: An umbrella review of meta-analyses. J Chiropractic Med 15:184–189

    Article  Google Scholar 

  • Meininger CJ, Wu G (2011) Tetrahydrobiopterin: important endothelial mediator independent of endothelial nitric oxide synthase. Hypertension 58:145–147

    Article  CAS  PubMed  Google Scholar 

  • Meininger CJ, Cai S, Parker JL, Channon KM, Kelly KA, Becker EJ, Wood MK, Wade LA, Wu G (2004) GTP cyclohydrolase I gene transfer reverses tetrahydro-biopterin deficiency and increases nitric oxide synthesis in endothelial cells and isolated vessels from diabetic rats. FASEB J 18:1900–1902

    Article  CAS  PubMed  Google Scholar 

  • Mirmiran P, Bahadoran Z, Ghasemi A, Azizi F (2016) The association of dietary l-arginine intake and serum nitric oxide metabolites in adults: a population-based study. Nutrients 8:311

    Article  PubMed Central  CAS  Google Scholar 

  • Mitchell WK, Phillips BE, Wilkinson DJ, Williams JP, Rankin D, Lund JN, Smith K, Philip J Atherton PJ (2017) Supplementing essential amino acids with the nitric oxide precursor, l-arginine, enhances skeletal muscle perfusion without impacting anabolism in older men. Clin Nutr 36:1573–1579

    Google Scholar 

  • Monti LD, Casiraghi MC, Setola E, Galluccio E, Pagani MA, Quaglia L, Bosi E, Piatti P (2013) L-arginine enriched biscuits improve endothelial function and glucose metabolism: a pilot study in healthy subjects and a cross-over study in subjects with impaired glucose tolerance and metabolic syndrome. Metabolism 62:255–264

    Article  CAS  PubMed  Google Scholar 

  • Morris SM Jr (2006) Arginine: beyond protein. Am J Clin Nutr 83:508S-512S

    Article  CAS  PubMed  Google Scholar 

  • Morris CR, Kato GJ, Poljakovic M, Wang X, Blackwelder WC, Sanchdev V, Hazen SL, Vichinsky EP, Morris SM Jr, Gladwin MT (2005) Dysregulated arginine metabolism, hemolysis-associated pulmonary hypertension and mortality in sickle cell disease. JAMA 294:81–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris CR, Kuypers FA, Lavrisha L, Ansari M, Sweeters N, Stewart M, Gildengorin G, Neumayr L, Vichinsky EP (2013) A randomized, placebo-controlled trial of arginine therapy for the treatment of children with sickle cell disease hospitalized with vaso-occlusive pain episodes. Haematologica 98:1375–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris CR, Hamilton-Reeves J, Martindale RG, Sarav M, Ochoa Gautier JB (2017) Acquired amino acid deficiencies: A focus on arginine and glutamine. Nutr Clin Pract 32(Suppl 1):30S-47S

    Article  CAS  PubMed  Google Scholar 

  • Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati C, Bracale R, Valerio A, Francolini M, Moncada S, Carruba MO (2003) Mitochondrial biogenesis in mammals: the role of endogenous NO. Science 299:896–899

    Article  CAS  PubMed  Google Scholar 

  • Ohta F, Takagi T, Sato H, Ignarro LJ (2007) Low-dose l-arginine administration increases microperfusion of hindlimb muscle without affecting blood pressure in rats. Proc Natl Acad Sci USA 104:1407–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onalo R, Cooper P, Cilliers A, Vorster BC, Uche N-A, Oluseyi OO, Onalo VD, Zubairu Y, Ayodele-Kehinde AU, Damilare OM, Figueroa J, Claudia R Morris CR (2021) Randomized control trial of oral arginine therapy for children with sickle cell anemia hospitalized for pain in Nigeria. Am J Hematol 96:89–97

    Google Scholar 

  • Pollock JS, Forstermann U, Mitchell JA, Warner TD, Schmidt HH, Nakane M, Murad F (1991) Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proc Natl Acad Sci USA 88:10480–10484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popovic PJ, Zeh HJ, Ochoa JB (2007) Arginine and immunity. J Nutr 137:1681S-1686S

    Article  CAS  PubMed  Google Scholar 

  • Posey EA, Wu G, Bazer FW (2019) Combined therapeutic approach of interferon-tau (IFNT) and arginine supplementation decreased body white-fat gain and adiposity in obese Zucker diabetic fatty (ZDF) rats. Society of the Study of Reproduction Annual Meeting, July 18–21, 2019. San Jose, California

    Google Scholar 

  • Rajfer J, Aronson W, Bush P, Dorey F, Ignarro L (1992) Nitric oxide as a mediator of relaxation of the corpus cavernosum in response to nonadrenergic noncholinergic neurotransmission. N Engl J Med 326:90–94

    Article  CAS  PubMed  Google Scholar 

  • Ren WK, Zou LX, Li NZ, Wang Y, Peng YY, Ding JN, Cai LC, Yin YL, Wu G (2013) Dietary arginine supplementation promotes immune responses to inactivated Pasteurella multocida vaccination in mice. Br J Nutr 109:867–872

    Article  CAS  PubMed  Google Scholar 

  • Ren WK, Yin YL, Zhou BY, Bazer FW, Wu G (2018) Roles of arginine in cell-mediated and humoral immunity. In: Calder P, Kulkarni AD (eds) Nutrition, Immunity, and Infection. CRC Press, Boca Raton

    Google Scholar 

  • Rhim HC, Kim MS, Park Y, Choi WS, Park HK, Kim HG, Kim A, Paick SH (2019) The potential role of arginine supplements on erectile dysfunction: a systemic review and meta-analysis. J Sexual Med 16:223–234

    Article  Google Scholar 

  • Rhoads JM, Wu G (2009) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37:111–122

    Article  CAS  Google Scholar 

  • Rhoads JM, Chen W, Gookin J, Wu G, Fu Q, Blikslager AT, Rippe RA, Argenzio RA, Cance WG, Weaver EM, Romer LH (2004) L-Arginine stimulates intestinal cell migration through a focal adhesion kinase-dependent mechanism. Gut 53:514–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhoads JM, Plunkett E, Galanko J, Lichtman S, Taylor L, Maynor A, Weiner T, Freeman K, Guarisco JL, Wu G (2005) Serum citrulline correlates with enteral tolerance and bowel length in infants with short bowel syndrome. J Pediatr 146:542–547

    Article  CAS  PubMed  Google Scholar 

  • Rhoads JM, Corl BA, Harrell R, Niu X, Gatlin L, Phillips O, Blikslager A, Moeser A, Wu G, Odle J (2007) Intestinal ribosomal p70s6k signaling is increased in piglet rotavirus enteritis. Am J Physiol 292:G913-922

    CAS  Google Scholar 

  • Rougé C, Des Robert C, Robins A, Le Bacquer O, Volteau C, De La Cochetière M-F, Darmaun D (2007) Manipulation of citrulline availability in humans. Am J Physiol 293:G1061-1067

    Google Scholar 

  • Santos RS, Pacheco MTT, Martins RABL, Villaverde AB, Giana HE, Baptista F, Zangaro RA (2002) Study of the effect of oral administration of L-arginine on muscular performance in healthy volunteers: an isokinetic study. Isokinet Exerc Sci 10:153–158

    Article  Google Scholar 

  • Satoh Y, Kotani H, Iida Y, Taniura T, Notsu Y, Harada M (2020) Supplementation of l-arginine boosts the therapeutic efficacy of anticancer chemoimmunotherapy. Cancer Sci 111:2248–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider JY, Rothmann S, Schröder F, Langen J, Lücke T, Mariotti F, Huneau JF, Frölich JC, Tsikas D (2015) Effects of chronic oral L-arginine administration on the L-arginine/NO pathway in patients with peripheral arterial occlusive disease or coronary artery disease: L-Arginine prevents renal loss of nitrite, the major NO reservoir. Amino Acids 47:1961–1974

    Article  CAS  PubMed  Google Scholar 

  • Schwedhelm E, Maas R, Freese R, Jung D, Lukacs Z, Jambrecina A, Spickler W, Schulze F, Boger RH (2007) Pharmacokinetic and pharmacodynamics properties of oral L-citrulline and L-arginine: impact on NO metabolism. Br J Clin Pharacol 65:51–59

    Article  CAS  Google Scholar 

  • Shan Y, Shan A, Li J, Zhou C (2012) Dietary supplementation of arginine and glutamine enhances the growth and intestinal mucosa development of weaned piglets. Livest Sci 150:369–373

    Article  Google Scholar 

  • Shao A, Hathcock JN (2008) Risk assessment for the amino acids taurine, L-glutamine and L-arginine. Regul Toxicol Pharmacol 50:376–399

    Article  CAS  PubMed  Google Scholar 

  • Shi W, Meininger CJ, Haynes TE, Hatakeyama K, Wu G (2004) Regulation of tetrahydrobiopterin synthesis and bioavailability in endothelial cells. Cell Biochem Biophys 41:415–433

    Article  CAS  PubMed  Google Scholar 

  • Siani A, Pagano E, Iacone R, Iacoviello L, Scopacasa F, Strazzullo P (2000) Blood pressure and metabolic changes during dietary L-arginine supplementation in humans. Am J Hypertens 13:547–551

    Article  CAS  PubMed  Google Scholar 

  • Siervo M, Stephan BC, Feelisch M, Bluck LJ (2011) Measurement of in vivo NO synthesis in humans using stable isotopic methods: a systematic review. Free Radic Biol Med 51:795–804

    Article  CAS  PubMed  Google Scholar 

  • Stanislavov R, Rohdewald P (2014) Sperm quality in men is improved by supplementation with a combination of L-arginine, L-citrullin, roburins and Pycnogenol®. Minerva Urol Nefrol 66:217–223

    CAS  PubMed  Google Scholar 

  • Stanislavov R, Rohdewald P (2015) Improvement of erectile function by a combination of French maritime pine bark and roburins with aminoacids. Minerva Urol Nefrol 67:27–32

    CAS  PubMed  Google Scholar 

  • Stuehr D, Pou S, Rosen GM (2001) Oxygen reduction by nitric-oxide synthases. J Biol Chem 276:14533–14536

    Article  CAS  PubMed  Google Scholar 

  • Sun KJ, Wu ZL, Ji Y, Wu G (2016) Glycine regulates protein turnover by activating Akt/mTOR and inhibiting expression of genes involved in protein degradation in C2C12 myoblasts. J Nutr 146:2461–2467

    Article  CAS  PubMed  Google Scholar 

  • Tang JE, Lysecki PJ, Manolakos JJ, MacDonald MJ, Tarnopolsky MA, Phillips SM (2011) Bolus arginine supplementation affects neither muscle blood flow nor muscle protein synthesis in young men at rest or after resistance exercise. J Nutr 141:195–200

    Article  CAS  PubMed  Google Scholar 

  • Tsai MJ, Kass DA (2009) Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics. Pharmacol Ther 122:216–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsikas D (2017) Does the inhibitory action of asymmetric dimethylarginine (ADMA) on the endothelial nitric oxide synthase activity explain its importance in the cardiovascular system? The ADMA paradox. J Controversies Biomed Res 3:16–22

    Article  Google Scholar 

  • Tsikas D, Boger RH, Sandmann J, Bode-Boger SM, Frolich JC (2000) Endogenous NO synthase inhibitors are responsible for the L-arginine paradox. FEBS Lett 478:1–3

    Article  CAS  PubMed  Google Scholar 

  • Tsikas D, Gutzki F-M, Stichtenoth DO (2006) Circulating and excretory nitrite and nitrate as indicators of nitric oxide synthesis in humans: methods of analysis. Eur J Clin Pharmacol 62:51–59

    Article  CAS  Google Scholar 

  • Vadillo-Ortega F, Perichart-Perera O, Espino S, Avila-Vergara MA, Ibarra I, Ahued R, Godines M, Parry S, Macones G, Strauss JF (2011) Effect of supplementation during pregnancy with L-arginine and antioxidant vitamins in medical food on pre-eclampsia in high risk population: randomised controlled trial. BMJ 342:d2901

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanhatalo A, Bailey SJ, MiMenna FJ, Blackwell JR, Wallis GA, Jones AM (2013) No effect of acute L-arginine supplementation on O2 cost or exercise tolerance. Eur J Appl Physiol 113:1805–1819

    Article  CAS  PubMed  Google Scholar 

  • Viribay A, Burgos J, Fernández-Landa J, Seco-Calvo J, Mielgo-Ayuso J (2020) Effects of arginine supplementation on athletic performance based on energy metabolism: A systematic review and meta-analysis. Nutrients 12:1300

    Article  CAS  PubMed Central  Google Scholar 

  • Wang WW, Wu ZL, Dai ZL, Yang Y, Wang JJ, Wu G (2013) Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids 45:463–477

    Article  PubMed  CAS  Google Scholar 

  • Wikipedia (2021) https://en.wikipedia.org/wiki/COVID-19_pandemic. Accessed 15 May 2021

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  CAS  Google Scholar 

  • Wu G (2013) Amino acids: biochemistry and nutrition, 1st edn. CRC Press, Boca Raton

    Book  Google Scholar 

  • Wu G (2020) Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino Acids 52:329–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G (2021) Amino acids: biochemistry and nutrition, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Wu G, Meininger CJ (2000) Arginine nutrition and cardiovascular function. J Nutr 130:2626–2629

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Meininger CJ (2002) Regulation of NO synthesis by dietary factors. Annu Rev Nutr 22:61–86

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Meininger CJ (2009) NO and vascular insulin resistance. BioFactors 35:21–27

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Morris SM Jr (1998) Arginine metabolism: NO and beyond. Biochem J 336:1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Meininger CJ, Knabe DA, Bazer FW, Rhoads JM (2000) Arginine nutrition in development, health and disease. Curr Opin Clin Nutr Metab Care 3:59–66

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Collins JK, Perkins-Veazie P, Siddiq M, Dolan KD, Kelly KA, Heaps CL, Meininger CJ (2007) Dietary supplementation with watermelon pomace juice enhances arginine availability and ameliorates the metabolic syndrome in Zucker diabetic fatty rats. J Nutr 137:2680–2685

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Davis TA, Kim SW, Li P, Rhoads JM, Satterfield MC, Smith SB, Spencer TE, Yin YL (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Ruan Z, Gao YL, Yin YL, Zhou XH, Wang L, Geng MM, Hou YQ, Wu G (2010) Dietary supplementation with L-arginine or N-carbamylglutamate enhances intestinal growth and heat shock protein-70 expression in weanling pigs fed a corn- and soybean meal-based diet. Amino Acids 39:831–839

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Satterfield MC, Li XL, Wang XQ, Johnson GA, Burghardt RC, Dai ZL, Wang JJ, Wu ZL (2013a) Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids 45:241–256

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Wu ZL, Dai ZL, Yang Y, Wang WW, Liu C, Wang B, Wang JJ, Yin YL (2013b) Dietary requirements of “nutritionally nonessential amino acids” by animals and humans. Amino Acids 44:1107–1113

    Article  CAS  PubMed  Google Scholar 

  • Wu ZL, Hou YQ, Hu SD, Bazer FW, Meininger CJ, McNeal CJ, Wu G (2016a) Catabolism and safety of supplemental L-arginine in animals. Amino Acids 48:1541–1552

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Cross HR, Gehring KB, Savell JW, Arnold AN, McNeill SH (2016b) Composition of free and peptide-bound amino acids in beef chuck, loin, and round cuts. J Anim Sci 94:2603–2613

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Gonon AT, Sjöquist P-O, Lundberg JO, Pernow J (2013) Arginase regulates red blood cell nitric oxide synthase and export of cardioprotective nitric oxide bioactivity. Proc Natl Acad Sci USA 110:15049–15054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zorgniotti AW, Lizza EF (1994) Effect of large doses of the nitric oxide precursor, L-arginine, on erectile dysfunction. Int J Impot Res 6:33–35

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank International Council of Amino Acid Science (Brussels, Belgium) for the financial support of our research on arginine safety and metabolism in adult humans.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, G., Meininger, C.J., McNeal, C.J., Bazer, F.W., Rhoads, J.M. (2021). Role of L-Arginine in Nitric Oxide Synthesis and Health in Humans. In: Wu, G. (eds) Amino Acids in Nutrition and Health. Advances in Experimental Medicine and Biology, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-74180-8_10

Download citation

Publish with us

Policies and ethics