Skip to main content

Interpretable Feature Construction for Time Series Extrinsic Regression

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12712))

Included in the following conference series:

Abstract

Supervised learning of time series data has been extensively studied for the case of a categorical target variable. In some application domains, e.g., energy, environment and health monitoring, it occurs that the target variable is numerical and the problem is known as time series extrinsic regression (TSER). In the literature, some well-known time series classifiers have been extended for TSER problems. As first benchmarking studies have focused on predictive performance, very little attention has been given to interpretability. To fill this gap, in this paper, we suggest an extension of a Bayesian method for robust and interpretable feature construction and selection in the context of TSER. Our approach exploits a relational way to tackle with TSER: (i), we build various and simple representations of the time series which are stored in a relational data scheme, then, (ii), a propositionalisation technique (based on classical aggregation/selection functions from the relational data field) is applied to build interpretable features from secondary tables to “flatten” the data; and (iii), the constructed features are filtered out through a Bayesian Maximum A Posteriori approach. The resulting transformed data can be processed with various existing regressors. Experimental validation on various benchmark data sets demonstrates the benefits of the suggested approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://xgboost.readthedocs.io/en/latest/python/index.html.

  2. 2.

    http://www.khiops.com (available as a shareware for research purpose).

References

  1. Bagnall, A.J., Davis, L.M., Hills, J., Lines, J.: Transformation based ensembles for time series classification. In: Proceedings of the Twelfth SIAM International Conference on Data Mining, (SDM 2012), Anaheim, California, USA, 26-28 April 2012, pp. 307–318 (2012)

    Google Scholar 

  2. Bagnall, A.J., Lines, J., Bostrom, A., Large, J., Keogh, E.J.: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Disc. 31(3), 606–660 (2017). https://doi.org/10.1007/s10618-016-0483-9

    Article  MathSciNet  Google Scholar 

  3. Bondu, A., Gay, D., Lemaire, V., Boullé, M., Cervenka, E.: FEARS: a feature and representation selection approach for time series classification. In: Proceedings of The 11th Asian Conference on Machine Learning, ACML 2019, Nagoya, Japan, 17–19 November 2019, pp. 379–394 (2019)

    Google Scholar 

  4. Boullé, M.: MODL: a Bayes optimal discretization method for continuous attributes. Mach. Learn. 65(1), 131–165 (2006). https://doi.org/10.1007/s10994-006-8364-x

    Article  Google Scholar 

  5. Boullé, M.: Compression-based averaging of selective Naive Bayes classifiers. J. Mach. Learn. Res. 8, 1659–1685 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Boullé, M., Charnay, C., Lachiche, N.: A scalable robust and automatic propositionalization approach for Bayesian classification of large mixed numerical and categorical data. Mach. Learn. 108(2), 229–266 (2019). https://doi.org/10.1007/s10994-018-5746-9

    Article  MathSciNet  MATH  Google Scholar 

  7. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  8. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016, pp. 785–794. ACM (2016)

    Google Scholar 

  9. Dempster, A., Petitjean, F., Webb, G.I.: ROCKET: exceptionally fast and accurate time series classification using random convolutional kernels. Data Min. Knowl. Disc. 34(5), 1454–1495 (2020)

    Article  MathSciNet  Google Scholar 

  10. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. JMLR 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Dzeroski, S., Lavrac, N.: Relational Data Mining. Springer, Heidelberg (2001)

    Book  Google Scholar 

  12. Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L., Muller, P.: Deep learning for time series classification: a review. Data Min. Knowl. Disc. 33(4), 917–963 (2019). https://doi.org/10.1007/s10618-019-00619-1

    Article  MathSciNet  MATH  Google Scholar 

  13. Fawaz, H.I., et al.: InceptionTime: finding AlexNet for time series classification. Data Min. Knowl. Disc. 34(6), 1936–1962 (2020). https://doi.org/10.1007/s10618-020-00710-y

    Article  MathSciNet  Google Scholar 

  14. Gay, D., Bondu, A., Lemaire, V., Boullé, M., Clérot, F.: Multivariate time series classification: a relational way. In: Song, M., Song, I.-Y., Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DaWaK 2020. LNCS, vol. 12393, pp. 316–330. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59065-9_25

    Chapter  Google Scholar 

  15. Hue, C., Boullé, M.: A new probabilistic approach in rank regression with optimal Bayesian partitioning. J. Mach. Learn. Res. 8, 2727–2754 (2007)

    MATH  Google Scholar 

  16. Lachiche, N.: Propositionalization. In: Encyclopedia of Machine Learning and Data Mining, pp. 1025–1031. Springer (2017)

    Google Scholar 

  17. Lines, J., Taylor, S., Bagnall, A.J.: Time series classification with HIVE-COTE: the hierarchical vote collective of transformation-based ensembles. ACM Trans. Knowl. Disc. Data 12(5), 52:1-52:35 (2018)

    Google Scholar 

  18. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Shannon, C.E.: A Mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 5(1), 3–55 (2001)

    Article  MathSciNet  Google Scholar 

  20. Tan, C.W., Bergmeir, C., Petitjean, F., Webb, G.I.: Monash University, UEA, UCR time series regression archive. CoRR abs/2006.10996 (2020). https://arxiv.org/abs/2006.10996

  21. Tan, C.W., Bergmeir, C., Petitjean, F., Webb, G.I.: Time series regression. CoRR abs/2006.12672 (2020). https://arxiv.org/abs/2006.12672

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Gay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gay, D., Bondu, A., Lemaire, V., Boullé, M. (2021). Interpretable Feature Construction for Time Series Extrinsic Regression. In: Karlapalem, K., et al. Advances in Knowledge Discovery and Data Mining. PAKDD 2021. Lecture Notes in Computer Science(), vol 12712. Springer, Cham. https://doi.org/10.1007/978-3-030-75762-5_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75762-5_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75761-8

  • Online ISBN: 978-3-030-75762-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics