Skip to main content

Deep Learning in Healthcare

  • Chapter
  • First Online:
Deep Learning in Data Analytics

Part of the book series: Studies in Big Data ((SBD,volume 91))

Abstract

Machine learning is quickly becoming an important tool for diagnosis and prognosis of various medical conditions. Complex input output mappings are dealt in deep learning, which is developed based on machine learning approach. Due to its efficiency and similarity to the working of the human brain, deep neural networks are a preferred method of processing and analysing medical data. In addition to diagnosis, deep learning is used to study the progression of disease, develop a personalised treatment plan and for overall patient management. This chapter discusses the architecture and working of deep neural networks and focus on its application in the detection and treatment of various diseases like cancer, diabetes, Alzheimer’s and Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adate, A., Tripathy, B.K.: Deep learning techniques for image processing. In: Machine Learning for Big Data Analysis, Berlin, Boston, De Gruyter, pp. 69–90 (2018)

    Google Scholar 

  2. Bose, A., Tripathy, B.K.: Deep learning for audio signal classification. In: Deep Learning Research and Applications, De Gruyter Publications, pp. 105–136 (2020)

    Google Scholar 

  3. Garg, N., Nikhitha, P., Tripathy, B.K.: Image retrieval using latent feature learning by deep architecture. In: Proceedings of IEEE International Conference on Computational Intelligence and Computing Research, pp. 1–4 (2014)

    Google Scholar 

  4. Prakash, V., Tripathy, B.K.: Recent advancements in automatic sign language recognition (SLR). In: Computational Intelligence for Human Action Recognition, pp. 1–24. CRC Press, Boca Raton (2020)

    Google Scholar 

  5. Singhania, U., Tripathy, B.K.: Text-based image retrieval using deep learning. In: Encyclopedia of Information Science and Technology, Fifth Edition, IGI Global, USA, pp. 87–97 (2020)

    Google Scholar 

  6. Baktha, K., Tripathy, B.K.: Investigation of recurrent neural networks in the field of sentiment analysis. In: Proceedings of IEEE International Conference on Communication and Signal Processing, pp. 2047–2050 (2017)

    Google Scholar 

  7. Adate, A., Tripathy, B.K., Arya, D., Shaha, A.: Impact of deep neural learning on artificial intelligence research. In: Deep Learning Research and Applications, De Gruyter Publications, pp. 69–84 (2020)

    Google Scholar 

  8. Adate, A., Tripathy, B.K.: S-lstm-gan: Shared recurrent neural networks with adversarial training. In: Proceedings of the 2nd International Conference on Data Engineering and Communication Technology. Springer, Singapore, pp. 107–115 (2019)

    Google Scholar 

  9. Adate, A., Tripathy, B.K.: Understanding single image super resolution techniques with generative adversarial networks. In: Advances in Intelligent Systems and Computing, vol. 816, pp. 833–840. Springer, Singapore (2019)

    Google Scholar 

  10. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep learning. MIT Press, Cambridge (2016)

    Google Scholar 

  11. Maheshwari, K., Shaha, A., Arya, D., Rajasekaran, R., Tripathy, B.K.: Convolutional neural networks: a bottom-up approach. In: Deep Learning Research and Applications, De Gruyter Publications, pp. 21–50 (2019)

    Google Scholar 

  12. Debgupta, R., Chaudhuri, B.B., Tripathy, B.K.: A wide resnet-based approach for age and gender estimation in face images. In: Proceedings of International Conference on Innovative Computing and Communications, pp. 517–530. Springer, Singapore (2020)

    Google Scholar 

  13. Voulodimos, A., Doulamis, N., Bebis, G., Stathaki, T.: Recent developments in deep learning for engineering applications. Comput. Intell. Neurosc. 2018, 1–2 (2018)

    Google Scholar 

  14. Liu, S., Liu, S., Cai, W., Pujol, S., Kikinis, R., Feng, D.: Early diagnosis of Alzheimer’s disease with deep learning. In: Proceedings of 11th IEEE International Symposium on Biomedical Imaging, pp. 1015–1018 (2014)

    Google Scholar 

  15. Kettunen, E., Anttila, S., Seppänen, J.K., Karjalainen, A., Edgren, H., Lindström, I., Salovaara, R., Nissen, A.M., Salo, J., Mattson, K., Hollmén, J., Knuutila, S., Wikman, H.: Differentially expressed genes in nonsmall cell lung cancer: expression profiling of cancer-related genes in squamous cell lung cancer. Cancer Genet. Cytogenet. 149(2), 98–106 (2004)

    Google Scholar 

  16. Li, H., Yu, B., Li, J., Su, L., Yan, M., Zhang, J., C. Li, C., Zhu, Z., Liu, B.: Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer. Oncotarget 5(8), 2318–2329 (2014)

    Google Scholar 

  17. Maienschein-Cline, M., Zhou, J., White, K.P., Sciammas, R., Dinner, A.R.: Discovering transcription factor regulatory targets using gene expression and binding data. Bioinformatics 28(2), 206–213 (2012)

    Article  Google Scholar 

  18. Shabana, K.M., Nazeer, K.A., Pradhan, M., Palakal, M.: A computational method for drug repositioning using publicly available gene expression data. BMC Bioinform. 16(17), 1–9 (2015)

    Google Scholar 

  19. Kourou, K., Exarchos, T.P., Exarchos, K.P., Karamouzis, M.V., Fotiadis, D.I.: Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 13, 8–17 (2015)

    Article  Google Scholar 

  20. Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 609–616 (2009)

    Google Scholar 

  21. Danaee, P., Ghaeini, R., Hendrix, D.A.: A deep learning approach for cancer detection and relevant gene identification. In: Pacific Symposium on Biocomputing, pp. 219–229 (2017)

    Google Scholar 

  22. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  23. Wang, S.C.: Artificial neural network. In: Interdisciplinary Computing in Java Programming, pp. 81–100. Springer, Boston (2003)

    Google Scholar 

  24. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  25. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(1), 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 1–27 (2011)

    Article  Google Scholar 

  27. Weston, J., Watkins, C.: Multi-class support vector machines. Technical Report CSD-TR-98-04. Department of Computer Science, Royal Holloway, University of London, pp. 98–04 (1998)

    Google Scholar 

  28. Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.C., Pujol, S., Bauer, C., Jennings, D., Fennessy, F., Sonka, M., Buatti, J., Aylward, S., Miller, J.V., Pieper, S., Kikinis, R.: 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 30(9), 1323–1341 (2012)

    Article  Google Scholar 

  29. Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D.: Alzheimer’s disease neuroimaging initiative—multimodal classification of Alzheimer’s disease and mild cognitive impairment. Neuroimage 55(3), 856–867 (2011)

    Article  Google Scholar 

  30. Liu, S., Zhang, L., Cai, W., Song, Y., Wang, Z., Wen, L., Feng, D.D.: A supervised multiview spectral embedding method for neuroimaging classification. In: Proceedings of IEEE International Conference on Image Processing, pp. 601–605 (2013)

    Google Scholar 

  31. Liu, S., Cai, W., Song, Y., Pujol, S., Kikinis, R., Wen, L., Feng, D.D.: Localized sparse code gradient in alzheimer’s disease staging. In: Proceedings of 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5398–5401 (2013)

    Google Scholar 

  32. Liu, S., Cai, W., Wen, L., Feng, D.: Neuroimaging biomarker based prediction of Alzheimer’s disease severity with optimized graph construction. In: Proceedings of 10th IEEE International Symposium on Biomedical Imaging, pp. 1336–1339 (2013)

    Google Scholar 

  33. Zhao, Y.J., Tan, L.C.S., Lau, P.N., Au, W.L., Li, S.C., Luo, N.: Factors affecting health-related quality of life amongst Asian patients with Parkinson’s disease. Eur. J. Neurol. 15(7), 737–742 (2008)

    Article  Google Scholar 

  34. Maki, B.E., McIlroy, W.E.: Change-in-support balance reactions in older persons: an emerging research area of clinical importance. Neurol. Clin. 23(3), 751–783 (2005)

    Article  Google Scholar 

  35. Marchetti, G.F., Whitney, S.L.: Older adults and balance dysfunction. Neurol. Clin. 23(3), 785–805 (2005)

    Article  Google Scholar 

  36. Fahn, S., Oakes, D., Shoulson, I., Kieburtz, K., Rudolph, A., Lang, A., Olanow, C.W., Tanner, C., Marek, K.: Levodopa and the progression of Parkinson’s disease. N. Engl. J. Med. 351(24), 2498–2508 (2004)

    Article  Google Scholar 

  37. Pan, S., Iplikci, S., Warwick, K., Aziz, T.Z.: Parkinson’s Disease tremor classification—a comparison between Support Vector Machines and neural networks. Expert Syst. Appl. 39(12), 10764–10771 (2012)

    Article  Google Scholar 

  38. Hariharan, M., Polat, K., Sindhu, R.: A new hybrid intelligent system for accurate detection of Parkinson’s disease. Comput. Methods Programs Biomed. 113(3), 904–913 (2014)

    Article  Google Scholar 

  39. Peker, M., Sen, B., Delen, D.: Computer-aided diagnosis of Parkinson’s disease using complex-valued neural networks and mRMR feature selection algorithm. J. Healthc. Eng. 6(3), 281–302 (2015)

    Article  Google Scholar 

  40. Pereira, C.R., Pereira, D.R., da Silva, F.A., Hook, C., Weber, S.A., Pereira, L.A., Papa, J.P.: A step towards the automated diagnosis of parkinson’s disease: Analyzing handwriting movements. In: Proceedings of 28th IEEE International Symposium on Computer Based Medical Systems, pp. 171–176 (2015)

    Google Scholar 

  41. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  42. Cox, D., Pinto, N.: Beyond simple features: a large-scale feature search approach to unconstrained face recognition. In: Face and Gesture, pp. 8–15 (2011)

    Google Scholar 

  43. Smith, J.W., Everhart, J.E., Dickson, W.C., Knowler, W.C., Johannes, R.S.: Using the ADAP learning algorithm to forecast the onset of diabetes mellitus. In: Proceedings of the Annual Symposium on Computer Application in Medical Care, American Medical Informatics Association, pp. 261–265 (1988)

    Google Scholar 

  44. Kayaer, K., Yildirim, T.: Medical diagnosis on Pima Indian diabetes using general regression neural networks. In: Proceedings of the International Conference on Artificial Neural Networks and Neural Information Processing, pp. 181–184 (2003)

    Google Scholar 

  45. Ashiquzzaman, A., Tushar, A.K.: Handwritten Arabic numeral recognition using deep learning neural networks. In: Proceedings of IEEE International Conference on Imaging, Vision & Pattern Recognition, pp. 1–4 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. Tripathy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaul, D., Raju, H., Tripathy, B.K. (2022). Deep Learning in Healthcare. In: Acharjya, D.P., Mitra, A., Zaman, N. (eds) Deep Learning in Data Analytics. Studies in Big Data, vol 91. Springer, Cham. https://doi.org/10.1007/978-3-030-75855-4_6

Download citation

Publish with us

Policies and ethics