Skip to main content

Radiation Detection Using n-Type 4H-SiC Epitaxial Layer Surface Barrier Detectors

  • Chapter
  • First Online:
Advanced Materials for Radiation Detection

Abstract

While CdZnTe (CZT) is one of the best materials for room-temperature radiation detection, they are not quite suitable for high-temperature or harsh-environment applications. This chapter discusses the fabrication and characterization of high-resolution 4H-SiC epitaxial detectors, which are appropriate for use in harsh environments like high temperature, chemically reactive and corrosive environments, and most importantly high-dose nuclear radiation environments. Schottky barrier diodes on thin (≤20 μm) 4H-SiC epitaxial layer detectors have been found to be a very promising device for charged particle detection at room and elevated temperatures. While such thin epitaxial layers are sufficient to stop energetic charged particle like alpha particles, highly penetrating radiations such as X- and γ-rays need thicker epitaxial layers to enable substantial photon absorption. This chapter discusses the fabrication of Schottky barrier radiation detectors in n-type 4H-SiC epitaxial layers with different thicknesses (20, 50, and 150 μm); their characterization in terms of alpha, X-rays, and γ-detection; and evaluation of the factors like deep-level defects which regulate their performance as radiation detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Egarievwe, S.U., Chen, K.-T., Burger, A., James, R.B., Lisse, C.M.: Detection and electrical properties of CdZnTe at elevated temperatures. J. Xray Sci. Technol. 6(4), 309–315 (1996)

    Google Scholar 

  2. Burger, A., Groza, M., Cui, Y., Roy, U.N., Hillman, D., Guo, M., Li, L., Wright, G.W., James, R.B.: Development of portable CdZnTe spectrometers for remote sensing of signatures from nuclear materials. Phys. Status Solidi C. 2(5), 1586–1591 (2005)

    Article  Google Scholar 

  3. Neudeck, P.G., Chen, L.Y., Meredith, R.D., Lukco, D., Spry, D.J., Nakley, M.L., Hunter, G.W.: Operational testing of 4H-SiC JFET ICs for 60 days directly exposed to Venus surface atmospheric conditions. J. Electron Devices Soc. 7, 100–110 (2019)

    Article  Google Scholar 

  4. She, X., Huang, A.Q., Lucia, Ó., Ozpineci, B.: Review of silicon carbide power devices and their applications. IEEE Trans. Ind. Electron. 64(10), 8193–8205 (2017)

    Article  Google Scholar 

  5. Kinoshita, T., Itoh, K.M., Muto, J., Schadt, M., Pensl, G., Takeda, K.: Calculation of the anisotropy of the hall mobility in n-type 4H- and 6H-SiC. Mater. Sci. Forum. 294–268, 295–298 (1998)

    Article  Google Scholar 

  6. Choyke, W.J., Matsunami, H., Pensl, G.: Silicon Carbide—A Review of Fundamental Questions and Applications to Current Device Technology. Springer Verlag, Berlin (2004)

    Google Scholar 

  7. Harris, G.L.: Properties of SiC, vol. 13. The Institute of Electrical Engineers, London (1995)

    Google Scholar 

  8. Ellis, B., Moss, T.: The conduction bands in 6H and 15R silicon carbide I. Hall effect and infrared Faraday rotation measurements. Proc. R. Soc. London, Ser. A. 299, 383–392 (1967)

    Article  Google Scholar 

  9. Lomakina, G.A.: Silicon carbide - 1973. In: Proceedings of 3rd International Conference on Silicon Carbide, Miami, Florida, 1973

    Google Scholar 

  10. Lucas, G., Pizzagalli, L.: Ab initio molecular dynamics calculations of threshold displacement energies in silicon carbide. Phys. Rev. B. 72(16), 161202 (2005)

    Article  Google Scholar 

  11. Nava, F., Bertuccio, G., Cavallini, A., Vittone, E.: Silicon carbide and its use as a radiation detector material. Meas. Sci. Technol. 19, 102001 (2008)

    Article  Google Scholar 

  12. Mandal, K.C., Krishna, R.M., Muzykov, P.G., Das, S., Sudarshan, T.S.: Characterization of semi-insulating 4H silicon carbide for radiation detectors. IEEE Trans. Nucl. Sci. 58(4), 1992–1999 (2011)

    Article  Google Scholar 

  13. Mandal, K.C., Muzykov, P.G., Chaudhuri, S.K., Terry, J.R.: Low energy X-ray and γ-ray detectors fabricated on n-type 4H-SiC epitaxial layer. IEEE Trans. Nucl. Sci. 60(4), 2888–2893 (2013)

    Article  Google Scholar 

  14. Chaudhuri, S.K., Zavalla, K.J., Mandal, K.C.: High resolution alpha particle detection using 4H SiC epitaxial layers: fabrication, characterization, and noise analysis. Nucl. Instrum. Methods Phys. Res. A. 728, 97–101 (2013)

    Article  Google Scholar 

  15. Ruddy, F.H., Seidel, J.G., Chen, H., Dulloo, A.R., Ryu, S.: High-resolution alpha-particle spectrometry using 4H silicon carbide semiconductor detectors. IEEE Trans. Nucl. Sci. 53, 1713 (2006)

    Article  Google Scholar 

  16. Ruddy, F.H., Dulloo, A.R., Seidel, J.G., Das, M.K., Ryu, S., Agarwal, A.K.: The fast neutron response of 4H silicon carbide semiconductor radiation detectors. IEEE Trans. Nucl. Sci. 53, 1666–1670 (2006)

    Article  Google Scholar 

  17. Bertuccio, G., Casiraghi, G.: Study of silicon carbide for X-ray detection and spectroscopy. IEEE Trans. Nucl. Sci. 50, 175–185 (2003)

    Article  Google Scholar 

  18. Mandal, K.C., Kleppinger, J.W., Chaudhuri, S.K.: Advances in high-resolution radiation detection using 4H-SiC epitaxial layer devices. Micromachines. 11(3), 254 (2020)

    Article  Google Scholar 

  19. Schifano, R., Vinattieri, A., Bruzzi, M., Miglio, S., Logomarsino, S., Sciortino, S., Nava, F.: Electrical and optical characterization of 4H-SiC diodes for particle detection. J. Appl. Phys. 97, 103539 (2005)

    Article  Google Scholar 

  20. Puglisi, D., Bertuccio, G.: Silicon carbide microstrip radiation detectors. Micromachines. 10(12), 835 (2019)

    Article  Google Scholar 

  21. Nguyen, K.V., Mannan, M.A., Mandal, K.C.: Improved n-type 4H-SiC epitaxial radiation detectors by edge termination. IEEE Trans. Nucl. Sci. 62(6), 3199–3206 (2015)

    Article  Google Scholar 

  22. Bertuccio, G., Casiraghi, R., Cetronio, A., Lanzieri, C., Nava, F.: Silicon carbide for high resolution X-ray detectors operating up to 100°C. Nucl. Instrum. Methods Phys. Res. Sect. A. 522(3), 413–419 (2004)

    Article  Google Scholar 

  23. Neudeck, P.G., Spry, D.J., Krasowski, M.J., Prokop, N.F., Chen, L.Y.: Demonstration of 4H-SiC JFET digital ICs across 1000°C temperature range without change to input voltages. Mater. Sci. Forum. 963, 813–817 (2019)

    Article  Google Scholar 

  24. Wu, J., Jiang, Y., Li, M., Zeng, L., Gao, H., Zou, D., Bai, Z., Ye, C., Liang, W., Dai, S., Lu, Y., Rong, R., Du, J., Fan, X.: Development of high sensitivity 4H–SiC detectors for fission neutron pulse shape measurements. Rev. Sci. Instrum. 88, 083301 (2017)

    Article  Google Scholar 

  25. Torrisi, L., Foti, G., Guiffrid, L., Puglisi, D., Wolowski, J., Badziak, J., Parys, P., Rosinski, M., Margarone, D., Krasa, J., Velyhan, A., Ullschmied, U.: Single crystal silicon carbide detector of emitted ions and soft X-rays from power laser-generated plasmas. J. Appl. Phys. 105, 123304 (2009)

    Article  Google Scholar 

  26. Bertuccio, G., Puglisi, D., Torrisi, L., Lanzieri, C.: Silicon carbide detector for laser-generated plasma radiation. Appl. Surf. Sci. 272, 128–131 (2013)

    Article  Google Scholar 

  27. Nava, F., Vanni, P., Bruzzi, M., Lagomarsino, S., Sciortino, S., Wagner, G., Lanzieri, C.: Minimum ionizing and alpha particles detectors based on epitaxial semiconductor silicon carbide. IEEE Trans. Nucl. Sci. 51(1), 238–244 (2004)

    Article  Google Scholar 

  28. Seshadri, S., Dulloo, A.R., Ruddy, F.H., Seidel, J.G., Rowland, L.B.: Demonstration of a SiC neutron detector for high-radiation environments. IEEE Trans. Electron Dev. 46(3), 567–571 (1999)

    Article  Google Scholar 

  29. Ivanov, A., Kalinina, E., Kholuyanov, G., Strokan, N., Onushkin, G., Konstantinov, A., Hallen, A., Kuznetsov, A.: High energy resolution detectors based on 4H-SiC. In: Proc. 5th Euro. Conf. Silicon Carbide and Related Materials, Zurich, Switzerland (2005)

    Google Scholar 

  30. Bertuccio, G., Casiraghi, R., Nava, F.: Epitaxial silicon carbide for X-ray detection. IEEE Trans. Nucl. Sci. 48(2), 232–233 (2001)

    Article  Google Scholar 

  31. Bertuccio, G., Puglisi, D., Pullia, A., Lanzinieri, C.: X-γ ray spectroscopy with semi-insulating 4H-silicon carbide. IEEE Trans. Nucl. Sci. 60(2), 1436–1441 (2013)

    Article  Google Scholar 

  32. Huang, X.R., Dudley, M., Vetter, W.M., Huang, W., Si, W., Carter, J.C.H.: Superscrew dislocation contrast on synchrotron white-beam topographs: an accurate description of the direct dislocation image. J. Appl. Crystallogr. 32, 516–524 (1999)

    Article  Google Scholar 

  33. Stein, R.A., Lanig, P., Leibenzeder, S.: Influence of surface energy on the growth of 6H- and 4H-SiC polytypes by sublimation. Mat. Sci. Eng. B. 11, 69–71 (1992)

    Article  Google Scholar 

  34. Sumakeris, J.J., Jenny, J.R., Powell, A.R.: Bulk crystal growth, epitaxy, and defect reduction in silicon carbide materials for microwave and power devices. MRS Bull. 30, 280–286 (2005)

    Article  Google Scholar 

  35. Neudeck, P.G.: Electrical impact of SiC structural crystal defects on high electric field devices. Mater. Sci. Forum. 338-342, 1161–1166 (1999)

    Article  Google Scholar 

  36. Dahlquist, F., Johansson, N., Soderholm, R., Nillson, P.A., Bergman, J.P.: Long term operation of 4.5kV PiN and 2.5kV JBS diodes. Mater. Sci. Forum. 353–356, 727–730 (2001)

    Google Scholar 

  37. Kimoto, T., Danno, K., Suda, J.: Lifetime-killing defects in 4H-SiC epilayers and lifetime control by low-energy electron irradiation. Phys. Status Solidi B. 245, 1327–1336 (2008)

    Article  Google Scholar 

  38. Mandal, K.C., Chaudhuri, S.K., Nguyen, K.V., Mannan, M.A.: Correlation of deep levels with detector performance in 4H-SiC epitaxial Schottky barrier alpha detectors. IEEE Trans. Nucl. Sci. 61(4), 2338–2344 (2014)

    Article  Google Scholar 

  39. Mannan, M.A., Chaudhuri, S.K., Nguyen, K.V., Mandal, K.C.: Effect of Z1/2, EH5, and Ci1 deep defects on the performance of n-type 4H-SiC epitaxial layers Schottky detectors: alpha spectroscopy and deep level transient spectroscopy studies. J. Appl. Phys. 115, 224504 (2014)

    Article  Google Scholar 

  40. Li, J., Meng, C., Yu, L., Li, Y., Yan, F., Han, P., Ji, X.: Effect of various defects on 4H-SiC Schottky diode performance and its relation to epitaxial growth conditions. Micromachines. 11(6), 609 (2020)

    Article  Google Scholar 

  41. Babcock, R.V., Chang, H.C.: SiC neutron detectors for high-temperature operation, neutron dosimetry. In: Proceedings of the Symposium on Neutron Detection, Dosimetry and Standardization, Vienna, December 1962, vol. 1, pp. 613–622. International Atomic Energy Agency (IAEA), Vienna (1962)

    Google Scholar 

  42. Ruddy, F.H., Dulloo, A.R., Seidel, J.G., Seshadri, S., Rowland, L.B.: Development of a silicon carbide radiation detector. IEEE Trans. Nucl. Sci. 45, 536–541 (1998)

    Article  Google Scholar 

  43. Ruddy, F.H., Dulloo, A.R., Seidel, J.G., Palmour, J.W., Singh, R.: The charged particle response of silicon carbide semiconductor radiation detectors. Nucl. Instrum. Methods Phys. Res. Sect. A. 505, 159–162 (2003)

    Article  Google Scholar 

  44. Ruddy, F.H., Seidel, J.G., Sellin, P. High-resolution alpha spectrometry with a thin-window silicon carbide semiconductor detector. In: Proc. IEEE Nucl. Sci. Symp. Conf. Record (NSS/MIC) (2009)

    Google Scholar 

  45. Chaudhuri, S.K., Krishna, R.M., Zavalla, K.J., Mandal, K.C.: Schottky barrier detectors on 4H-SiC n-type epitaxial layer for alpha particles. Nucl. Instrum. Methods Phys. Res. Sect. A. 701, 214–220 (2013)

    Article  Google Scholar 

  46. Bertuccio, G., Caccia, S., Puglisi, D., Macera, D.: Advances in silicon carbide X-ray detectors. Nucl. Instrum. Methods Phys. Res. Sect. A. 652(1), 193–196 (2011)

    Article  Google Scholar 

  47. Terry, J.R., Distel, J.R., Kippen, R.M., Schirato, R., Wallace, M.S.: Evaluation of COTS silicon carbide photodiodes for a radiation-hard, low-energy X-ray spectrometer. In: Proc. IEEE Nucler Science Symp., Valencia, 2011, vol. NP1.M-236, pp. 485–488 (2011)

    Google Scholar 

  48. Mandal, K.C., Muzykov, P.G., Terry, J.R.: Highly sensitive X-ray detectors in the low-energy range on n-type 4H-SiC epitaxial layers. Appl. Phys. Lett. 101, 051111 (2012)

    Article  Google Scholar 

  49. Chen, W., Capano, M.A.: Growth and characterization of 4H-SiC epilayers on substrates with different off-cut angles. J. Appl. Phys. 98, 114907 (2005)

    Article  Google Scholar 

  50. Kern, W.: The evolution of silicon wafer cleaning technology. J. Electrochem. Soc. 137, 1887–1892 (1990)

    Article  Google Scholar 

  51. Chaudhuri, S.K., Zavalla, K.J., Mandal, K.C.: Experimental determination of electron-hole pair creation energy in 4H-SiC epitaxial layer: an absolute calibration approach. Appl. Phys. Lett. 102, 031109 (2013)

    Article  Google Scholar 

  52. Bethe, H.A.: Theory of the boundary layer of crystal rectifiers. MIT Radiation Laboratory Report, pp. 43–12 (1942)

    Google Scholar 

  53. Rhoderick, E.: Metal-semiconductor contacts. IEEE Proceeding. 129(1), 1–14 (1982)

    Google Scholar 

  54. Goldberg, Y., Levinshtein, M.E., Rumyantsev, S.L.: In: Levinshtein, M.E., Rumyantsev, S.L., Shur, M.S. (eds.) Properties of Advanced Semiconductor Materials GaN, AlN, SiC, BN, SiC, SiGe, p. 99. John Wiley & Sons, New York (2001)

    Google Scholar 

  55. Tung, R.T.: Electron transport at metal-semiconductor interfaces: general theory. Phys. Rev. B. 45, 13509–13523 (1992)

    Article  Google Scholar 

  56. Jang, M., Kim, Y., Shin, J., Lee, S.: Characterization of erbium-silicided Schottky diode junction. IEEE Electron Device Lett. 26(6), 354–356 (2005)

    Article  Google Scholar 

  57. Chen, Y.: Defects structures in silicon carbide bulk crystals, epilayers and devices. Dissertation, State University of New York, Stony Brook, New York (2008)

    Google Scholar 

  58. Mandal, K.C., Muzykov, P.G., Chaudhuri, S.K., Terry, J.R.: Assessment of 4H-SiC epitaxial layers and high resistivity bulk crystals for radiation detectors. Proc. SPIE. 8507, 85070C (2012)

    Article  Google Scholar 

  59. Authier, A.: Dynamical theory of X-ray diffraction. Int. Tables for Crystallogr. B, 534–551 (2006). Chapter 5.1.

    Google Scholar 

  60. MacGillavry, C.H., Rieck, G.D. (eds.): International Tables for X-Ray Crystallography. Kynoch Press, Birmingham (1968)

    Google Scholar 

  61. Scattering Factors. http://www.ruppweb.org/new_comp/scattering_factors.htm

  62. Creagh, D.: Tables of X-ray absorption corrections and dispersion corrections: the new versus the old. Nucl. Instrum. Methods. Phys. Res. Sect. A. 295, 417–434 (2013)

    Article  Google Scholar 

  63. Lo Giudice, A., Fizzotti, F., Manfredotti, C., Vittone, E., Nava, F.: Average energy dissipated by mega-electron-volt hydrogen and helium ions per electron-hole pair generation in 4H-SiC. Appl. Phys. Lett. 87, 222105 (2005)

    Article  Google Scholar 

  64. Rogalla, M., Runge, K., Soldner-Rembold, A.: Particle detectors based on semi-insulating silicon carbide. Nucl. Phys. B Proc. Suppl. 78(1–3), 516–520 (1999)

    Article  Google Scholar 

  65. Labedev, A.A., Ivanov, A.M., Strokan, N.B.: Radiation hardness of SiC and hard radiation detectors based on the SiC films. Fiz.Tekh. Poluprovodn. 38, 129–150 (2004)

    Google Scholar 

  66. Knoll, G.F.: Radiation Detection and Measurements, 3rd edn. Wiley, New York (2000)

    Google Scholar 

  67. Mandal, K.C., Chaudhuri, S.K., Nguyen, K.V.: An overview of application of 4H-SiC n-type epitaxial Schottky barrier detector for high resolution nuclear detection. 2013 IEEE Nucl. Sci. Symp. Medical Imaging Conf. (2013 NSS/MIC) (2013)

    Google Scholar 

  68. Breese, M.B.H.: A theory of ion beam induced charge collection. J. Appl. Phys. 74, 3789–3799 (1993)

    Article  Google Scholar 

  69. Ziegler, J.F., Biersack, J.P., Littmark, U.: The Stopping and Range of Ions in Solids. Pergamon, Oxford (1985)

    Google Scholar 

  70. Bertuccio, G., Pullia, A.: A method for the determination of the noise parameters in pre-amplifying systems for semiconductor radiation detectors. Rev. Sci. Instrum. 64, 3294–3298 (1993)

    Article  Google Scholar 

  71. Lang, D.V.: Deep-level transient spectroscopy: a new method to characterize traps in semiconductors. J. Appl. Phys. 45, 3023–3032 (1974)

    Article  Google Scholar 

  72. Dalibor, T., Pensl, G., Nordell, N., Schoener, A.: Electrical properties of the titanium acceptor in silicon carbide. Phys. Rev. B. 55(20), 13618–13624 (1997)

    Article  Google Scholar 

  73. Szmidt, Ł., Gelczuk, J., Dąbrowska-Szata, M., Sochacki, M.: Characterization of deep electron traps in 4H-SiC junction barrier Schottky rectifiers. Solid State Electron. 94, 56–60 (2014)

    Article  Google Scholar 

  74. Zhang, J., Storasta, L., Bergman, J.P., Son, N.T., Janzén, E.: Electrically active defects in n-type 4H–silicon carbide grown in a vertical hot-wall reactor. J. Appl. Phys. 93(8), 4708–4714 (2003)

    Article  Google Scholar 

  75. Castaldini, A., Cavallini, A., Polenta, L., Nava, F., Canali, C., Lanzieri, C.: Deep levels in silicon carbide Schottky diodes. Appl. Surf. Sci. 187(3–4), 248–252 (2002)

    Article  Google Scholar 

  76. Tawara, T., Tsuchida, H., Izumi, S., Kamata, I., Izumi, K.: Evaluation of free carrier lifetime and deep levels of the thick 4H-SiC epilayers. Mat. Sci. Forum. 457–460, 565–568 (2004)

    Article  Google Scholar 

  77. Klein, P.B., Shanabrook, B.V., Huh, S.W., Polyakov, A.Y., Skowronski, M., Sumakeris, J.J., O'Loughlin, M.J.: Lifetime-limiting defects in n−4H-SiC epilayers. Appl. Phys. Lett. 88, 052110 (2006)

    Article  Google Scholar 

  78. Danno, K., Kimoto, T., Matsunami, H.: Midgap levels in both n- and p-type 4H-SiC epilayers investigated by deep level transient spectroscopy. Appl. Phys. Lett. 86, 122104 (2005)

    Article  Google Scholar 

  79. Bartlett, R.J., Trela, W.J., Michaud, F.D., Southworth, S.H., Alkire, R.W., Roy, P., Rothe, R.P., Walsh, J., Shinn, N.: Characteristics and performance of the Los Alamos VUV beam line at the NSLS. Nucl. Instrum. Methods. Phys. Res. Sect. A. 266, 199–204 (1988)

    Article  Google Scholar 

  80. Day, R.H., Blake, R.L., Stradling, G.L., Trela, W.J., Bartlett, R.J.: Los Alamos X-ray characterization facilities for plasma diagnostics. Proc. SPIE. 689, 208–217 (1986)

    Article  Google Scholar 

  81. Wilson, M.D., Cernik, R., Chen, H., Hansson, C., Iniewski, K., Jones, L.L., Seller, P., Veale, M.C.: Small pixel CZT detector for hard X-ray spectroscopy. Nucl. Instrum. Methods Phys. Res. Sect. A. 652, 158–161 (2011)

    Article  Google Scholar 

  82. Chaudhuri, S.K., Krishna, R.M., Zavalla, K.J., Matei, L., Buliga, V., Groza, M., Burger, A., Mandal, K.C.: Cd0.9Zn0.1Te crystal growth and fabrication of large volume single-polarity charge sensing gamma detectors. IEEE Trans. Nucl. Sci. 60(4), 2853–2858 (2013)

    Article  Google Scholar 

  83. Sajjad, M., Chaudhuri, S.K., Kleppinger, J.W., Mandal, K.C.: Growth of large-area Cd0.9Zn0.1Te single crystals and fabrication of pixelated guard-ring detector for room-temperature γ-ray detection. IEEE Trans. Nucl. Sci. 67(8), 1946–1951 (2020)

    Article  Google Scholar 

  84. Krishna, R.M., Chaudhuri, S.K., Zavalla, K.J., Mandal, K.C.: Characterization of Cd0.9Zn0.1Te based virtual Frisch grid detectors for high energy gamma ray detection. Nucl. Instrum. Methods Phys. Res. Sect. A. 701, 208–213 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support provided by the DOE Office of Nuclear Energy’s Nuclear Energy University Programs (NEUP), Grant No. DE-NE0008662, and by Los Alamos National Laboratory/DOE (Grant No. 143479). The work was also partially supported by the Advanced Support Program for Innovative Research Excellence-I (ASPIRE-I) of the University of South Carolina (UofSC), Columbia, Grant No. 15530-E404.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna C. Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaudhuri, S.K., Mandal, K.C. (2022). Radiation Detection Using n-Type 4H-SiC Epitaxial Layer Surface Barrier Detectors. In: Iniewski, K.(. (eds) Advanced Materials for Radiation Detection. Springer, Cham. https://doi.org/10.1007/978-3-030-76461-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76461-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76460-9

  • Online ISBN: 978-3-030-76461-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics