Skip to main content

Calculation and Measurement of Stresses in Bins and Silos

  • Chapter
  • First Online:
Powders and Bulk Solids
  • 1184 Accesses

Abstract

The stresses occurring in silos and other containers filled with bulk solids depend not only on the shape of the container but also on the properties of the bulk solid, such as bulk density, horizontal stress ratio, and wall friction angle. The stress distribution in a silo’s vertical section is completely different from those in the hopper, which again shows a difference between bulk solids that have just been filled in and bulk solids that have already flowed down the hopper. The resulting stress distributions are explained and assessed by simple calculation methods (slice element methods). With the help of stress calculations, the load on discharge devices and the driving forces can also be estimated. In addition, effects such as the stress peak at the transition from the shaft to the hopper in the case of mass flow, the effect of inserts on the stresses, and uneven stress distribution due to eccentric flow are described. Directions are given for measuring stresses, e. g. at silo walls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deutscher Stahlbau-Verband (Hrsg.) (1985) Stahlbau Handbuch Band 2, 2. Auflage

    Google Scholar 

  2. DIN 1055, part 6 (1987) Loads in silos. German code.

    Google Scholar 

  3. DIN EN 1991–4:2010–12 (2010) Eurocode 1: Actions on structures – Part 4: Silos and tanks; German version EN 1991–4:2006

    Google Scholar 

  4. Carson J, Craig D (2015) Silo design codes: Their limits and inconsistencies. Procedia Eng 102:647–656

    Article  Google Scholar 

  5. Kwade A, Schulze D, Schwedes J (1994) Determination of the stress ratio in uniaxial compression tests, Part 1 and 2. Powder Handl & Process 6:61–65 and 6:199–203

    Google Scholar 

  6. Nowak M (1993) Spannungs-/Dehnungsverhalten von Kalkstein in der Zweiaxialbox. Ph.D. thesis, Techn. Univ. Braunschweig, Germany

    Google Scholar 

  7. Feise HJ (1996) Modellierung des mechanischen Verhaltens von Schüttgütern. Ph.D. thesis, Techn. Univ. Braunschweig, Germany (Braunschweiger Schriften zur Mechanik Nr. 23-1996)

    Google Scholar 

  8. Martens P (ed) (1988) Silohandbuch. Wilhelm Ernst & Sohn Verlag, Berlin

    Google Scholar 

  9. Arnold PC, McLean AG (1976) Improved analytical flow factors for mass-flow hoppers. Powder Technol 15:279–281

    Article  Google Scholar 

  10. Stiglat K (1991) Statisch-konstruktive Bemessung von Silos. Preprints VDI-GVC Conference “Agglomerations- und Schüttguttechnik”, Baden-Baden, Germany, pp 109–138

    Google Scholar 

  11. Hampe E (1987) Silos, Band 1 (Grundlagen). VEB Verlag für Bauwesen, Berlin

    Google Scholar 

  12. Enstad GG (1981) A novel theory on the arching and doming in mass flow hoppers. Ph.D. thesis, Chr. Michelsen Inst., Bergen, Norway

    Google Scholar 

  13. Walters JK (1973) A theoretical analysis of stresses in silos with vertical walls. Chem Eng Sci 28:13–21

    Article  CAS  Google Scholar 

  14. Walters JK (1973) A theoretical analysis of stresses in axially-symmetric hoppers and bunkers. Chem Eng Sci 28:779–789

    Article  CAS  Google Scholar 

  15. Jenike AW, Johanson JR, Carson JW (1973) Bin loads – Part 2 and 3. J Eng Ind, Trans ASME, Ser B 95(1):1–12

    Google Scholar 

  16. Roberts I (1882) On the pressure of wheat stored in elongated cells or bins. Engineering 34:399

    Google Scholar 

  17. Roberts I (1884) Determination of the vertical and lateral pressures of granular substances. Proceed Royal Soc Lond 36:225–240

    Google Scholar 

  18. Janssen HA (1895) Getreidedruck in Silozellen. Z Ver Dt Ing 39:1045–1049

    Google Scholar 

  19. Koenen M (1896) Berechnung des Seiten- und Bodendrucks in Silozellen. Centralblatt der Bauverwaltung 16:446–449

    Google Scholar 

  20. Jenike AW (1964/1980) Storage and flow of solids. Bull. No. 123, 20th Printing, revised 1980. Engng. Exp. Station, Univ. of Utah, Salt Lake City

    Google Scholar 

  21. Jenike AW (1961) Gravity flow of bulk solids. Bulletin No. 108, Eng. Exp. Station, Univ. of Utah, Salt Lake City

    Google Scholar 

  22. Walker DM (1966) An approximate theory for pressures and arching in hoppers. Chem Eng Sci 21:975–997

    Article  CAS  Google Scholar 

  23. Walker DM (1967) A basis for bunker design. Powder Technol 1:228–236

    Article  Google Scholar 

  24. Benink EJ (1989) Flow and stress analysis of cohesionless bulk materials in silos related to codes. Ph.D. thesis, Univ. of Twente, Enschede, The Netherlands

    Google Scholar 

  25. Motzkus U (1974) Belastung von Siloböden und Auslauftrichtern durch körnige Schüttgüter. Ph.D. thesis, Techn. Univ. Braunschweig, Germany

    Google Scholar 

  26. Häußler U (1984) Geschwindigkeits- und Spannungsfelder beim Entleeren von Silozellen. Dissertation Univ. Karlsruhe

    Google Scholar 

  27. Rombach G, Eibl J (1988) Consistent modelling of filling and discharging processes in silos. Preprints “Silos – Forschung und Praxis”, Karlsruhe, Germany, pp 1–15

    Google Scholar 

  28. Rombach G (1991) Schüttguteinwirkungen auf Silozellen – Exzentrische Entleerung. Ph.D. thesis, Univ. Karlsruhe, Germany

    Google Scholar 

  29. Wójcik M, Tejchman J (2009) Modeling of shear localization during confined granular flow in silos within non-local hypoplasticity. Powder Technol 192:298–310

    Article  Google Scholar 

  30. Wang Y, Yong L, Ooi JY (2014) Finite element modeling of wall pressures in a cylindrical silo with conical hopper using an Arbitrary Lagrangian-Eulerian formulation. Powder Technol 257:181–190

    Article  CAS  Google Scholar 

  31. Wilde K, Tejchman J, Rucka M, Niedostatkiewicz M (2010) Experimental and theoretical investigations of silo music. Powder Technol 198:38–48

    Article  CAS  Google Scholar 

  32. Langston PA, Tüzün U (1994) Continuous potential discrete particle simulations of stress and velocity fields in hoppers. Chem Eng Sci 49:1259–1275

    Google Scholar 

  33. Kafui KD, Thornton C (1995) Some aspects of silo design: computer simulations. In: Proc. PARTEC 95 “3rd Europ. Symp. Storage and Flow of Particulate Solids (Janssen Centennial)”. Nürnberg, pp 379–388

    Google Scholar 

  34. Kaldenhoff M (1998) Simulation von grobgranularen Schüttgütern mit Hilfe zellulärer Automaten. Dissertation TU Braunschweig

    Google Scholar 

  35. AS 3774-1996 (1996) Loads on bulk solids containers. Australian Standard

    Google Scholar 

  36. British Materials Handling Board (Eds.) (1985) BMHB Draft code of practice for the design of silos, bins, bunkers and hoppers

    Google Scholar 

  37. Schulze D (1991) Untersuchungen zur gegenseitigen Beeinflussung von Silo und Austragorgan. Ph.D. thesis, Techn. Univ. Braunschweig, Germany

    Google Scholar 

  38. Schulze D, Schwedes J (1994) An examination of initial stresses in hoppers. Chem Eng Sci 49:2047–2058

    Article  CAS  Google Scholar 

  39. Arnold PC, McLean AG, Roberts AW (1979) Bulk solids: Storage, flow and handling. TUNRA Ltd., The Univ. of Newcastle, N.S.W., Australia

    Google Scholar 

  40. Schulze D (1999) Silo Stress Tool, program for the assessment of stresses in silos. www.dietmar-schulze.de

  41. Schulze D (2017) Stresses in silos Part 1: bulk solid properties – stresses in the vertical section. Bulk Solids Handl 37:42–49

    Google Scholar 

  42. Pieper E, Wenzel F (1964) Druckverhältnisse in Silozellen. Verlag Wilhelm Ernst & Sohn, Berlin

    Google Scholar 

  43. Wolf K (1984) Der Anfangsschlag und andere Belastungsgrößen im Silo. Ph.D. thesis, Techn. Univ. Braunschweig, Germany

    Google Scholar 

  44. Schneider HG (1987) Experimentelle Untersuchung der Schüttgutdrücke bei Kern- und Massenfluss. Ph.D. thesis, Techn. Univ. Braunschweig, Germany

    Google Scholar 

  45. Lohnes RA, Bokhoven WH (1985) Experimental determination of K0 stress ratios in grain. In: Proc. l0th Annual Powder & Bulk Solids Conf. Rosemont, IL, USA

    Google Scholar 

  46. Nothdurft H (1975) Schüttgutlasten in Silozellen mit Querschnittsverengungen. Ph.D. thesis, Techn. Univ. Braunschweig, Germany

    Google Scholar 

  47. Kézdi A (1962) Erddrucktheorien. Springer, Berlin

    Book  Google Scholar 

  48. Roberts AW (1990) Modern concepts in the design and engineering of bulk solids handling systems. TUNRA Ltd., The Univ. of Newcastle, N.S.W., Australia

    Google Scholar 

  49. Zachary LW, Lohnes RA (1988) A confined compression test for bulk solids. In: Proc. 13th Annual Powder & Bulk Solids Conf., Rosemont, IL, USA

    Google Scholar 

  50. Nielsen J, Kolymbas D (1988) Properties of granular media relevant for silo loads, Preprints “Silos – Forschung und Praxis”, Karlsruhe, pp 119–132

    Google Scholar 

  51. McLean AG (1985) Initial stress fields in converging channels. Bulk Solids Handl 5:49–54

    Google Scholar 

  52. Nedderman RM (1992) Statics and kinetics of granular materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  53. Jenike AW (1977) Load assumptions and distributions in silo design. In: Conf. on construction of concrete silos, Oslo, Norway

    Google Scholar 

  54. Schulze D (1994) The prediction of initial stresses in hoppers. Bulk Solids Handl 14:497–503

    Google Scholar 

  55. Manjunath KS, Roberts AW (1986) Wall pressure – feeder load interactions in mass flow hopper/feeder combinations. Bulk Solids Handl 6(769–775):903–911

    Google Scholar 

  56. Manjunath KS (1984) Interactive roles of wall pressures and feeder loads in hopper/feeder systems. Ph.D. Thesis Univ. of Newcastle, Australia

    Google Scholar 

  57. Egerer B (1982) Kritische Auslaufdurchmesser bei Massenflußbunkern für kohäsive Schüttgüter. Dissertation Univ. Erlangen-Nürnberg, Germany

    Google Scholar 

  58. Arnold PC, McLean AG (1976) An analytical solution for the stress function at the wall of a converging channel. Powder Technol 13:255–260

    Article  Google Scholar 

  59. Roberts AW, Ooms M, Manjunath KS (1984) Feeder load and power requirement in the controlled gravity flow of bulk solids from mass flow bins. Trans Mech Eng, Instof Eng, Australia, ME9(1)

    Google Scholar 

  60. Strusch J (1996) Wandnormalspannungen in einem Silo mit Einbau und Kräfte auf Einbauten. Ph.D. thesis, Techn. Univ. Braunschweig, Germany

    Google Scholar 

  61. Pajer G, Kuhnt H, Kurth F (1988) Stetigförderer. VEB Verlag Technik, Berlin

    Google Scholar 

  62. Schulze D, Schwedes J (1990) Experimental investigation of silo stresses under consideration of the influence of hopper/feeder interface. Kona 8:134–144

    Google Scholar 

  63. Rademacher FJC (1982) Reclaim power and geometry of bin interfaces in belt and apron feeders. Bulk Solids Handl 2:281–294

    Google Scholar 

  64. Reisner Wv, Eisenhardt-Rothe M (1971) Silos und Bunker für die Schüttgutspeicherung. Trans. Tech. Publications, Clausthal-Zellerfeld, Germany

    Google Scholar 

  65. Schumacher W (1987) Zum Förderverhalten von Bunkerabzugsschnecken mit Vollblattwendeln. Ph.D. thesis, TH Aachen, Germany

    Google Scholar 

  66. Vetter G, Gericke H, Fritsch D (1984) Zur kontinuierlichen Dosierung von Schüttgütern mit Schneckendosiergeräten. Aufbereitungstechnik 25:705–717

    Google Scholar 

  67. Bates L (1969) Entrainment patterns of screw hopper dischargers. J Eng Industry 91:295–302

    Article  Google Scholar 

  68. Carroll PJ (1970) Hopper designs with vibratory feeders. Chem Eng Progr 66:44–49

    Google Scholar 

  69. Schulze D (2017) Stresses in silos Part 2: stresses in hoppers – disturbances to the stress distribution. Bulk Solids Handl 37(3):42–49

    Google Scholar 

  70. Van Zanten DC, Mooij A (1977) Bunker design, part 2: wall pressures in mass flow. J Eng Ind Trans ASME 1977:814–818

    Article  Google Scholar 

  71. Kahl J (1976) Grundlagenuntersuchungen über die Belastung von Siloeinbauten bei ruhenden und fließenden Schüttgütern. Ph.D. thesis, Techn. Univ. Clausthal, Germany

    Google Scholar 

  72. Kroll D (1974) Untersuchungen über die Belastung horizontaler Zuganker sowie vertikaler Hängependel und Gehänge durch Schüttgütern in Silozellen. Ph.D. thesis, Techn. Univ. Braunschweig, Germany

    Google Scholar 

  73. Frese B (1977) Druckverhältnisse in zylindrischen Silozellen. Ph.D. thesis, Techn. Univ. Braunschweig, Germany

    Google Scholar 

  74. Chrisp TM, Wood JGM, Blackler MJ (1988) Comparison of model and full-scale test results with simplified and finite element analyses of eccentrically discharged silos. Preprints “Silos – Forschung und Praxis”, Karlsruhe, Germany, pp 55–68

    Google Scholar 

  75. Rotter JM (1986) The analysis of steel bins subject to eccentric discharge. In: Proc. “2nd Int. Conf. on Bulk Materials Storage, Handling and Transportation”, Wollongong, Australia, pp 264–271

    Google Scholar 

  76. Rotter JM (1998) Cylindrical shells: Unsymmetrical solids loading and supports. In: Brown CJ, Nielsen J (Eds) Silos, fundamentals of theory, behaviour and design. E & FN Spon, London and New York, pp 367–377

    Google Scholar 

  77. Lippold D, Harder J (2004) Analysis and design of silo walls. World Cem 35:63–68

    Google Scholar 

  78. Jenike AW (1967) Denting of circular bins with eccentric drawpoints. J Struct Div, Proc Am Soc Civ Eng 93:27–35

    Google Scholar 

  79. Colijn H, Peschl IASZ (1981) Non-symmetrical bin flow problems. Bulk Solids Handl 1:81–88

    Google Scholar 

  80. McLean AG, Arnold PC, Bravin B (1985) Eccentric discharge silo wall loads. In: Proc. “Reliable Flow of Bulk Solids”, Bergen, Norway, EFCE Publ. Ser. No. 49, pp 194–209

    Google Scholar 

  81. Khelil A (1998) Internal structures (ties and internals). In: Brown CJ, Nielsen J (Eds) Silos, fundamentals of theory, behaviour and design. E & FN Spon, London and New York, pp 443–451

    Google Scholar 

  82. Schlick H, Gehbauer F, Auchter A, Gallinat J (1996) Relationships between flow properties and the process loading in silos with central cones and plough feeder discharge. Bulk Solids Handl 16:83–89

    Google Scholar 

  83. Kaldenhoff M (2009) Full scale experiences with flow funnel. In: Proc. Int. Ass. for Shell and Spatial Structures (IASS) Symposium 2009, Valencia 28. Sept. 2. Okt. 2009, pp 77–89

    Google Scholar 

  84. Kaldenhoff M, Schütte J (2004) Schäden an Silos mit großen Entleerungsexzentrizitäten. Bauingenieur 79:560–567

    Google Scholar 

  85. Askegaard V (1981) Design and application of stress and strain cells with small measuring errors. NDT Int 14:271–277

    Article  Google Scholar 

  86. Ramírez A, Ansourian P, Nielsen J, Rasmussen K, Ayuga F (2009) Analysis of measurements obtained by plate-type pressure cells having a Recess – DEM simulation. Bulk Solids Powder Sci Technol 4:34–38

    Google Scholar 

  87. Schulze D, Lyle C, Schwedes J (1989) A new load cell for measuring normal and shear stresses. Chem Eng Technol 12:318–323

    Article  CAS  Google Scholar 

  88. Schulze D, Schwedes J, Merand JF (1991) Untersuchungen an einem Austragorgan für große Auslaufquerschnitte. Zement-Kalk-Gips 44:169–176

    Google Scholar 

  89. Ooi, JY, Ai J, Zhong Z, Chen JF, Rotter JM (2008) Progressive pressure measurements beneath a granular pile with and without base deflection. Structures and granular silos: From scientific principles to engineering applications. CRC Press-Taylor & Francis Group, pp 87–92

    Google Scholar 

  90. Smid J (1983) Druckverteilung unter einem Schüttguthaufen. Grundl. Landtechnik 33:72–75

    Google Scholar 

  91. Smid J, Novosad J (1981) Pressure distribution under heaped bulk solids. In: Proceedings of the 1981 Powtech Conference. Rugby, Institution of Chemical Engineers D3V, pp 1–12

    Google Scholar 

  92. Härtl J, Ooi JY, Rotter JM, Wojcik M, Ding S, Enstad GG (2008) The influ-ence of a cone-in-cone insert on flow pattern and wall pressure in a full-scale silo. Chem Eng Res Des 86:370–378

    Article  Google Scholar 

  93. Handley MF, Perry MG (1965) Measurements of stresses in flowing granular materials. Rheol Acta 4:225–235

    Article  Google Scholar 

  94. Duri A, Mabille F, Ruiz T (2018) Impact of the heap shape formation on the local vertical force profile of ensiled granular materials. Powder Technol 338:993–1000

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Schulze .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schulze, D. (2021). Calculation and Measurement of Stresses in Bins and Silos. In: Powders and Bulk Solids. Springer, Cham. https://doi.org/10.1007/978-3-030-76720-4_9

Download citation

Publish with us

Policies and ethics