Skip to main content

Timed Petri Nets with Reset for Pipelined Synchronous Circuit Design

  • Conference paper
  • First Online:
Book cover Application and Theory of Petri Nets and Concurrency (PETRI NETS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12734))

Abstract

This paper introduces an extension of Timed Petri Nets for the modeling of synchronous electronic circuits, addressing pipeline design problems. Petri Nets have been widely used for the modeling of electronic circuits. In particular, Timed Petri Nets which capture timing properties are perfectly suited for scheduling problems. Our extension, through reset that model the pipeline stages, and through delayable transitions that relax timing constraints, allows to widen the conception space of pipelined systems.

After discussing about maximal-step firing rule and the semantics of Timed Petri Nets “à la Ramchandani”, we define our Timed Petri Nets with reset and delayable (non-asap) transitions.

We then study the decidability and the complexity of the main problems of interest. We propose an abstraction of the state space. We then establish a translation of this model into a single-clock timed automata, which preserves the language. This translation settles the decidability on language inclusion and universality problems.

Finally, an algorithm for the exploration of the state space is provided, and can be driven by the optimisation of various properties of the pipeline.

This work is supported by the Renault-Centrale Nantes chair dedicated to the propulsion performance of electric vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the sake of brevity, in all the following figures, we note a marking M as a set of marked places instead of a vector and we give the valuation v only for the enabled transitions.

References

  1. Abdulla, P.A., Deneux, J., Ouaknine, J., Quaas, K., Worrell, J.: Universality analysis for one-clock timed automata. Fundam. Informaticae 89(4), 419–450 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Inf. Comput. 104(1), 2–34 (1993)

    Article  MathSciNet  Google Scholar 

  3. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2), 183–235 (1994)

    Article  MathSciNet  Google Scholar 

  4. Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: The expressive power of time Petri nets. Theoretical Comput. Sci. (TCS) 474, 1–20 (2013)

    Article  MathSciNet  Google Scholar 

  5. Boucheneb, H., Gardey, G., Roux, O.H.: TCTL model checking of time Petri nets. J. Log. Comput. 19(6), 1509–1540 (2009)

    Article  MathSciNet  Google Scholar 

  6. Bufistov, D., Cortadella, J., Kishinevsky, M., Sapatnekar, S.: A general model for performance optimization of sequential systems. In: 2007 IEEE/ACM International Conference on Computer-Aided Design, pp. 362–369 (2007)

    Google Scholar 

  7. Campos, J., Chiola, G., Colom, J.M., Silva, M.: Properties and performance bounds for timed marked graphs. IEEE Trans. Circuits Syst. I: Fund. Theory Appl. 39(5), 386–401 (1992)

    Article  Google Scholar 

  8. Carloni, L.P., McMillan, K.L., Saldanha, A., Sangiovanni-Vincentelli, A.L.: A methodology for correct-by-construction latency insensitive design. In: 1999 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (Cat. No.99CH37051), pp. 309–315 (1999)

    Google Scholar 

  9. Cassez, F., Roux, O.H.: Structural translation from Time Petri Nets to Timed Automata - Model-Checking Time Petri Nets via Timed Automata. J. Syst. Softw. 79(10), 1456–1468 (2006)

    Article  Google Scholar 

  10. Cheng, A., Esparza, J., Palsberg, J.: Complexity results for 1-safe nets. Theoret. Comput. Sci. 147, 117–136 (1995)

    Article  MathSciNet  Google Scholar 

  11. Church, A.: Application of recursive arithmetic to the problem of circuit synthesis, pp. 3–50 (1957)

    Google Scholar 

  12. Giua, A., DiCesare, F., Silva, M.: Generalized mutual exclusion constraints on nets with uncontrollable transitions. In: IEEE International Conference on SMC (1992)

    Google Scholar 

  13. Istoan, M.,  de Dinechin, F.: Automating the pipeline of arithmetic datapaths. In: Design, Automation & Test in Europe Conference & Exhibition (DATE 2017), pp. 704–709, Lausanne, Switzerland (2017)

    Google Scholar 

  14. Josipović, L., Sheikhha, S., Guerrieri, A., Ienne, P., Cortadella, J.: Buffer placement and sizing for high-performance dataflow circuits. In: Proceedings of the 2020 ACM/SIGDA Int. Symposium on Field-Programmable Gate Arrays, FPGA 2020, pp. 186–196. Association for Computing Machinery, New York (2020)

    Google Scholar 

  15. Leiserson, C.E., Saxe, J.B.: Retiming synchronous circuitry. Algorithmica 6(1–6), 5–35 (1991)

    Article  MathSciNet  Google Scholar 

  16. Merlin, P.M.: A study of the recoverability of computing systems. Ph.D. thesis, Dep. of Information and Computer Science, University of California, Irvine, CA (1974)

    Google Scholar 

  17. Najibi, M., Beerel, P.A.: Slack matching mode-based asynchronous circuits for average-case performance. In: Proceedings of the International Conference on Computer-Aided Design, ICCAD 2013, pp. 219–225. IEEE Press (2013)

    Google Scholar 

  18. Ouaknine, J., Worrell, J.: On the language inclusion problem for timed automata: closing a decidability gap. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004, pp. 54–63 (2004)

    Google Scholar 

  19. Popova-Zeugmann, L.: Time and Petri Nets. Springer (2013)

    Google Scholar 

  20. Ramchandani, C.: Analysis of asynchronous concurrent systems by timed Petri nets. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA (1974)

    Google Scholar 

  21. Kim, S., Beerel, P.A.: Pipeline optimization for asynchronous circuits: complexity analysis and an efficient optimal algorithm. IEEE Trans. Comput.-Aided Des. Integrated Circuits Syst. 25(3), 389–4022 (2006)

    Article  Google Scholar 

  22. Zuberek, W.: D-timed petri nets and modeling of timeouts and protocols. Trans. Soc. Comput. Simul. 4(4), 331–357 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémi Parrot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Parrot, R., Briday, M., Roux, O.H. (2021). Timed Petri Nets with Reset for Pipelined Synchronous Circuit Design. In: Buchs, D., Carmona, J. (eds) Application and Theory of Petri Nets and Concurrency. PETRI NETS 2021. Lecture Notes in Computer Science(), vol 12734. Springer, Cham. https://doi.org/10.1007/978-3-030-76983-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76983-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76982-6

  • Online ISBN: 978-3-030-76983-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics