Skip to main content

Lie Group Theory for Nonlinear Fractional K(m, n) Type Equation with Variable Coefficients

  • Chapter
  • First Online:
Methods of Mathematical Modelling and Computation for Complex Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 373))

Abstract

We investigated the analytical solution of fractional order K(m, n) type equation with variable coefficient which is an extended type of KdV equations into a genuinely nonlinear dispersion regime. By using the Lie symmetry analysis, we obtain the Lie point symmetries for this type of time-fractional partial differential equations (PDE). Also we present the corresponding reduced fractional differential equations (FDEs) corresponding to the time-fractional K(m, n) type equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods (Series on Complexity. Nonlinearity and Chaos, World Scientific) (2012)

    Google Scholar 

  2. Baumann, G.: Symmetry Analysis of Differential Equations with Mathematica. Springer, New York, Telos (2000)

    Google Scholar 

  3. Bluman, G.W., Anco, S.C.: Symmetry and Integtation Methods for Differential Equations. Springer, New York (2002)

    MATH  Google Scholar 

  4. Bluman, G.W., Kumei, S.: Symmetries and Differential Equations, Applied Mathematical Sciences, 81. Springer, New York (1989)

    Book  Google Scholar 

  5. Buckwar, E., Luchko, Yu.: Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. J. Math. Anal. Appl. 227, 81–97 (1998)

    Article  MathSciNet  Google Scholar 

  6. Charalambous, K., Vaneeva, O., Sophocleous, C.: Group classification of variable coefficient K(m, n) equations, geometry and symmetry in physics 33, 79–90 (2014)

    Google Scholar 

  7. Chen, J., Liu, F., Anh, V.: Analytical solution for the time-fractional telegraph equation by the method of separating variables. J. Math. Anal. Appl. 338(2), 1364–1377 (2008)

    Article  MathSciNet  Google Scholar 

  8. Dehghan, M., Manafian, J., Saadatmandi, A.: Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Meth. Part. D. E. 26(2), 448–479 (2010)

    Article  MathSciNet  Google Scholar 

  9. Gazizov, R.K., Kasatkin, A.A., Lukashchuk, S.Y.: Symmetry properties of fractional diffusion equations. Phys. Scr. T136 (2009)

    Google Scholar 

  10. Manoj, G., Singh K.: Symmetry classification and exact solutions of a variable coefficient space-time fractional potential burgers equation. Int. J. DiffER. Equ. 2016, Article ID 4270724, 8 (2016). https://doi.org/10.1155/2016/4270724

  11. He, J.H., Wu, G.C., Austin, F.: The variational iteration method which should be followed. Nonlinear Sci. Lett. A 1, 1–30 (2010)

    Google Scholar 

  12. He, J.H.: A new fractal derivation. Therm. Sci. 15, 145–147 (2011)

    Article  Google Scholar 

  13. Ibragimov, N.H.: Handbook of Lie Group Analysis of Differential Equations, vol. 1, 2, 3. CRC Press, Boca Raton, Ann Arbor, London, Tokyo (1994, 1995, 1996)

    Google Scholar 

  14. Jafari, H., Kadkhoda, N., Azadi, M., Yaghobi, M.: Group classification of the time-fractional Kaup-Kupershmidt equation. Scientia Iranica 24(1), 302–307 (2017)

    Article  Google Scholar 

  15. Jafari, H., Kadkhoda, N., Baleanu, D.: Fractional Lie group method of the time-fractional Boussinesq equation. Nonlinear Dyn. 81, 1569–1574 (2015). https://doi.org/10.1007/s11071-015-2091-4

  16. Jafari, H.: Numerical solution of time-fractional klein-gordon equation by using the decomposition methods. ASME. J. Comput. Nonlinear Dyn. 11(4), 041015 (2016)

    Google Scholar 

  17. Jefferson, G.F., Carminati, J.: FracSym: automated symbolic computation of Lie symmetries of fractional differential equations. Comput. Phys. Commun. 185, 430–441 (2014)

    Article  Google Scholar 

  18. Kasatkin, A.A.: Symmetry properties for systems of two ordinary fractional differential equations. Ufa Math. J. 4, 65–75 (2012)

    MathSciNet  Google Scholar 

  19. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier Science B.V, Amsterdam, The Netherlands (2006)

    Google Scholar 

  20. Liu, H.Z.: Complete group classifications and symmetry reductions of the fractional fifth-order KdV types of equations. Stud. Appl. Math. 131, 317–330 (2013)

    Article  MathSciNet  Google Scholar 

  21. Lu, B.: The first integral method for some time fractional differential equations. J. Math. Anal. Appl. 395, 684–693 (2012)

    Article  MathSciNet  Google Scholar 

  22. Lukashchuk, SYu., Makunin, A.V.: Group classification of nonlinear time-fractional diffusion equation with a source term. Appl. Math. Comput. 257, 335–343 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Nadjafikhah, M., Ahangari, F.: Symmetry reduction of two-dimensional damped Kuramoto-Sivashinsky equation. Commun. Theor. Phys. 56, 211–217 (2011)

    Google Scholar 

  24. Olver, P.J.: Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, 107,2nd edition. Springer, Berlin (1993)

    Book  Google Scholar 

  25. Ovsyannikov, L.V.: Group Analysis of Differential Equations. Academic, New York (1982)

    Google Scholar 

  26. Podlubny, I.: Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. In: Mathematics in Science and Engineering, vol. 198. Academic, San Diego, Calif, USA (1999)

    Google Scholar 

  27. Rosenau, P.: On a class of nonlinear dispersive-dissipative interaction. Physica D 123, 1–4 (1998)

    Google Scholar 

  28. Samko, G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993)

    Google Scholar 

  29. Wang, G.W., Liu, X.Q., Zhang, Y.Y.: Lie symmetry analysis to the time fractional generalized fith-order KdV equation. Commun. Nonlinear Sci. Numer. Simul. (2013). https://doi.org/10.1016/j.cnsns.2012.11.032

  30. Wang, G.W., Hashemi, M.S.: Lie symmetry analysis and soliton solutions of time-fractionalK(m, n) equation. Pramana J. Phys. 88(7), 1–7 (2017)

    Google Scholar 

  31. Gün Polat G, Özer T. new conservation laws, lagrangian forms, and exact solutions of modified emden equation. ASME. J. Comput. Nonlinear Dyn. 12(4), 041001–041001-15 (2017). https://doi.org/10.1115/1.4035408.

  32. Wu, G.C.: A fractional lie group method for anomalous diffusion equations. Commun. Frac. Calc. 1, 27–31 (2010)

    Google Scholar 

  33. Wu, G.C., Baleanu, D.: Discrete fractional logistic map and its chaos. Nonlinear Dyn. 75(1–2), 283–287 (2014)

    Article  MathSciNet  Google Scholar 

  34. Zilburg, A., Rosenau, P.: Early and late stages of K(m, n) compactons interaction. Phys. Lett. A 383, 991–996 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to extend great gratitude to the Editor and anonymous reviewers, whose insightful comments and constructive suggestions helped us to significantly improve the quality of this paper.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors have read and approved the final manuscript.

Editor information

Editors and Affiliations

Ethics declarations

The author declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jafari, H., Kadkhoda, N., Baleanu, D. (2022). Lie Group Theory for Nonlinear Fractional K(m, n) Type Equation with Variable Coefficients. In: Singh, J., Dutta, H., Kumar, D., Baleanu, D., Hristov, J. (eds) Methods of Mathematical Modelling and Computation for Complex Systems. Studies in Systems, Decision and Control, vol 373. Springer, Cham. https://doi.org/10.1007/978-3-030-77169-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77169-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77168-3

  • Online ISBN: 978-3-030-77169-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics