Skip to main content

Androgen Actions in the Testis and the Regulation of Spermatogenesis

  • Chapter
  • First Online:
Molecular Mechanisms in Spermatogenesis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1381))

Abstract

Testosterone is essential for spermatogenesis and male fertility. In this review, topics related to testosterone control of spermatogenesis are covered including testosterone production and levels in the testis, classical and nonclassical testosterone signaling pathways, cell- and temporal-specific expression of the androgen receptor in the testis and autocrine and paracrine signaling of testis cells in the testis. Also discussed are the contributions of testosterone to testis descent, the blood-testis barrier, control of gonocyte numbers and spermatogonia expansion, completion of meiosis and attachment and release of elongaed spermatids. Testosterone-regulated genes identified in various mouse models of idsrupted Androgen receptor expression are discussed. Finally, examples of synergism and antagonism between androgen and follicle-stimulating hormone signaling pathways are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith, L. B., & Walker, W. H. (2014). The regulation of spermatogenesis by androgens. Seminars in Cell & Developmental Biology, 30, 2–13.

    Article  CAS  Google Scholar 

  2. Walker, W. (2018). Androgen regulation of spermatogenesis. In C. Y. Cheng (Ed.), Spermatogenesis: Biology and clinical implications. CRC Press/Taylor and Francis.

    Google Scholar 

  3. Awoniyi, C. A., Sprando, R. L., Santulli, R., Chandrashekar, V., Ewing, L. L., & Zirkin, B. R. (1990). Restoration of spermatogenesis by exogenously administered testosterone in rats made azoospermic by hypophysectomy or withdrawal of luteinizing hormone alone. Endocrinology, 127, 177–184.

    Article  CAS  PubMed  Google Scholar 

  4. Comhaire, F. H., & Vermeulen, A. (1976). Testosterone concentration in the fluids of seminiferous tubules, the interstitium and the rete testis of the rat. The Journal of Endocrinology, 70, 229–235.

    Article  CAS  PubMed  Google Scholar 

  5. Hammond, G. L., Koivisto, M., Kouvalainen, K., & Vihko, R. (1979). Serum steroids and pituitary hormones in infants with particular reference to testicular activity. The Journal of Clinical Endocrinology and Metabolism, 49, 40–45.

    Article  CAS  PubMed  Google Scholar 

  6. Maddocks, S., Hargreave, T. B., Reddie, K., Fraser, H. M., Kerr, J. B., & Sharpe, R. M. (1993). Intratesticular hormone levels and the route of secretion of hormones from the testis of the rat, Guinea pig, monkey and human. International Journal of Andrology, 16, 272–278.

    Article  CAS  PubMed  Google Scholar 

  7. Turner, T. T., Jones, C. E., Howards, S. S., Ewing, L. L., Zegeye, B., & Gunsalus, G. L. (1984). On the androgen microenvironment of maturing spermatozoa. Endocrinology, 115, 1925–1932.

    Article  CAS  PubMed  Google Scholar 

  8. Mclachlan, R. I., O'donnell, L., Meachem, S. J., Stanton, P. G., De Kretser, D. M., Pratis, K., & Robertson, D. M. (2002). Identification of specific sites of hormonal regulation in spermatogenesis in rats, monkeys, and man. Recent Program on Hormone Research, 57, 149–179.

    Article  CAS  Google Scholar 

  9. Sharpe, R. M. (1994). Regulation of spermatogenesis. In E. Knobil & J. D. Neil (Eds.), The Physiology of Reproduction. Raven Press.

    Google Scholar 

  10. Tsai, M. J., & O'malley, B. W. (1994). Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annual Reviews of Biochemistry, 63, 451–486.

    Google Scholar 

  11. Ramaswamy, S., & Weinbauer, G. F. (2014). Endocrine control of spermatogenesis: Role of FSH and LH/testosterone. Spermatogenesis, 4, e996025.

    Article  PubMed  Google Scholar 

  12. Zirkin, B. R., Santulli, R., Awoniyi, C. A., & Ewing, L. L. (1989). Maintenance of advanced spermatogenic cells in the adult rat testis: Quantitative relationship to testosterone concentration within the testis. Endocrinology, 124, 3043–3049.

    Article  CAS  PubMed  Google Scholar 

  13. Hess, R. A. (2003). Estrogen in the adult male reproductive tract: A review. Reproductive Biology and Endocrinology, 1, 52.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Burgoyne, P. S., Mahadevaiah, S. K., & Turner, J. M. (2009). The consequences of asynapsis for mammalian meiosis. Nature Reviews. Genetics, 10, 207–216.

    Article  CAS  PubMed  Google Scholar 

  15. Stanton, P. G. (2016). Regulation of the blood-testis barrier. Seminars in Cell & Developmental Biology, 59, 166–173.

    Article  CAS  Google Scholar 

  16. Meng, J., Holdcraft, R. W., Shima, J. E., Griswold, M. D., & Braun, R. E. (2005). Androgens regulate the permeability of the blood-testis barrier. Proceedings of the National Academy of Sciences of the United States of America, 102, 16696–16700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Willems, A., Batlouni, S. R., Esnal, A., Swinnen, J. V., Saunders, P. T., Sharpe, R. M., Franca, L. R., De Gendt, K., & Verhoeven, G. (2010). Selective ablation of the androgen receptor in mouse sertoli cells affects sertoli cell maturation, barrier formation and cytoskeletal development. PLoS One, 5, e14168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Holdcraft, R. W., & Braun, R. E. (2004). Androgen receptor function is required in Sertoli cells for the terminal differentiation of haploid spermatids. Development, 131, 459–467.

    Article  CAS  PubMed  Google Scholar 

  19. O'donnell, L., Mclachlan, R. I., Wreford, N. G., De Kretser, D. M., & Robertson, D. M. (1996). Testosterone withdrawal promotes stage-specific detachment of round spermatids from the rat seminiferous epithelium. Biological Reproduction, 55, 895–901.

    Article  CAS  Google Scholar 

  20. O'donnell, L., Mclachlan, R. I., Wreford, N. G., & Robertson, D. M. (1994). Testosterone promotes the conversion of round spermatids between stages VII and VIII of the rat spermatogenic cycle. Endocrinology, 135, 2608–2614.

    Article  CAS  PubMed  Google Scholar 

  21. Heinlein, C. A., & Chang, C. (2004). Androgen receptor in prostate cancer. Endocrine Reviews, 25, 276–308.

    Article  CAS  PubMed  Google Scholar 

  22. Lonergan, P. E., & Tindall, D. J. (2011). Androgen receptor signaling in prostate cancer development and progression. J Carcinog, 10, 20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Auricchio, F., Migliaccio, A., & Castoria, G. (2008). Sex-steroid hormones and EGF signalling in breast and prostate cancer cells: Targeting the association of Src with steroid receptors. Steroids, 73, 880–884.

    Article  CAS  PubMed  Google Scholar 

  24. Migliaccio, A., Varricchio, L., De Falco, A., Castoria, G., Arra, C., Yamaguchi, H., Ciociola, A., Lombardi, M., Di Stasio, R., Barbieri, A., Baldi, A., Barone, M. V., Appella, E., & Auricchio, F. (2007). Inhibition of the SH3 domain-mediated binding of Src to the androgen receptor and its effect on tumor growth. Oncogene, 26, 6619–6629.

    Article  CAS  PubMed  Google Scholar 

  25. Walker, W. H. (2009). Molecular mechanisms of testosterone action in spermatogenesis. Steroids, 74, 602–607.

    Article  CAS  PubMed  Google Scholar 

  26. Walker, W. H. (2010). Non-classical actions of testosterone and spermatogenesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 365, 1557–1569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shang, Y., Myers, M., & Brown, M. (2002). Formation of the androgen receptor transcription complex. Molecular Cell, 9, 601–610.

    Article  CAS  PubMed  Google Scholar 

  28. Cheng, J., Watkins, S. C., & Walker, W. H. (2007). Testosterone activates MAP kinase via Src kinase and the EGF receptor in Sertoli cells. Endocrinology, 148, 2066–2074.

    Article  CAS  PubMed  Google Scholar 

  29. Migliaccio, A., Castoria, G., Di Domenico, M., De Falco, A., Barone, M. V., Ametrano, D., Zannini, M. S., Abbondanza, C., & Auricchio, F. (2000). Steroid-induced androgen receptor-oestradial receptor b-Src complex triggers prostate cancer cell proliferation. The EMBO Journal, 20, 5406–5417.

    Article  Google Scholar 

  30. Deng, Q., Zhang, Z., Wu, Y., Yu, W. Y., Zhang, J., Jiang, Z. M., Zhang, Y., Liang, H., & Gui, Y. T. (2017). Non-genomic action of androgens is mediated by rapid phosphorylation and regulation of androgen receptor trafficking. Cellular Physiology and Biochemistry, 43, 223–236.

    Article  CAS  PubMed  Google Scholar 

  31. Fix, C., Jordan, C., Cano, P., & Walker, W. H. (2004). Testosterone activates mitogen-activated protein kinase and the cAMP response element binding protein transcription factor in Sertoli cells. Proceedings of the National Academy of Sciences of the United States of America, 101, 10919–10924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Toocheck, C., Clister, T., Shupe, J., Crum, C., Ravindranathan, P., Lee, T. K., Ahn, J. M., Raj, G. V., Sukhwani, M., Orwig, K. E., & Walker, W. H. (2016). Mouse spermatogenesis requires classical and nonclassical testosterone signaling. Biology of Reproduction, 94, 11.

    Article  PubMed  Google Scholar 

  33. Loss, E. S., Jacobus, A. P., & Wassermann, G. F. (2011). Rapid signaling responses in Sertoli cell membranes induced by follicle stimulating hormone and testosterone: Calcium inflow and electrophysiological changes. Life Sciences, 89, 577–583.

    Article  CAS  PubMed  Google Scholar 

  34. Bulldan, A., Dietze, R., Shihan, M., & Scheiner-Bobis, G. (2016). Non-classical testosterone signaling mediated through ZIP9 stimulates claudin expression and tight junction formation in Sertoli cells. Cellular Signalling, 28, 1075–1085.

    Article  CAS  PubMed  Google Scholar 

  35. Da Rosa, L. A., Escott, G. M., Cavalari, F. C., Schneider, C. M., De Fraga, L. S., & Loss Eda, S. (2015). Non-classical effects of androgens on testes from neonatal rats. Steroids, 93, 32–38.

    Article  PubMed  Google Scholar 

  36. Hutson, J. M. (1985). A biphasic model for the hormonal control of testicular descent. Lancet, 2, 419–421.

    Article  CAS  PubMed  Google Scholar 

  37. Klonisch, T., Fowler, P. A., & Hombach-Klonisch, S. (2004). Molecular and genetic regulation of testis descent and external genitalia development. Developmental Biology, 270, 1–18.

    Article  CAS  PubMed  Google Scholar 

  38. Van Der Schoot, P., & Elger, W. (1992). Androgen-induced prevention of the outgrowth of cranial gonadal suspensory ligaments in fetal rats. Journal of Andrology, 13, 534–542.

    PubMed  Google Scholar 

  39. Hughes, I. A., & Acerini, C. L. (2008). Factors controlling testis descent. European Journal of Endocrinology, 159(Suppl 1), S75–S82.

    Article  CAS  PubMed  Google Scholar 

  40. Hutson, J. M., Li, R., Southwell, B. R., Newgreen, D., & Cousinery, M. (2015). Regulation of testicular descent. Pediatric Surgery International, 31, 317–325.

    Article  PubMed  Google Scholar 

  41. Cain, M. P., Kramer, S. A., Tindall, D. J., & Husmann, D. A. (1994). Expression of androgen receptor protein within the lumbar spinal cord during ontologic development and following antiandrogen induced cryptorchidism. The Journal of Urology, 152, 766–769.

    Article  CAS  PubMed  Google Scholar 

  42. Nation, T. R., Buraundi, S., Balic, A., Farmer, P. J., Newgreen, D., Southwell, B. R., & Hutson, J. M. (2011). The effect of flutamide on expression of androgen and estrogen receptors in the gubernaculum and surrounding structures during testicular descent. Journal of Pediatric Surgery, 46, 2358–2362.

    Article  PubMed  Google Scholar 

  43. Berensztein, E. B., Baquedano, M. S., Gonzalez, C. R., Saraco, N. I., Rodriguez, J., Ponzio, R., Rivarola, M. A., & Belgorosky, A. (2006). Expression of aromatase, estrogen receptor alpha and beta, androgen receptor, and cytochrome P-450scc in the human early prepubertal testis. Pediatric Research, 60, 740–744.

    Article  CAS  PubMed  Google Scholar 

  44. Boukari, K., Meduri, G., Brailly-Tabard, S., Guibourdenche, J., Ciampi, M. L., Massin, N., Martinerie, L., Picard, J. Y., Rey, R., Lombes, M., & Young, J. (2009). Lack of androgen receptor expression in Sertoli cells accounts for the absence of anti-Mullerian hormone repression during early human testis development. The Journal of Clinical Endocrinology and Metabolism, 94, 1818–1825.

    Article  CAS  PubMed  Google Scholar 

  45. Chemes, H. E., Rey, R. A., Nistal, M., Regadera, J., Musse, M., Gonzalez-Peramato, P., & Serrano, A. (2008). Physiological androgen insensitivity of the fetal, neonatal, and early infantile testis is explained by the ontogeny of the androgen receptor expression in Sertoli cells. The Journal of Clinical Endocrinology and Metabolism, 93, 4408–4412.

    Article  CAS  PubMed  Google Scholar 

  46. Shapiro, E., Huang, H., Masch, R. J., Mcfadden, D. E., Wu, X. R., & Ostrer, H. (2005). Immunolocalization of androgen receptor and estrogen receptors alpha and beta in human fetal testis and epididymis. The Journal of Urology, 174, 1695–1698.

    Article  CAS  PubMed  Google Scholar 

  47. Rey, R. A., Musse, M., Venara, M., & Chemes, H. E. (2009). Ontogeny of the androgen receptor expression in the fetal and postnatal testis: Its relevance on Sertoli cell maturation and the onset of adult spermatogenesis. Microscopy Research and Technique, 72, 787–795.

    Article  CAS  PubMed  Google Scholar 

  48. Bremner, W. J., Millar, M. R., Sharpe, R. M., & Saunders, P. T. (1994). Immunohistochemical localization of androgen receptors in the rat testis: Evidence for stage-dependent expression and regulation by androgens. Endocrinology, 135, 1227–1234.

    Article  CAS  PubMed  Google Scholar 

  49. Buzek, S. W., & Sanborn, B. M. (1988). Increase in testicular androgen receptor during sexual maturation in the rat. Biology of Reproduction, 39, 39–49.

    Article  CAS  PubMed  Google Scholar 

  50. You, L., & Sar, M. (1998). Androgen receptor expression in the testes and epididymides of prenatal and postnatal Sprague-Dawley rats. Endocrine, 9, 253–261.

    Article  CAS  PubMed  Google Scholar 

  51. Zhou, X., Kudo, A., Kawakami, H., & Hirano, H. (1996). Immunohistochemical localization of androgen receptor in mouse testicular germ cells during fetal and postnatal development. The Anatomical Record, 245, 509–518.

    Article  CAS  PubMed  Google Scholar 

  52. Shan, L.-X., Kzhu, L.-J., Bardin, C. W., & Hardy, M. P. (1995a). Quantitative analysis of androgen receptor messenger ribonucleic acid in developing Leydig cells and Sertoli cells by in situ hybridization. Endocrinology, 136, 3856–3862.

    Article  CAS  PubMed  Google Scholar 

  53. Vornberger, W., Prins, G., Musto, N. A., & Suarez-Quian, C. A. (1994a). Androgen receptor distribution in rat testis: New implications for androgen regulation of spermatogenesis. Endocrinology, 134, 2307–2316.

    Article  CAS  PubMed  Google Scholar 

  54. Suarez-Quian, C. A., Martinez-Garcia, F., Nistal, M., & Regadera, J. (1999). Androgen receptor distribution in adult human testis. J Clin Endocrin Metab, 84, 350–358.

    CAS  Google Scholar 

  55. Johnston, H., Baker, P. J., Abel, M., Charlton, H. M., Jackson, G., Fleming, L., Kumar, T. R., & O'shaughnessy, P. J. (2004). Regulation of Sertoli cell number and activity by follicle-stimulating hormone and androgen during postnatal development in the mouse. Endocrinology, 145, 318–329.

    Article  CAS  PubMed  Google Scholar 

  56. O'shaughnessy, P. J., Monteiro, A., & Abel, M. (2012). Testicular development in mice lacking receptors for follicle stimulating hormone and androgen. PLoS One, 7, e35136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tan, K. A., Turner, K. J., Saunders, P. T., Verhoeven, G., De Gendt, K., Atanassova, N., & Sharpe, R. M. (2005b). Androgen regulation of stage-dependent cyclin D2 expression in Sertoli cells suggests a role in modulating androgen action on spermatogenesis. Biology of Reproduction, 72, 1151–1160.

    Article  CAS  PubMed  Google Scholar 

  58. Tan, K. A., De Gendt, K., Atanassova, N., Walker, M., Sharpe, R. M., Saunders, P. T., Denolet, E., & Verhoeven, G. (2005a). The role of androgens in Sertoli cell proliferation and functional maturation: Studies in mice with total or Sertoli cell-selective ablation of the androgen receptor. Endocrinology, 146, 2674–2683.

    Article  CAS  PubMed  Google Scholar 

  59. Majdic, G., Millar, M. R., & Saunders, P. T. K. (1995). Immunolocalization of androgen receptor to interstitial-cells in fetal-rat testes and to mesenchymal and epithelial-cells of associated ducts. Journal of Endocrinology, 147, 285–293.

    Article  CAS  PubMed  Google Scholar 

  60. Kilcoyne, K. R., Smith, L. B., Atanassova, N., Macpherson, S., Mckinnell, C., Van Den Driesche, S., Jobling, M. S., Chambers, T. J. G., De Gendt, K., Verhoeven, G., O'hara, L., Platts, S., De Franca, L. R., Lara, N. L. M., Anderson, R. A., & Sharpe, R. M. (2014). Fetal programming of adult Leydig cell function by androgenic effects on stem/progenitor cells. Proceedings of the National Academy Of Sciences Of The United States Of America, 111, E1924–E1932.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Shan, L. X., Zhu, L. J., Bardin, C. W., & Hardy, M. P. (1995b). Quantitative-analysis of androgen receptor messenger-ribonucleic-acid in developing Leydig-cells and Sertoli cells by in-situ hybridization. Endocrinology, 136, 3856–3862.

    Article  CAS  PubMed  Google Scholar 

  62. O'shaughnessy, P. J., Johnston, H., Willerton, L., & Baker, P. J. (2002). Failure of normal adult Leydig cell development in androgen-receptor-deficient mice. Journal of Cell Science, 115, 3491–3496.

    Article  CAS  PubMed  Google Scholar 

  63. O'shaughnessy, P. J., Monteiro, A., Verhoeven, G., De Gendt, K., & Abel, M. H. (2009). Effect of FSH on testicular morphology and spermatogenesis in gonadotrophin-deficient hypogonadal (hpg) mice lacking androgen receptors. Reproduction., 139, 177–184.

    Article  Google Scholar 

  64. De Gendt, K., Atanassova, N., Tan, K. A., De Franca, L. R., Parreira, G. G., Mckinnell, C., Sharpe, R. M., Saunders, P. T., Mason, J., Hartung, S., Ivell, R., Denolet, E., & Verhoeven, G. (2005). Development and function of the adult generation of Leydig cells in mice with Sertoli cell-selective (SCARKO) or total (ARKO) ablation of the androgen receptor. Endocrinology, 146, 4117–4126.

    Article  PubMed  Google Scholar 

  65. Hardy, M. P., Kelce, W. R., Klinefelter, G. R., & Ewing, L. L. (1990). Differentiation of Leydig cell precursors in vitro: A role for androgen. Endocrinology, 127, 488–490.

    Article  CAS  PubMed  Google Scholar 

  66. Hazra, R., Corcoran, L., Robson, M., Mctavish, K. J., Upton, D., Handelsman, D. J., & Allan, C. M. (2013a). Temporal role of Sertoli cell androgen receptor expression in spermatogenic development. Molecular Endocrinology, 27, 12–24.

    Article  CAS  PubMed  Google Scholar 

  67. Hazra, R., Jimenez, M., Desai, R., Handelsman, D. J., & Allan, C. M. (2013b). Sertoli cell androgen receptor expression regulates temporal fetal and adult Leydig cell differentiation, function, and population size. Endocrinology, 154, 3410–3422.

    Article  CAS  PubMed  Google Scholar 

  68. O'hara, L., Mcinnes, K., Simitsidellis, I., Morgan, S., Atanassova, N., Slowikowska-Hilczer, J., Kula, K., Szarras-Czapnik, M., Milne, L., Mitchell, R. T., & Smith, L. B. (2015). Autocrine androgen action is essential for Leydig cell maturation and function, and protects against late-onset Leydig cell apoptosis in both mice and men. FAESEB Journal, 29, 894–910.

    Article  CAS  Google Scholar 

  69. Zhang, C., Yeh, S., Chen, Y. T., Wu, C. C., Chuang, K. H., Lin, H. Y., Wang, R. S., Chang, Y. J., Mendis-Handagama, C., Hu, L., Lardy, H., & Chang, C. (2006). Oligozoospermia with normal fertility in male mice lacking the androgen receptor in testis peritubular myoid cells. Proceedings of the National Academy of Sciences of the United States of America, 103, 17718–17723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Frutkin, A. D., Shi, H., Otsuka, G., Leveen, P., Karlsson, S., & Dichek, D. A. (2006). A critical developmental role for tgfbr2 in myogenic cell lineages is revealed in mice expressing SM22-Cre, not SMMHC-Cre. Journal of Molecular and Cellular Cardiology, 41, 724–731.

    Article  CAS  PubMed  Google Scholar 

  71. Welsh, M., Saunders, P. T., Atanassova, N., Sharpe, R. M., & Smith, L. B. (2009). Androgen action via testicular peritubular myoid cells is essential for male fertility. The FASEB Journal, 23, 4218–4230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. O'hara, L., & Smith, L. B. (2012). Androgen receptor signalling in vascular endothelial cells is dispensable for spermatogenesis and male fertility. BMC Research Notes, 5, 16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Welsh, M., Sharpe, R. M., Moffat, L., Atanassova, N., Saunders, P. T. K., Kilter, S., Bergh, A., & Smith, L. B. (2010). Androgen action via testicular arteriole smooth muscle cells is important for Leydig cell function, vasomotion and testicular fluid dynamics. PLoS One, 5.

    Google Scholar 

  74. Hew, K. W., Heath, G. L., Jiwa, A. H., & Welsh, M. J. (1993). Cadmium in vivo causes disruption of tight junction-associated microfilaments in rat Sertoli cells. Biology of Reproduction, 49, 840–849.

    Article  CAS  PubMed  Google Scholar 

  75. Wiebe, J. P., Kowalik, A., Gallardi, R. L., Egeler, O., & Clubb, B. H. (2000). Glycerol disrupts tight junction-associated actin microfilaments, occludin, and microtubules in Sertoli cells. Journal of Andrology, 21, 625–635.

    CAS  PubMed  Google Scholar 

  76. Janecki, A., Jakubowiak, A., & Steinberger, A. (1991a). Effects of cyclic AMP and phorbol ester on transepithelial electrical resistance of Sertoli cell monolayers in two-compartment culture. Molecular and Cellular Endocrinology, 82, 61–69.

    Article  CAS  PubMed  Google Scholar 

  77. Janecki, A., Jakubowiak, A., & Steinberger, A. (1991b). Regulation of transepithelial electrical resistance in two-compartment Sertoli cell cultures: In vitro model of the blood-testis barrier. Endocrinology, 129, 1489–1496.

    Article  CAS  PubMed  Google Scholar 

  78. Kaitu'u-Lino, T. J., Sluka, P., Foo, C. F., & Stanton, P. G. (2007). Claudin-11 expression and localisation is regulated by androgens in rat Sertoli cells in vitro. Reproduction, 133, 1169–1179.

    Article  CAS  PubMed  Google Scholar 

  79. Florin, A., Maire, M., Bozec, A., Hellani, A., Chater, S., Bars, R., Chuzel, F., & Benahmed, M. (2005). Androgens and postmeiotic germ cells regulate claudin-11 expression in rat Sertoli cells. Endocrinology, 146, 1532–1540.

    Article  CAS  PubMed  Google Scholar 

  80. Chakraborty, P., Buaas, F. W., Sharma, M., Smith, B. E., Greenlee, A. R., Eacker, S. M., & Braun, R. E. (2014). Androgen-dependent Sertoli cell tight junction remodeling is mediated by multiple tight junction components. Molecular Endocrinology, 28, 1055–1072.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Su, L., Mruk, D. D., Lee, W. M., & Cheng, C. Y. (2010). Differential effects of testosterone and TGF-beta3 on endocytic vesicle-mediated protein trafficking events at the blood-testis barrier. Experimental Cell Research, 316, 2945–2960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yan, H. H., Mruk, D. D., Lee, W. M., & Cheng, C. Y. (2008). Blood-testis barrier dynamics are regulated by testosterone and cytokines via their differential effects on the kinetics of protein endocytosis and recycling in Sertoli cells. The FASEB Journal, 22, 1945–1959.

    Article  CAS  PubMed  Google Scholar 

  83. Denolet, E., De Gendt, K., Allemeersch, J., Engelen, K., Marchal, K., Van Hummelen, P., Tan, K. A., Sharpe, R. M., Saunders, P. T., Swinnen, J. V., & Verhoeven, G. (2006). The effect of a Sertoli cell-selective knockout of the androgen receptor on testicular gene expression in prepubertal mice. Molecular Endocrinology, 20, 321–334.

    Article  CAS  PubMed  Google Scholar 

  84. Wang, R. S., Yeh, S., Chen, L. M., Lin, H. Y., Zhang, C., Ni, J., Wu, C. C., Di Sant'agnese, P. A., Demesy-Bentley, K. L., Tzeng, C. R., & Chang, C. (2006). Androgen receptor in Sertoli cell is essential for germ cell nursery and junctional complex formation in mouse testes. Endocrinology, 147, 5624–5633.

    Article  CAS  PubMed  Google Scholar 

  85. Chojnacka, K., Hejmej, A., Zarzycka, M., Tworzydlo, W., Bilinski, S., Pardyak, L., Kaminska, A., & Bilinska, B. (2016). Flutamide induces alterations in the cell-cell junction ultrastructure and reduces the expression of Cx43 at the blood-testis barrier with no disturbance in the rat seminiferous tubule morphology. Reproductive Biology and Endocrinology, 14.

    Google Scholar 

  86. Mccabe, M. J., Allan, C. M., Foo, C. F., Nicholls, P. K., Mctavish, K. J., & Stanton, P. G. (2012). Androgen initiates Sertoli cell tight junction formation in the hypogonadal (hpg) mouse. Biology of Reproduction, 87, 38.

    Article  PubMed  Google Scholar 

  87. Li, M. W., Mruk, D. D., Lee, W. M., & Cheng, C. Y. (2009). Disruption of the blood-testis barrier integrity by bisphenol a in vitro: Is this a suitable model for studying blood-testis barrier dynamics? The International Journal of Biochemistry & Cell Biology, 41, 2302–2314.

    Article  CAS  Google Scholar 

  88. Li, M. W., Xia, W., Mruk, D. D., Wang, C. Q., Yan, H. H., Siu, M. K., Lui, W. Y., Lee, W. M., & Cheng, C. Y. (2006). Tumor necrosis factor {alpha} reversibly disrupts the blood-testis barrier and impairs Sertoli-germ cell adhesion in the seminiferous epithelium of adult rat testes. The Journal of Endocrinology, 190, 313–329.

    Article  CAS  PubMed  Google Scholar 

  89. Xiao, X., Mruk, D. D., Lee, W. M., & Cheng, C. Y. (2011). C-yes regulates cell adhesion at the blood-testis barrier and the apical ectoplasmic specialization in the seminiferous epithelium of rat testes. The International Journal of Biochemistry & Cell Biology, 43, 651–665.

    Article  CAS  Google Scholar 

  90. Hazra, R., Upton, D., Desai, R., Noori, O., Jimenez, M., Handelsman, D. J., & Allan, C. M. (2016). Elevated expression of the Sertoli cell androgen receptor disrupts male fertility. American Journal of Physiology. Endocrinology and Metabolism, 311, E396–E404.

    Article  PubMed  Google Scholar 

  91. Li, R., Vannitamby, A., Meijer, J., Southwell, B., & Hutson, J. (2015). Postnatal germ cell development during mini-puberty in the mouse does not require androgen receptor: Implications for managing cryptorchidism. The Journal of Urology, 193, 1361–1367.

    Article  CAS  PubMed  Google Scholar 

  92. Williams, K., Mckinnell, C., Saunders, P. T., Walker, M., Fisher, J. S., Turner, K. J., Atanassova, N., & Sharpe, M. (2001). Neonatal exposure to potent and environmental oestrogens and abnormalities of the male reproductive system in the rat: Evidence for importance of the androgen-oestrogen balance and assessment of the relevance to man. Human Reproduction Update, 7, 236–247.

    Article  CAS  PubMed  Google Scholar 

  93. Merlet, J., Moreau, E., Habert, R., & Racine, C. (2007a). Development of fetal testicular cells in androgen receptor deficient mice. Cell Cycle, 6, 2258–2262.

    Article  CAS  PubMed  Google Scholar 

  94. Merlet, J., Racine, C., Moreau, E., Moreno, S. G., & Habert, R. (2007b). Male fetal germ cells are targets for androgens that physiologically inhibit their proliferation. Proceedings of the National Academy of Sciences of the United States of America, 104, 3615–3620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Aliberti, P., Perez Garrido, N., Marino, R., Ramirez, P., Solari, A. J., Sciurano, R., Costanzo, M., Guercio, G., Warman, D. M., Bailez, M., Baquedano, M. S., Rivarola, M. A., Belgorosky, A., & Berensztein, E. (2017). Androgen insensitivity syndrome at Prepuberty: Marked Loss of Spermatogonial cells at early childhood and presence of Gonocytes up to puberty. Sexual Development, 11, 225–237.

    Article  CAS  PubMed  Google Scholar 

  96. Cools, M., Van Aerde, K., Kersemaekers, A. M., Boter, M., Drop, S. L., Wolffenbuttel, K. P., Steyerberg, E. W., Oosterhuis, J. W., & Looijenga, L. H. (2005). Morphological and immunohistochemical differences between gonadal maturation delay and early germ cell neoplasia in patients with undervirilization syndromes. The Journal of Clinical Endocrinology and Metabolism, 90, 5295–5303.

    Article  CAS  PubMed  Google Scholar 

  97. Frankel, A. I., Chapman, J. C., & Wright, W. W. (1989). The equivocal presence of nuclear androgen binding proteins in mammalian spermatids and spermatozoa. Journal of Steroid Biochemistry, 33, 71–79.

    Article  CAS  PubMed  Google Scholar 

  98. Galena, H. J., Pillai, A. K., & Terner, C. (1974). Progesterone and androgen receptors in non-flagellate germ cells of the rat testis. The Journal of Endocrinology, 63, 223–237.

    Article  CAS  PubMed  Google Scholar 

  99. Sanborn, B. M., Elkington, J. S., & Steinberger, E. (1974). Properties of rat testicular androgen binding proteins. Current Topics in Molecular Endocrinology, 1, 291–310.

    CAS  PubMed  Google Scholar 

  100. Vornberger, W., Prins, G., Musto, N. A., & Suarez-Quian, C. A. (1994b). Androgen receptor distribution in rat testis: New implications for androgen regulation of spermatogenesis. Endocrinology, 134, 2307–2316.

    Article  CAS  PubMed  Google Scholar 

  101. Wright, W. W., & Frankel, A. I. (1980). An androgen receptor in the nuclei of late spermatids in testes of male rats. Endocrinology, 107, 314–318.

    Article  CAS  PubMed  Google Scholar 

  102. Ruizeveld De Winter, J. A., Trapman, J., Vermey, M., Mulder, E., Zegers, N. D., & Van Der Kwast, T. H. (1991). Androgen receptor expression in human tissues: An immunohistochemical study. The Journal of Histochemistry and Cytochemistry, 39, 927–936.

    Article  CAS  PubMed  Google Scholar 

  103. Johnston, D. S., Russell, L. D., Friel, P. J., & Griswold, M. D. (2001). Murine germ cells do not require functional androgen receptors to complete spermatogenesis following spermatogonial stem cell transplantation. Endocrinology, 142, 2405–2408.

    Article  CAS  PubMed  Google Scholar 

  104. Tsai, M. Y., Yeh, S. D., Wang, R. S., Yeh, S., Zhang, C., Lin, H. Y., Tzeng, C. R., & Chang, C. (2006). Differential effects of spermatogenesis and fertility in mice lacking androgen receptor in individual testis cells. Proceedings of the National Academy of Sciences of the United States of America, 103, 18975–18980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lyon, M. F., Glenister, P. H., & Lamoreux, M. L. (1975). Normal spermatozoa from androgen-resistant germ cells of chimaeric mice and the role of androgen in spermatogenesis. Nature, 258, 620–622.

    Article  CAS  PubMed  Google Scholar 

  106. Haywood, M., Spaliviero, J., Jimemez, M., King, N. J., Handelsman, D. J., & Allan, C. M. (2003). Sertoli and germ cell development in hypogonadal (hpg) mice expressing transgenic follicle-stimulating hormone alone or in combination with testosterone. Endocrinology, 144, 509–517.

    Article  CAS  PubMed  Google Scholar 

  107. Buageaw, A., Sukhwani, M., Ben-Yehudah, A., Ehmcke, J., Rawe, V. Y., Pholpramool, C., Orwig, K. E., & Schlatt, S. (2005). GDNF family receptor alpha1 phenotype of spermatogonial stem cells in immature mouse testes. Biology of Reproduction, 73, 1011–1016.

    Article  CAS  PubMed  Google Scholar 

  108. He, Z., Jiang, J., Kokkinaki, M., Golestaneh, N., Hofmann, M. C., & Dym, M. (2008). Gdnf upregulates c-Fos transcription via the Ras/Erk1/2 pathway to promote mouse spermatogonial stem cell proliferation. Stem Cells, 26, 266–278.

    Article  CAS  PubMed  Google Scholar 

  109. Hofmann, M. C. (2008). Gdnf signaling pathways within the mammalian spermatogonial stem cell niche. Molecular and Cellular Endocrinology, 288, 95–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Jijiwa, M., Kawai, K., Fukihara, J., Nakamura, A., Hasegawa, M., Suzuki, C., Sato, T., Enomoto, A., Asai, N., Murakumo, Y., & Takahashi, M. (2008). GDNF-mediated signaling via RET tyrosine 1062 is essential for maintenance of spermatogonial stem cells. Genes to Cells, 13, 365–374.

    Article  CAS  PubMed  Google Scholar 

  111. Johnston, D. S., Olivas, E., Dicandeloro, P., & Wright, W. W. (2011). Stage-specific changes in GDNF expression by rat Sertoli cells: A possible regulator of the replication and differentiation of stem spermatogonia. Biology of Reproduction, 85, 763–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen, L. Y., Brown, P. R., Willis, W. B., & Eddy, E. M. (2014). Peritubular myoid cells participate in male mouse spermatogonial stem cell maintenance. Endocrinology, 155, 4964–4974.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Chen, L. Y., Willis, W. D., & Eddy, E. M. (2016a). Targeting the Gdnf gene in peritubular myoid cells disrupts undifferentiated spermatogonial cell development. Proceedings of the National Academy of Sciences of the United States of America, 113, 1829–1834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Spinnler, K., Kohn, F. M., Schwarzer, U., & Mayerhofer, A. (2010). Glial cell line-derived neurotrophic factor is constitutively produced by human testicular peritubular cells and may contribute to the spermatogonial stem cell niche in man. Human Reproduction, 25, 2181–2187.

    Article  CAS  PubMed  Google Scholar 

  115. Bhang, D. H., Kim, B. J., Kim, B. G., Schadler, K., Baek, K. H., Kim, Y. H., Hsiao, W., Ding, B. S., Rafii, S., Weiss, M. J., Chou, S. T., Kolon, T. F., Ginsberg, J. P., Ryu, B. Y., & Ryeom, S. (2018). Testicular endothelial cells are a critical population in the germline stem cell niche. Nature Communications, 9, 4379.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Fouchecourt, S., Godet, M., Sabido, O., & Durand, P. (2006). Glial cell-line-derived neurotropic factor and its receptors are expressed by germinal and somatic cells of the rat testis. The Journal of Endocrinology, 190, 59–71.

    Article  CAS  PubMed  Google Scholar 

  117. Katoh-Semba, R., Tsuzuki, M., Miyazaki, N., Yoshida, A., Nakajima, H., Nakagawa, C., Kitajima, S., & Matsuda, M. (2007). Distribution and immunohistochemical localization of GDNF protein in selected neural and non-neural tissues of rats during development and changes in unilateral 6-hydroxydopamine lesions. Neuroscience Research, 59, 277–287.

    Article  CAS  PubMed  Google Scholar 

  118. Lamberti, D., & Vicini, E. (2014). Promoter analysis of the gene encoding GDNF in murine Sertoli cells. Molecular and Cellular Endocrinology, 394, 105–114.

    Article  CAS  PubMed  Google Scholar 

  119. Mayer, C., Adam, M., Walenta, L., Schmid, N., Heikela, H., Schubert, K., Flenkenthaler, F., Dietrich, K. G., Gruschka, S., Arnold, G. J., Frohlich, T., Schwarzer, J. U., Kohn, F. M., Strauss, L., Welter, H., Poutanen, M., & Mayerhofer, A. (2018). Insights into the role of androgen receptor in human testicular peritubular cells. Andrology, 6, 756–765.

    Article  CAS  PubMed  Google Scholar 

  120. Ding, L. J., Yan, G. J., Ge, Q. Y., Yu, F., Zhao, X., Diao, Z. Y., Wang, Z. Q., Yang, Z. Z., Sun, H. X., & Hu, Y. L. (2011). FSH acts on the proliferation of type a spermatogonia via Nur77 that increases GDNF expression in the Sertoli cells. FEBS Letters, 585, 2437–2444.

    Article  CAS  PubMed  Google Scholar 

  121. O'shaughnessy, P. J. (2014). Hormonal control of germ cell development and spermatogenesis. Seminar on Cell Devolopment Biology, 29, 55–65.

    Article  CAS  Google Scholar 

  122. De Gendt, K., Swinnen, J. V., Saunders, P. T., Schoonjans, L., Dewerchin, M., Devos, A., Tan, K., Atanassova, N., Claessens, F., Lecureuil, C., Heyns, W., Carmeliet, P., Guillou, F., Sharpe, R. M., & Verhoeven, G. (2004). A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. Proceedings of the National Academy of Sciences of the United States of America, 101, 1327–1332.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Chen, S. R., Hao, X. X., Zhang, Y., Deng, S. L., Wang, Z. P., Wang, Y. Q., Wang, X. X., & Liu, Y. X. (2016b). Androgen receptor in Sertoli cells regulates DNA double-strand break repair and chromosomal synapsis of spermatocytes partially through intercellular EGF-EGFR signaling. Oncotarget, 7, 18722–18735.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Beardsley, A. & O'donnell, L. 2003. Characterization of normal spermiation and spermiation failure induced by hormone suppression in adult rats. Biol Reprod, 68, 1299-307.

    Google Scholar 

  125. Saito, K., O'donnell, L., Mclachlan, R. I., & Robertson, D. M. (2000). Spermiation failure is a major contributor to early spermatogenic suppression caused by hormone withdrawal in adult rats. Endocrinology, 141, 2779–2785.

    Article  CAS  PubMed  Google Scholar 

  126. Cameron, D. F., Muffly, K. E., & Nazian, S. J. (1993). Reduced testosterone during puberty results in a midspermiogenic lesion. Proceedings of the Society for Experimental Biology and Medicine, 202, 457–464.

    Article  CAS  PubMed  Google Scholar 

  127. Enders, G. C., & Millette, C. F. (1988). Pachytene spermatocyte and round spermatid binding to Sertoli cells in vitro. Journal of Cell Science, 90(Pt 1), 105–114.

    Article  PubMed  Google Scholar 

  128. Mruk, D., & Cheng, C. (2011). Desmosomes in the testis: Moving into an unchartered territory. Spermatogenesis, 1, 47–51.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Wong, C. H., Xia, W., Lee, N. P., Mruk, D. D., Lee, W. M., & Cheng, C. Y. (2005). Regulation of ectoplasmic specialization dynamics in the seminiferous epithelium by focal adhesion-associated proteins in testosterone-suppressed rat testes. Endocrinology, 146, 1192–1204.

    Article  CAS  PubMed  Google Scholar 

  130. O'donnell, L., Nicholls, P. K., O'bryan, M. K., Mclachlan, R. I., & Stanton, P. G. (2011). Spermiation: The process of sperm release. Spermatogenesis, 1, 14–35.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Shupe, J., Cheng, J., Puri, P., Kostereva, N., & Walker, W. H. (2011). Regulation of Sertoli-germ cell adhesion and sperm release by FSH and nonclassical testosterone signaling. Molecular Endocrinology, 25, 238–252.

    Article  CAS  PubMed  Google Scholar 

  132. Chapin, R. E., Wine, R. N., Harris, M. W., Borchers, C. H., & Haseman, J. K. (2001). Structure and control of a cell-cell adhesion complex associated with spermiation in rat seminiferous epithelium. Journal of Andrology, 22, 1030–1052.

    Article  CAS  PubMed  Google Scholar 

  133. Sadate-Ngatchou, P. I., Pouchnik, D. J., & Griswold, M. D. (2004). Identification of testosterone-regulated genes in testes of hypogonadal mice using oligonucleotide microarray. Molecular Endocrinology, 18, 422–433.

    Article  CAS  PubMed  Google Scholar 

  134. Zhou, Q., Shima, J. E., Nie, R., Friel, P. J., & Griswold, M. D. (2005). Androgen-regulated transcripts in the neonatal mouse testis as determined through microarray analysis. Biology of Reproduction, 72, 1010–1019.

    Article  CAS  PubMed  Google Scholar 

  135. O'shaughnessy, P. J., Abel, M., Charlton, H. M., Hu, B., Johnston, H., & Baker, P. J. (2007). Altered expression of genes involved in regulation of vitamin a metabolism, solute transportation, and cytoskeletal function in the androgen-insensitive tfm mouse testis. Endocrinology., 148, 2914–2924.

    Article  CAS  PubMed  Google Scholar 

  136. Eacker, S. M. & Braun, R. E. 2007. Androgen receptor in Leydig cell function and development. In: Payne, A. H. &. H., M.P. (ed.) Contemporary Endocrinology: The Leydig Cell in Health and Disease. New Jersey: Humana press.

    Google Scholar 

  137. De Rooij, D. G., Okabe, M., & Nishimune, Y. (1999). Arrest of spermatogonial differentiation in jsd/jsd, Sl17H/Sl17H, and cryptorchid mice. Biology of Reproduction, 61, 842–847.

    Article  PubMed  Google Scholar 

  138. Eacker, S. M., Shima, J. E., Connolly, C. M., Sharma, M., Holdcraft, R. W., Griswold, M. D., & Braun, R. E. (2007). Transcriptional profiling of androgen receptor (AR) mutants suggests instructive and permissive roles of AR signaling in germ cell development. Molecular Endocrinology, 21, 895–907.

    Article  CAS  PubMed  Google Scholar 

  139. Schauwaers, K., De Gendt, K., Saunders, P. T., Atanassova, N., Haelens, A., Callewaert, L., Moehren, U., Swinnen, J. V., Verhoeven, G., Verrijdt, G., & Claessens, F. (2007). Loss of androgen receptor binding to selective androgen response elements causes a reproductive phenotype in a knockin mouse model. Proceedings of the National Academy of Sciences of the United States of America, 104, 4961–4966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sanz, E., Evanoff, R., Quintana, A., Evans, E., Miller, J. A., Ko, C., Amieux, P. S., Griswold, M. D., & Mcknight, G. S. (2013). RiboTag analysis of actively translated mRNAs in Sertoli and Leydig cells in vivo. PLoS One, 8, e66179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. De Gendt, K., Verhoeven, G., Amieux, P. S., & Wilkinson, M. F. (2014). Genome-wide identification of AR-regulated genes translated in Sertoli cells in vivo using the RiboTag approach. Molecular Endocrinology, 28, 575–591.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Majumdar, S. S., Sarda, K., Bhattacharya, I., & Plant, T. M. (2012). Insufficient androgen and FSH signaling may be responsible for the azoospermia of the infantile primate testes despite exposure to an adult-like hormonal milieu. Human Reproduction, 27, 2515–2525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bhattacharya, I., Basu, S., Pradhan, B. S., Sarkar, H., Nagarajan, P., & Majumdar, S. S. (2019). Testosterone augments FSH signaling by upregulating the expression and activity of FSH-receptor in pubertal primate Sertoli cells. Molecular and Cellular Endocrinology, 482, 70–80.

    Article  CAS  PubMed  Google Scholar 

  144. Oduwole, O. O., Peltoketo, H., Poliandri, A., Vengadabady, L., Chrusciel, M., Doroszko, M., Samanta, L., Owen, L., Keevil, B., Rahman, N. A., & Huhtaniemi, I. T. (2018). Constitutively active follicle-stimulating hormone receptor enables androgen-independent spermatogenesis. The Journal of Clinical Investigation, 128, 1787–1792.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Isonoma, V., Parvinen, M., Janne, O. A., & Bardin, W. C. (1985). Nuclear androgen receptors in different stages of the seminiferous epithelial cycle and interstitial tissue of rat testis. Endocrinology, 116, 132–137.

    Article  Google Scholar 

  146. Kangasniemi, M., Kaipia, A., Mali, P., Toppari, J., Huhtaniemi, I., & Parvinen, M. (1990). Modulation of basal and FSH-dependent cyclic AMP production in rat seminiferous tubules staged by an improved transillumination technique. Anatomical Record, 227, 62–76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. Walker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Walker, W.H. (2021). Androgen Actions in the Testis and the Regulation of Spermatogenesis. In: Cheng, C., Sun, F. (eds) Molecular Mechanisms in Spermatogenesis. Advances in Experimental Medicine and Biology, vol 1381. Springer, Cham. https://doi.org/10.1007/978-3-030-77779-1_9

Download citation

Publish with us

Policies and ethics