Skip to main content

Unmanned Aircraft Systems and the Nordic Challenges

  • Conference paper
  • First Online:
New Developments and Environmental Applications of Drones

Abstract

The European Union (EU) regulations regarding the unmanned aircraft system (UAS) that came into force in 2021 emphasise technological and operational safety. Those regulations have been developed on the common rules in the field of civil aviation and establishing a European Union Aviation Safety Agency (EASA). The implementation of the regulations and compliant UAS operator activities are still the ground of the future. Therefore, it is essential to systematically gather information about all the factors affecting UAS operations in a safe and meaningful manner. This book chapter introduces the Nordic as well as generic challenges for UAS operations. The challenges can be divided into two main categories: technological and operational. Based on the extensive literature review and authors’ practical experience, both types of challenges are grouped by relevance topics. For example, the weather-related phenomena challenges overlap in both technological and operational categories but still can be mitigated differently. Technological challenges are usually mitigated by UAS design and human-computer interactions, while operational challenges may be mitigated with legislation and organisational activities and personal UAS operator qualities. Finally, the needs for further research on the challenges affecting safe UAS operations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vainio, M., Ruotsalainen, L., Banda, O.V., Röning, J., Laitinen, J., Boutellier, J., Koskinen, S., Peussa, P., Shamsuzzoha, A., Toroody, A.B., Kramar, V., Visala, A., Ghabcheloo, R., Huhtala, K., & Alagirisamy, R. (2020). Safety challenges of autonomous mobile systems in dynamic unstructured environments: Situational awareness, decision-making, autonomous navigation, & human-machine interface. RAAS Rethinking Autonomy And Safety Situational Awareness, Autonomous Navigation and Intelligent Control Research Task Force.

    Google Scholar 

  2. European Commission. (2019). Commission delegated regulation (EU) 2019/945 of 12 March 2019 on unmanned aircraft systems and on third-country operators of unmanned aircraft systems. European Comission.

    Google Scholar 

  3. European Commission. (2019). Commission implementing regulation (EU) 2019/947 of 24 May 2019 on the rules and procedures for the operation of unmanned aircraft. European Commission.

    Google Scholar 

  4. Rhee, D. S., Do Kim, Y., Kang, B., & Kim, D. (2017). Applications of unmanned aerial vehicles in fluvial remote sensing: An overview of recent achievements. KSCE Journal of Civil Engineering, 22, 588–602.

    Article  Google Scholar 

  5. Linchant, J., Lisein, J., Semeki, J., Lejeune, P., & Vermeulen, C. (2015). Are unmanned aircraft systems (UASs) the future of wildlife monitoring? A review of accomplishments and challenges. Mammal Review, 45, 239–252.

    Article  Google Scholar 

  6. Finnish Environment Institute & gt; Airborne Monitoring Tools for Arctic and Baltic Sea Environment (UAV-ARCTIC). http://www.syke.fi/projects/uavarctic. Last accessed 2018/05/25.

  7. Goebel, M. E., Perryman, W. L., Hinke, J. T., Krause, D. J., Hann, N. A., Gardner, S., & LeRoi, D. J. (2015). A small unmanned aerial system for estimating abundance and size of Antarcticpredators.PolarBiology,38, 619–630. https://doi.org/10.1007/s00300-014-1625-4.

    Article  Google Scholar 

  8. Alfredsen, K. (2018). Brief communication: Mapping river ice using drones and structure from motion. The Cryosphere, 12, 627–633.

    Article  Google Scholar 

  9. Leira, F. S., Johansen, T. A., & Fossen, T. I. (2017). A UAV ice tracking framework for autonomous sea ice management. In 2017 international conference on unmanned aircraft systems (ICUAS) (pp. 581–590). IEEE. https://doi.org/10.1109/ICUAS.2017.7991435.

    Chapter  Google Scholar 

  10. Niedzielski, T. (2018). Automated snow extent mapping based on orthophoto images from unmanned aerial vehicles. Pure and Applied Geophysics, 175, 1–18.

    Article  Google Scholar 

  11. Krause, D. J., Hinke, J. T., Perryman, W. L., Goebel, M. E., & LeRoi, D. J. (2017). An accurate and adaptable photogrammetric approach for estimating the mass and body condition of pinnipeds using an unmanned aerial system. PLoS One, 12, e0187465. https://doi.org/10.1371/journal.pone.0187465.

    Article  Google Scholar 

  12. Villa, T. (2016). An overview of small unmanned aerial vehicles for air quality measurements: Present applications and future prospectives. Sensors, 16, 1072.

    Article  Google Scholar 

  13. Bollard-Breen, B. (2015). Application of an unmanned aerial vehicle in spatial mapping of terrestrial biology and human disturbance in the McMurdo Dry Valleys, East Antarctica. Polar Biology, 38, 573. https://doi.org/10.1007/s00300-014-1586-7.

    Article  Google Scholar 

  14. Houston, A. L. (2012). The collaborative Colorado-Nebraska unmanned aircraft system experiment. Bulletin of the American Meteorological Society, 93, 6.

    Article  Google Scholar 

  15. Jonassen, M. (2015). Application of remotely piloted aircraft systems in observing the atmospheric boundary layer over Antarctic Sea ice in winter. Polar Research, 34, 25651.

    Article  Google Scholar 

  16. Mayer, S. (2012). Atmospheric profiling with the UAS SUMO: A new perspective for the evaluation of fine-scale atmospheric models. Meteorology and Atmospheric Physics, 116, 15–26.

    Article  Google Scholar 

  17. Aicardi, I., Nyapwere, N., Nex, F., Gerke, M., Lingua, A., & Koeva, M. (2016). Co-registration of multitemporal uav image datasets for monitoring applications: A new approach. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, xli-b1, 757–763.

    Article  Google Scholar 

  18. Schaub, G. (2015). But who’s flying the plane? Integrating UAVs into the Canadian and Danish armed forces. International Journal, 70, 250–267.

    Article  Google Scholar 

  19. Halliday, W. D. (2018). Tourist vessel traffic in important whale areas in the western Canadian Arctic: Risks and possible management solutions. Marine Policy, 97, 72–81.

    Article  Google Scholar 

  20. Wynsberghe, A., Soesilo, D., Kristen, T., & Sharkey, N. (2018). Drones in the service of society. A Foundation for Responsible Robotics.

    Google Scholar 

  21. Stöcker, C., Bennett, R., Nex, F., Gerke, M., & Zevenbergen, J. (2017). Review of the current state of UAV regulations. Remote Sensing, 9, 33–35. https://doi.org/10.3390/rs9050459.

    Article  Google Scholar 

  22. Cracknell, A. P. (2017). UAVs: Regulations and law enforcement. International Journal of Remote Sensing, 38, 3054–3067. https://doi.org/10.1080/01431161.2017.1302115.

    Article  Google Scholar 

  23. DroneMaster – Modular Training for Drone Operators. http://www.dronemaster.fi/en/front-page/. Last accessed 2020/12/15.

  24. IEC 60529:1989+AMD1:1999+AMD2:2013 CSV | IEC Webstore | water management, smart city, rural electrification. https://webstore.iec.ch/publication/2452. Last accessed 2016/02/11.

  25. Fly with a legend | GRIFF Aviation. http://griffaviation.com/. Last accessed 2019/08/21.

  26. EHANG Announces $10 million series a round led by GGV Capital to take personal drones mainstream. PR Newswire 2014.

    Google Scholar 

  27. NATILUS. http://www.natilus.co/. Last accessed 2019/08/21.

  28. Autonomous Systems – Northrop Grumman. https://www.northropgrumman.com/Capabilities/AutonomousSystems/Pages/default.aspx?utm_source=PrintAd&utm_medium =Redirect&utm_campaign=AutonomousSystems_Redirect#Technology. Last accessed 2018/08/21.

    Google Scholar 

  29. Kramar, V., & Määttä, H. (2018). UAV Arctic challenges and the first step: Printed temperature sensor. In Proceedings of the 23rd conference of FRUCT association (pp. 483–490).

    Google Scholar 

  30. Kramar, V. (2019). UAS (drone) Arctic challenges – Next steps. In Proceedings of the 25th conference of FRUCT association (pp. 507–514).

    Google Scholar 

  31. Hassanalian, M., & Abdelkefi, A. (2017). Classifications, applications, and design challenges of drones: A review. Progress in Aerospace Science, 91, 99–131. https://doi.org/10.1016/j.paerosci.2017.04.003.

    Article  Google Scholar 

  32. Shakhatreh, H., Sawalmeh, A. H., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I., Othman, N. S., Khreishah, A., & Guizani, M. (2019). Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges. IEEE Access, 7, 48572–48634. https://doi.org/10.1109/ACCESS.2019.2909530.

    Article  Google Scholar 

  33. Funaki, M., & Hirasawa, N. (2008). Outline of a small unmanned aerial vehicle (ant-plane) designed for Antarctic research. Polar Science, 2, 129–142. https://doi.org/10.1016/j.polar.2008.05.002.

    Article  Google Scholar 

  34. Mueller, T. J. (1999). Aerodynamic measurements at low Reynolds numbers for fixed wing micro-air vehicles. Mech. Eng., 1–32.

    Google Scholar 

  35. Legault, M. Drones: Composite UAVs take flight. https://www.compositesworld.com/articles/drones-composite-uavs-take-flight. Last accessed 2018/05/18.

  36. Herwitz, S. R., Johnson, L. F., Dunagan, S. E., Higgins, R. G., Sullivan, D. V., Zheng, J., Lobitz, B. M., Leung, J. G., Gallmeyer, B. A., Aoyagi, M., Slye, R. E., & Brass, J. A. (2004). Imaging from an unmanned aerial vehicle: Agricultural surveillance and decision support. Computers and Electronics in Agriculture, 44, 49–61. https://doi.org/10.1016/j.compag.2004.02.006.

    Article  Google Scholar 

  37. Hadi, G. S., Varianto, R., Trilaksono, B. R., & Budiyono, A. (2015). Autonomous UAV system development for payload dropping mission. Journal of Instrumentation, Automation and Systems, 1, 72–77. https://doi.org/10.21535/jias.v1i2.158.

    Article  Google Scholar 

  38. Kellermann, R., Biehle, T., & Fischer, L. (2020). Drones for parcel and passenger transportation: A literature review. Transportation Research Interdisciplinary Perspectives, 4, 100088. https://doi.org/10.1016/j.trip.2019.100088.

    Article  Google Scholar 

  39. Haidari, L. A., Brown, S. T., Ferguson, M., Bancroft, E., Spiker, M., Wilcox, A., Ambikapathi, R., Sampath, V., Connor, D. L., & Lee, B. Y. (2016). The economic and operational value of using drones to transport vaccines. Vaccine, 34, 4062–4067. https://doi.org/10.1016/j.vaccine.2016.06.022.

    Article  Google Scholar 

  40. Rao, B., Gopi, A. G., & Maione, R. (2016). The societal impact of commercial drones. Technology in Society, 45, 83–90. https://doi.org/10.1016/j.techsoc.2016.02.009.

    Article  Google Scholar 

  41. Khofiyah, N. A., Sutopo, W., & Nugroho, B. D. A. (2019). Technical feasibility battery lithium to support unmanned aerial vehicle (UAV): A technical review. Proceedings of the International Conference on Industrial Engineering and Operations Management, 2019, 3591–3601.

    Google Scholar 

  42. Runge, H., Rack, W., & Hepperle, M. (2007). A solar-powered HALE-UAV for Arctic research. In: 1st CEAS European Air and Space Conference.

    Google Scholar 

  43. Bradley, T. H., Moffitt, B. A., Mavris, D. N., & Parekh, D. E. (2007). Development and experimental characterization of a fuel cell powered aircraft. Journal of Power Sources, 171, 793–801. https://doi.org/10.1016/j.jpowsour.2007.06.215.

    Article  Google Scholar 

  44. Thomas, J. P., Qidwai, M. A., & Kellogg, J. C. (2006). Energy scavenging for small-scale unmanned systems. Journal of Power Sources, 159, 1494–1509. https://doi.org/10.1016/j.jpowsour.2005.12.084.

    Article  Google Scholar 

  45. Hiserote, R., & Harmon, F. (2010). Analysis of hybrid-electric propulsion system designs for small unmanned aircraft systems. In 8th annual international energy conversion engineering conference. Reston, VA: American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2010-6687.

    Chapter  Google Scholar 

  46. Sliwinski, J., Gardi, A., Marino, M., & Sabatini, R. (2017). Hybrid-electric propulsion integration in unmanned aircraft. Energy, 140, 1407–1416. https://doi.org/10.1016/j.energy.2017.05.183.

    Article  Google Scholar 

  47. Ader, M., & Axelsson, D. (2017). Drones in arctic environments. ITM.

    Google Scholar 

  48. Dou, X., Hasa, I., Saurel, D., Vaalma, C., Wu, L., Buchholz, D., Bresser, D., Komaba, S., & Passerini, S. (2019). Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry. Materials Today, 23, 87–104. https://doi.org/10.1016/j.mattod.2018.12.040.

    Article  Google Scholar 

  49. Dorling, K., Heinrichs, J., Messier, G. G., & Magierowski, S. (2017). Vehicle routing problems for drone delivery. IEEE Transactions on System, Man, and Cybernetics: Systems, 47, 70–85. https://doi.org/10.1109/TSMC.2016.2582745.

    Article  Google Scholar 

  50. Chiang, W. C., Li, Y., Shang, J., & Urban, T. L. (2019). Impact of drone delivery on sustainability and cost: Realizing the UAV potential through vehicle routing optimization. Applied Energy, 242, 1164–1175. https://doi.org/10.1016/j.apenergy.2019.03.117.

    Article  Google Scholar 

  51. Pajares, G. (2015). Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogrammetric Engineering and Remote Sensing, 81, 281–329. https://doi.org/10.14358/PERS.81.4.281.

    Article  Google Scholar 

  52. Mohd Noor, N., Abdullah, A., & Hashim, M. (2018). Remote sensing UAV/drones and its applications for urban areas: A review. IOP Conference Series: Earth and Environmental Science, 169, 012003. https://doi.org/10.1088/1755-1315/169/1/012003.

    Article  Google Scholar 

  53. Linchant, J., Lisein, J., Semeki, J., Lejeune, P., & Vermeulen, C. (2015). Are unmanned aircraft systems (UASs) the future of wildlife monitoring? A review of accomplishments and challenges. Mamm. Rev., 45, 239–252. https://doi.org/10.1111/mam.12046.

    Article  Google Scholar 

  54. Hossein Motlagh, N., Taleb, T., & Arouk, O. (2016). Low-altitude unmanned aerial vehicles-based internet of things services: Comprehensive survey and future perspectives. IEEE Internet of Things Journal, 3, 899–922. https://doi.org/10.1109/JIOT.2016.2612119.

    Article  Google Scholar 

  55. Sankey, T., Donager, J., McVay, J., & Sankey, J. B. (2017). UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA. Remote Sensing of Environment, 195, 30–43. https://doi.org/10.1016/j.rse.2017.04.007.

    Article  Google Scholar 

  56. Yanmaz, E., Yahyanejad, S., Rinner, B., Hellwagner, H., & Bettstetter, C. (2018). Drone networks: Communications, coordination, and sensing. Ad Hoc Networks, 68, 1–15. https: //doi.org/10.1016/j.adhoc.2017.09.001.

    Article  Google Scholar 

  57. Bürkle, A., Segor, F., & Kollmann, M. (2011). Towards autonomous micro UAV swarms. Journal of Intelligent and Robotics Systems: Theory and Applications, 61, 339–353. https://doi.org/10.1007/s10846-010-9492-x.

    Article  Google Scholar 

  58. Axisa, D., & DeFelice, T. P. (2016). Modern and prospective technologies for weather modification activities: A look at integrating unmanned aircraft systems. Atmospheric Research, 178–179, 114–124. https://doi.org/10.1016/j.atmosres.2016.03.005.

    Article  Google Scholar 

  59. Xu, W., Zhou, H., Cheng, N., Lyu, F., Shi, W., Chen, J., & Shen, X. (2018). Internet of vehicles in big data era. IEEE/CAA Journal of Automatica Sinica, 5, 19–35. https://doi.org/10.1109/JAS.2017.7510736.

    Article  Google Scholar 

  60. Zhou, F., Wu, Y., Hu, R. Q., & Qian, Y. (2018). Computation rate maximization in UAV-enabled wireless-powered mobile-edge computing systems. IEEE Journal on Selected Areas in Communications, 36, 1927–1941. https://doi.org/10.1109/JSAC.2018.2864426.

    Article  Google Scholar 

  61. Faust, A., Palunko, I., Cruz, P., Fierro, R., & Tapia, L. (2017). Automated aerial suspended cargo delivery through reinforcement learning. Artificial Intelligence, 247, 381–398. https://doi.org/10.1016/j.artint.2014.11.009.

    Article  Google Scholar 

  62. Sampedro, C., Rodriguez-Ramos, A., Bavle, H., Carrio, A., de la Puente, P., & Campoy, P. (2018). A fully-autonomous aerial robot for search and rescue applications in indoor environments using learning-based techniques. Journal of Intelligent and Robotics Systems: Theory and Applications, 95, 1–27. https://doi.org/10.1007/s10846-018-0898-1.

    Article  Google Scholar 

  63. Hocraffer, A., & Nam, C. S. (2017). A meta-analysis of human-system interfaces in unmanned aerial vehicle (UAV) swarm management. Applied Ergonomics, 58, 66–80. https://doi.org/10.1016/j.apergo.2016.05.011.

    Article  Google Scholar 

  64. Arkin, R. C. (2016). Ethics and autonomous systems: Perils and promises. Proceedings of the IEEE, 104, 1779–1781. https://doi.org/10.1109/JPROC.2016.2601162.

    Article  Google Scholar 

  65. Noor, F., Khan, M. A., Al-Zahrani, A., Ullah, I., & Al-Dhlan, K. A. (2020). A review on communications perspective of flying AD-HOC networks: Key enabling wireless technologies, applications, challenges and open research topics. Drones, 4, 1–14. https://doi.org/10.3390/drones4040065.

    Article  Google Scholar 

  66. Gupta, L., Jain, R., & Vaszkun, G. (2016). Survey of important issues in UAV communication networks. IEEE Communication Surveys and Tutorials, 18, 1123–1152. https://doi.org/10.1109/COMST.2015.2495297.

    Article  Google Scholar 

  67. Mozaffari, M., Saad, W., Bennis, M., Nam, Y. H., & Debbah, M. (2018). A tutorial on UAVs for wireless networks: Applications, challenges, and open problems. arXiv, 21, 2334–2360.

    Google Scholar 

  68. Erdelj, M., Natalizio, E., Chowdhury, K. R., & Akyildiz, I. F. (2017). Help from the sky: Leveraging UAVs for disaster management. IEEE Pervasive Computing, 16, 24–32. https://doi.org/10.1109/MPRV.2017.11.

    Article  Google Scholar 

  69. Horapong, K., Chandrucka, D., Montree, N., & Buaon, P. (2017). Design and use of “drone” to support the radio navigation AIDS flight inspection. AIAA/IEEE Digital Avionics Systems Conference – Proceedings, 2017-September. https://doi.org/10.1109/DASC.2017.8102114.

  70. Lykou, G., Moustakas, D., & Gritzalis, D. (2020). Defending airports from UAS: A survey on cyber-attacks and counter-drone sensing technologies. Mdpi. Sensors.

    Google Scholar 

  71. Cocchioni, F., Pierfelice, V., Benini, A., Mancini, A., Frontoni, E., Zingaretti, P., Ippoliti, G., & Longhi, S. (2014). Unmanned ground and aerial vehicles in extended range indoor and outdoor missions. In 2014 international conference on unmanned aircraft systems ICUAS 2014 – Conference proceedings (pp. 374–382). https://doi.org/10.1109/ICUAS.2014.6842276.

    Chapter  Google Scholar 

  72. Herissé, B., Hamel, T., Mahony, R., & Russotto, F. X. (2012). Landing a VTOL unmanned aerial vehicle on a moving platform using optical flow. IEEE Transactions on Robotics, 28, 77–89. https://doi.org/10.1109/TRO.2011.2163435.

    Article  Google Scholar 

  73. Ranquist, E. A., & Matthias Steiner, B. A. (2016). Exploring the range of weather impacts on UAS operations. In 18th conference on aviatation range and aerospace meteorology (Vol. 11).

    Google Scholar 

  74. La Cour-Harbo, A. (2017). Quantifying risk of ground impact fatalities of power line inspection BVLOS flight with small unmanned aircraft. In 2017 international conference on unmanned aircraft systems ICUAS 2017 (pp. 1352–1360). https://doi.org/10.1109/ICUAS.2017.7991323.

    Chapter  Google Scholar 

  75. Duffy, J. P., Cunliffe, A. M., DeBell, L., Sandbrook, C., Wich, S. A., Shutler, J. D., Myers-Smith, I. H., Varela, M. R., & Anderson, K. (2018). Location, location, location: Considerations when using lightweight drones in challenging environments. Remote Sensing in Ecology and Conservation, 4, 7–19. https://doi.org/10.1002/rse2.58.

    Article  Google Scholar 

  76. Fornace, K. M., Drakeley, C. J., William, T., Espino, F., & Cox, J. (2014). Mapping infectious disease landscapes: Unmanned aerial vehicles and epidemiology. Trends in Parasitology, 30, 514–519. https://doi.org/10.1016/j.pt.2014.09.001.

    Article  Google Scholar 

  77. Bhatt, K., Pourmand, A., & Sikka, N. (2018). Targeted applications of unmanned aerial vehicles (drones) in telemedicine. Telemedicine and e-Health, 24, 833–838. https://doi.org/10.1089/tmj.2017.0289.

    Article  Google Scholar 

  78. Gultepe, I., Sharman, R., Williams, P. D., Zhou, B., Ellrod, G., Minnis, P., Trier, S., Griffin, S., Yum, S. S., Gharabaghi, B., Feltz, W., Temimi, M., Pu, Z., Storer, L. N., Kneringer, P., Weston, M. J., Chuang, H. y., Thobois, L., Dimri, A. P., Dietz, S. J., França, G. B., Almeida, M. V., & Neto, F. L. A. (2019). A review of high impact weather for aviation meteorology. Pure and Applied Geophysics, 176, 1869–1921. https://doi.org/10.1007/s00024-019-02168-6.

    Article  Google Scholar 

  79. Gohardani, O., Elola, M. C., & Elizetxea, C. (2014). Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences. Progress in Aerospace Science, 70, 42–68. https: //doi.org/10.1016/j.paerosci.2014.05.002.

    Article  Google Scholar 

  80. Cristofaro, A., Johansen, T. A., & Aguiar, A. P. (2015). Icing detection and identification for unmanned aerial vehicles: Multiple model adaptive estimation. In 2015 European control conference ECC (pp. 1651–1656). https://doi.org/10.1109/ECC.2015.7330774.

    Chapter  Google Scholar 

  81. Sørensen, K. L., Helland, A. S., & Johansen, T. A. (2015). Carbon nanomaterial-based wing temperature control system for in-flight anti-icing and de-icing of unmanned aerial vehicles. In IEEE aerospace conference proceedings 2015-June (pp. 1–6). https://doi.org/10.1109/AERO.2015.7119206.

    Chapter  Google Scholar 

  82. Lawson, C. P. (2006). Electrically powered ice protection systems for MALE UAVs – Requirements and integration challenges. In ICAS-secretariat – 25th congress of the International Council of the Aeronautical Sciences 2006 (pp. 3565–3573).

    Google Scholar 

  83. Liu, Y., Li, L., Li, H., & Hu, H. (2018). An experimental study of surface wettability effects on dynamic ice accretion process over an UAS propeller model. Aerospace Science and Technology, 73, 164–172. https://doi.org/10.1016/j.ast.2017.12.003.

    Article  Google Scholar 

  84. Salameh, Z. M., & Kim, B. G. (2009). Advanced lithium polymer batteries. In 2009 IEEE Power & Energy Society General Meeting (pp. 1–5). https://doi.org/10.1109/PES.2009.5275404.

    Chapter  Google Scholar 

  85. Cimoli, E., Marcer, M., Vandecrux, B., Bøggild, C. E., Williams, G., & Simonsen, S. B. (2017). Application of low-cost uass and digital photogrammetry for high-resolution snow depth mapping in the Arctic. Remote Sensing, 9, 1–29. https://doi.org/10.3390/rs9111144.

    Article  Google Scholar 

  86. Paredes, J. A., Saito, C., Abarca, M., & Cuellar, F. (2017). Study of effects of high-altitude environments on multicopter and fixed-wing UAVs’ energy consumption and flight time. In IEEE international conference on automation science and engineering 2017-August (pp. 1645–1650). https://doi.org/10.1109/COASE.2017.8256340.

    Chapter  Google Scholar 

  87. Tafreshi, M., Shafieenejad, I., & Nikkhah, A. A. (2014). Open-loop and closed-loop optimal guidance policy for Samarai aerial vehicle with novel algorithm to consider wind effects. International Journal of Engineering and Techincal Research, 2, 185–191.

    Google Scholar 

  88. Huang, H., Hoffmann, G. M., Waslander, S. L., & Tomlin, C. J. (2009). Aerodynamics and control of autonomous quadrotor helicopters in aggressive maneuvering. In Proceedings of the IEEE international conference on robotics and automation (pp. 3277–3282). https://doi.org/10.1109/ROBOT.2009.5152561.

    Chapter  Google Scholar 

  89. Altstädter, B., Platis, A., Wehner, B., Scholtz, A., Wildmann, N., Hermann, M., Käthner, R., Baars, H., Bange, J., & Lampert, A. (2015). ALADINA – An unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer. Atmospheric Measurement Techniques, 8, 1627–1639. https://doi.org/10.5194/amt-8-1627-2015.

    Article  Google Scholar 

  90. Rüdiger, J., Tirpitz, J. L., Maarten De Moor, J., Bobrowski, N., Gutmann, A., Liuzzo, M., Ibarra, M., & Hoffmann, T. (2018). Implementation of electrochemical, optical and denuder-based sensors and sampling techniques on UAV for volcanic gas measurements: Examples from Masaya, Turrialba and Stromboli volcanoes. Atmospheric Measurement Techniques, 11, 2441–2457. https://doi.org/10.5194/amt-11-2441-2018.

    Article  Google Scholar 

  91. Franceschini, N. (2014). Small brains, smart machines: From fly vision to robot vision and back again. Proceedings of the IEEE, 102, 751–781. https://doi.org/10.1109/JPROC.2014.2312916.

    Article  Google Scholar 

  92. Gade, R., & Moeslund, T. B. (2014). Thermal cameras and applications: A survey. Machine Vision and Applications, 25, 245–262. https://doi.org/10.1007/s00138-013-0570-5.

    Article  Google Scholar 

  93. Funaki, M., Higashino, S. I., Sakanaka, S., Iwata, N., Nakamura, N., Hirasawa, N., Obara, N., & Kuwabara, M. (2014). Small unmanned aerial vehicles for aeromagnetic surveys and their flights in the South Shetland Islands, Antarctica. Polar Science, 8, 342–356. https://doi.org/10.1016/j.polar.2014.07.001.

    Article  Google Scholar 

  94. Hildmann, H., & Kovacs, E. (2019). Review: Using unmanned aerial vehicles (UAVs) as mobile sensing platforms (MSPs) for disaster response, civil security and public safety. Drones, 3, 1–26. https://doi.org/10.3390/drones3030059.

    Article  Google Scholar 

  95. “Inspirational” bear video reveals dark side of filming animals with drones. https://www.nationalgeographic.com/animals/2018/11/drone-brown-bear-video-russia-wildlife-harrassment-news/. Last accessed 2019/11/21.

  96. Mulero-Pázmány, M., Jenni-Eiermann, S., Strebel, N., Sattler, T., Negro, J. J., & Tablado, Z. (2017). Unmanned aircraft systems as a new source of disturbance for wildlife: A systematic review. PLoS One, 12. https://doi.org/10.1371/journal.pone.0178448.

  97. Wild Animal Attacks on drones videos – Drones UAV report. http://dronesuavreport.com/2018/08/04/wild-animal-attacks-on-drones-videos/. Last accessed 2019/12/20.

  98. Manfreda, S., McCabe, M. F., Miller, P. E., Lucas, R., Madrigal, V. P., Mallinis, G., Dor, E. B., Helman, D., Estes, L., Ciraolo, G., Müllerová, J., Tauro, F., de Lima, M. I., de Lima, J. L. M. P., Maltese, A., Frances, F., Caylor, K., Kohv, M., Perks, M., Ruiz-Pérez, G., Su, Z., Vico, G., & Toth, B. (2018). On the use of unmanned aerial systems for environmental monitoring. Remote Sensing, 10, 1. https://doi.org/10.3390/rs10040641.

    Article  Google Scholar 

  99. Tmušić, G., Manfreda, S., Aasen, H., James, M. R., Gonçalves, G., Ben-Dor, E., Brook, A., Polinova, M., Arranz, J. J., Mészáros, J., Zhuang, R., Johansen, K., Malbeteau, Y., de Lima, I. P., Davids, C., Herban, S., & McCabe, M. F. (2020). Current practices in UAS-based environmental monitoring. Remote Sensing, 12. https://doi.org/10.3390/rs12061001.

  100. Torresan, C., Berton, A., Carotenuto, F., Di Gennaro, S. F., Gioli, B., Matese, A., Miglietta, F., Vagnoli, C., Zaldei, A., & Wallace, L. (2017). Forestry applications of UAVs in Europe: A review. International Journal of Remote Sensing, 38, 2427–2447. https://doi.org/10.1080/01431161.2016.1252477.

    Article  Google Scholar 

  101. Fraser, B. T., & Congalton, R. G. (2018). Issues in unmanned aerial systems (UAS) data collection of complex forest environments. Remote Sensing, 10, 908. https://doi.org/10.3390/rs10060908.

    Article  Google Scholar 

  102. McCabe, M. F., Rodell, M., Alsdorf, D. E., Miralles, D. G., Uijlenhoet, R., Wagner, W., Lucieer, A., Houborg, R., Verhoest, N. E. C., Franz, T. E., Gao, H., & Wood, E. F. (2017). The future of earth observation in hydrology. Hydrology and Earth System Sciences, 21, 3879–3914. https://doi.org/10.5194/hess-21-3879-2017.

    Article  Google Scholar 

  103. Harris, J. M., Nelson, J. A., Rieucau, G., & Broussard, W. P. (2019). Use of drones in fishery science. Transactions of the American Fisheries Society, 148, 1–11. https://doi.org/10.1002/tafs.10168.

    Article  Google Scholar 

  104. Kelly, J., Kljun, N., Olsson, P. O., Mihai, L., Liljeblad, B., Weslien, P., Klemedtsson, L., & Eklundh, L. (2019). Challenges and best practices for deriving temperature data from an uncalibrated UAV thermal infrared camera. Remote Sensing, 11, 567. https://doi.org/10.3390/rs11050567.

    Article  Google Scholar 

  105. Aldana-Jague, E., Heckrath, G., Macdonald, A., van Wesemael, B., & Van Oost, K. (2016). UAS-based soil carbon mapping using VIS-NIR (480-1000 nm) multi-spectral imaging: Potential and limitations. Geoderma, 275, 55–66. https://doi.org/10.1016/j.geoderma.2016.04.012.

    Article  Google Scholar 

  106. INTERACT: Drones Pocket Guide. (2017). INTERACT drone workshop svalbard.

    Google Scholar 

  107. Storvold, R., Sweatte, C., Ruel, P., Wuennenberg, M., Tarr, K., Raustein, M., Hillesøy, T., Lundgren, T., & Sumich, M. (2015). Arctic science RPAS operator’s handbook. AMAP.

    Google Scholar 

  108. Berkowitz, R. (2014). Drones and the question of the human. Ethics & International Affairs, 28, 159. https://doi.org/10.1017/S0892679414000185.

    Article  Google Scholar 

  109. Petroleka, M., Sano, Y., Shah, K., Marshall, R., Haines, C., Weber, K., Richards, M., Beckenstein, J., Menonna, F., Thillien, D., Martin, C., Glendinning, T., Richards, E., Grant, J., Shutt, M., Brenden, D., Earnshaw, D., Chia, S., Nix, P., Moss, J., Taylor, R., & Oliva-Velez, D. (2018). Towards 2050: Megatrends in industry, politics and the global economy 2018 edition. BMI Research.

    Google Scholar 

  110. Cummings, M. L., & Mitchell, P. J. (2008). Predicting controller capacity in supervisory control of multiple UAVs. IEEE Transactions on Systems, Man, and Cybernetics. Part A Systems Humans., 38, 451–460. https://doi.org/10.1109/TSMCA.2007.914757.

    Article  Google Scholar 

  111. Chen, J. Y. C., Barnes, M. J., & Harper-Sciarini, M. (2011). Supervisory control of multiple robots: Human-performance issues and user-interface design. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 41, 435–454. https://doi.org/10.1109/TSMCC.2010.2056682.

    Article  Google Scholar 

  112. Goodrich, M. A., & Schultz, A. C. (2007). Human-robot interaction: A survey. Foundations and Trends in Human-Computer Interaction, 1, 203–275. https://doi.org/10.1561/1100000005.

    Article  Google Scholar 

  113. Dierks, T., & Jagannathan, S. (2010). Output feedback control of a quadrotor UAV using neural networks. IEEE Transactions on Neural Networks, 21, 50–66. https://doi.org/10.1109/TNN.2009.2034145.

    Article  Google Scholar 

  114. Máthé, K., & Buşoniu, L. (2015). Vision and control for UAVs: A survey of general methods and of inexpensive platforms for infrastructure inspection. Sensors (Switzerland)., 15, 14887–14916. https://doi.org/10.3390/s150714887.

    Article  Google Scholar 

  115. Liu, P., Chen, A. Y., Huang, Y. N., Han, J. Y., Lai, J. S., Kang, S. C., Wu, T. H., Wen, M. C., & Tsai, M. H. (2014). A review of rotorcraft unmanned aerial vehicle (UAV) developments and applications in civil engineering. Smart Structures and Systems, 13, 1065–1094. https://doi.org/10.12989/sss.2014.13.6.1065.

    Article  Google Scholar 

  116. Lim, Y., Gardi, A., Sabatini, R., Ramasamy, S., Kistan, T., Ezer, N., Vince, J., & Bolia, R. (2018). Cognitive human-machine interfaces and interactions for manned and unmanned aircraft. Progress in Aerospace Science, 102, 1–46. https://doi.org/10.1016/j.paerosci.2018.05.002.

    Article  Google Scholar 

  117. Zolich, A., Johansen, T. A., Cisek, K., & Klausen, K. (2016). Unmanned aerial system architecture for maritime missions. Design & hardware description. In 2015 workshop on research, education and development of unmanned aerial systems RED-UAS 2015 (pp. 342–350). https://doi.org/10.1109/RED-UAS.2015.7441026.

    Chapter  Google Scholar 

  118. Hedblom, B. (2018). Addressing the low-altitude airspace integration challenge: USS or UTM core? In ICNS 2018 – Integrated communications, navigation and surveillance conference (pp. 1–17). https://doi.org/10.1109/ICNSURV.2018.8384933.

    Chapter  Google Scholar 

  119. Johnson, M., Jung, J., Rios, J., Mercer, J., Homola, J., Prevot, T., Mulfinger, D., & Kopardekar, P. (2017). Flight test evaluation of an unmanned aircraft system traffic management (UTM) concept for multiple beyond-visual-line-of-sight operations. In 12th USA/Europe Air Traffic Management Research and Development Seminar.

    Google Scholar 

  120. Kopardekar, P., Rios, J., Prevot, T., Johnson, M., Jung, J., & Robinson, J. E. (2016). Unmanned aircraft system traffic management (UTM) concept of operations. In 16th AIAA aviation technology, integration, and operations conference. AIAA Aviation.

    Google Scholar 

  121. Ancel, E., Capristan, F. M., Foster, J. V., & Condottax, R. C. (2017). Real-time risk assessment framework for unmanned aircraft system (UAS) traffic management (UTM). In 17th AIAA aviation technology, integration, and operations conference, 2017. AIAA.

    Google Scholar 

  122. Battiste, V., Dao, A. Q. V., Strybel, T. Z., Boudreau, A., & Wong, Y. K. (2016). Function allocation strategies for the unmanned aircraft system traffic management (UTM) system, and their impact on skills and training requirements for UTM operators. IFAC-PapersOnLine., 49, 42–47. https://doi.org/10.1016/j.ifacol.2016.10.459.

    Article  Google Scholar 

  123. Ivancic, W. D., Kerczewski, R. J., Murawski, R. W., Matheou, K., & Downey, A. N. (2019). Flying drones beyond visual line of sight using 4g LTE: Issues and concerns. In Integrated communications, navigation and surveillance conference 2019-April (pp. 1–13). IEEE. https: //doi.org/10.1109/ICNSURV.2019.8735246.

    Chapter  Google Scholar 

  124. Bloise, N., Primatesta, S., Antonini, R., Fici, G. P., Gaspardone, M., Guglieri, G., & Rizzo, A. (2019). A survey of unmanned aircraft system technologies to enable safe operations in Urban areas. In 2019 international conference on unmanned aircraft systems (pp. 433–442). https://doi.org/10.1109/icuas.2019.8797859.

    Chapter  Google Scholar 

  125. Beverley, G. (2019). BVLoS and blockchain – Why distributed ledgers may be the key to unlocking widespread BVLoS operations. Consortiq.

    Google Scholar 

  126. Claesson, A., Fredman, D., Svensson, L., Ringh, M., Hollenberg, J., Nordberg, P., Rosenqvist, M., Djarv, T., Österberg, S., Lennartsson, J., & Ban, Y. (2016). Unmanned aerial vehicles (drones) in out-of-hospital-cardiac-arrest. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 24, 1–9. https://doi.org/10.1186/s13049-016-0313-5.

    Article  Google Scholar 

  127. Pulver, A., Wei, R., & Mann, C. (2016). Locating AED enabled medical drones to enhance cardiac arrest response times. Prehospital Emergency Care, 20, 378–389. https://doi.org/10.3109/10903127.2015.1115932.

    Article  Google Scholar 

  128. Claesson, A., Herlitz, J., Svensson, L., Ottosson, L., Bergfeldt, L., Engdahl, J., Ericson, C., Sandén, P., Axelsson, C., & Bremer, A. (2017). Defibrillation before EMS arrival in western Sweden. The American Journal of Emergency Medicine, 35, 1043–1048. https://doi.org/10.1016/j.ajem.2017.02.030.

    Article  Google Scholar 

  129. Sanfridsson, J., Sparrevik, J., Hollenberg, J., Nordberg, P., Djärv, T., Ringh, M., Svensson, L., Forsberg, S., Nord, A., Andersson-Hagiwara, M., & Claesson, A. (2019). Drone delivery of an automated external defibrillator – A mixed method simulation study of bystander experience. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 27, 1–9. https://doi.org/10.1186/s13049-019-0622-6.

    Article  Google Scholar 

  130. Clark, D. G., Ford, J. D., & Tabish, T. (2018). What role can unmanned aerial vehicles play in emergency response in the Arctic: A case study from Canada. PLoS One, 13, 1–16. https://doi.org/10.1371/journal.pone.0205299.

    Article  Google Scholar 

  131. Tierney, M.T. (2016). Ethics on the fly: Toward a drone-specific code of conduct for law enforcement. Naval Postgraduate School.

    Google Scholar 

  132. Thibbotuwawa, A., Nielsen, P., Bocewicz, G., & Banaszak, Z. (2020). UAVs Fleet Mission planning subject to weather fore-cast and energy consumption constraints. In Advances in intelligent systems and computing (pp. 104–114). Springer Verlag. https://doi.org/10.1007/978-3-030-13273-6_11.

    Chapter  Google Scholar 

  133. Schenkelberg, F. (2016). How reliable does a delivery drone have to be? In Proceedings – Annual reliability and maintainability symposium. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/RAMS.2016.7448054.

    Chapter  Google Scholar 

  134. Nex, F., & Remondino, F. (2014). UAV for 3D mapping applications: A review. Applied Geomatics, 6, 1–15. https://doi.org/10.1007/s12518-013-0120-x.

    Article  Google Scholar 

  135. Al-Kaff, A., Martín, D., García, F., de la Escalera, A., & María Armingol, J. (2018). Survey of computer vision algorithms and applications for unmanned aerial vehicles. Expert Systems with Applications, 92, 447–463. https://doi.org/10.1016/j.eswa.2017.09.033.

    Article  Google Scholar 

  136. Liu, Z., Zhang, Y., Yu, X., & Yuan, C. (2016). Unmanned surface vehicles: An overview of developments and challenges. Annual Reviews in Control, 41, 71. https://doi.org/10.1016/j.arcontrol.2016.04.018.

    Article  Google Scholar 

  137. Imdoukh, A., Shaker, A., Al-Toukhy, A., Kablaoui, D., & El-Abd, M. (2017). Semi-autonomous indoor firefighting UAV. In 2017 18th international conference on advanced robotics. ICAR. https://doi.org/10.1109/ICAR.2017.8023625.

    Chapter  Google Scholar 

  138. Padró, J. C., Muñoz, F. J., Planas, J., & Pons, X. (2019). Comparison of four UAV georeferencing methods for environmental monitoring purposes focusing on the combined use with airborne and satellite remote sensing platforms. International Journal of Applied Earth Observation and Geoinformation, 75, 130–140. https://doi.org/10.1016/j.jag.2018.10.018.

    Article  Google Scholar 

  139. Cho, Y. (2014). Lost in debate: The safety of domestic unmanned aircraft systems. Journal of Strategic Security, 7, 38–56.

    Article  Google Scholar 

  140. Sullivan-Nightengale, D. (2015). Unmanned aerial systems: Risks & opportunities in the workplace. Professional Safety, 60, 34–42.

    Google Scholar 

  141. Sanjab, A., Saad, W., & Başar, T. (2017). Prospect theory for enhanced cyber-physical security of drone delivery systems: A network interdiction game. arXiv, 0–5.

    Google Scholar 

  142. Altawy, R., & Youssef, A. M. (2017). Security, privacy, and safety aspects of civilian drones: A survey. ACM Transactions on Cyber-Physical Systems, 1(2), 1–25. https://doi.org/10.1145/3001836.

    Article  Google Scholar 

  143. Hamilton, B.A. (2020). Updated with additional testing and analysis executive summary. Booz Allen for PrecisionHawk.

    Google Scholar 

  144. Mozaffari, M., Saad, W., Bennis, M., & Debbah, M. (2017). Wireless communication using unmanned aerial vehicles (UAVs): Optimal transport theory for hover time optimization. arXiv, 16, 8052–8066.

    Google Scholar 

  145. Kramar, V. (2020). UAS (drone) in Response to Coronavirus. In 27th conference of open innovation association, FRUCT (pp. 90–100). Trento, Italy: IEEE Computer Society. https://doi.org/10.23919/FRUCT49677.2020.9211075.

    Chapter  Google Scholar 

  146. European Union Aviation Safety Agency: Easy access rules for unmanned aircraft systems (Regulations (EU) 2019/947 and (EU) 2019/945) (2021) (pp. 1–292).

    Google Scholar 

  147. Hodgson, J. C., & Koh, L. P. (2016). Best practice for minimising unmanned aerial vehicle disturbance to wildlife in biological field research. Current Biology, 26, R404–R405. https://doi.org/10.1016/j.cub.2016.04.001.

    Article  Google Scholar 

  148. ASTM. (2018). New practice for general operations manual for professional operator of light Unmanned Aircraft Systems (UAS). ASTM International.

    Google Scholar 

  149. JARUS. (2019). JARUS guidelines on Specific Operations Risk Assessment (SORA). Joint Authoritiesfor Rulemaking of Unmanned Systems.

    Google Scholar 

  150. Arctic Drone Labs – Finnish Drone Expertise. https://www.arcticdronelabs.com/. Last accessed 2020/06/05.

Download references

Acknowledgement

The authors would like to express gratitude to the DroneMaster project (financed by European Social Fund (ESF) S21923) [23], members of Arctic Drone Labs innovation ecosystem [150], and international partners for supplying materials, giving constructive critics, and using authors’ attention to a range of projects and research experiments relevant to the UAS applications in the Nordic and the Arctic environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Kramar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kramar, V., Röning, J., Erkkilä, J., Hinkula, H., Kolli, T., Rauhala, A. (2022). Unmanned Aircraft Systems and the Nordic Challenges. In: Lipping, T., Linna, P., Narra, N. (eds) New Developments and Environmental Applications of Drones. Springer, Cham. https://doi.org/10.1007/978-3-030-77860-6_1

Download citation

Publish with us

Policies and ethics