Skip to main content

Poisonous Mushroom (Nonedible) as an Antioxidant Source

  • Reference work entry
  • First Online:
Plant Antioxidants and Health

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 846 Accesses

Abstract

Antioxidants play an important role in suppressing oxidative stress. Natural sources contain many compounds that have antioxidant properties. Mushrooms that produce biologically active compounds can be classified as poisonous, edible, and inedible. In this study, antioxidant potentials of poisonous mushrooms were investigated. In the literature, the general characteristics of poisonous mushrooms, whose antioxidant potentials were determined by different methods, were reported. In addition, the symptoms arising from the consumption of these mushrooms were mentioned. There are also studies on the toxic compounds of poisonous mushrooms with the reported antioxidant activity. As a result, it was determined that poisonous mushrooms have antioxidant potentials besides their toxic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sies H, Berndt C, Jones DP (2017) Oxidative stress. Annu Rev Biochem 86:715–748

    Article  CAS  PubMed  Google Scholar 

  2. Mushtaq W, Baba H, Akata İ, Sevindik M (2020) Antioxidant potential and element contents of wild edible mushroom Suillus granulatus. Kahramanmaraş Sütçü İmam Univ Doğa Bilim Derg 23(3):592–595

    Google Scholar 

  3. Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F (2018) Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol 14:450–464

    Article  CAS  PubMed  Google Scholar 

  4. Sevindik M, Akgul H, Bal C, Selamoglu Z (2018) Phenolic contents, oxidant/antioxidant potential and heavy metal levels in Cyclocybe cylindracea. Indian J Pharm Educ 52(3):437–441

    Article  CAS  Google Scholar 

  5. Sevindik M (2019) The novel biological tests on various extracts of Cerioporus varius. Fresenius Environ Bull 28(5):3713–3717

    CAS  Google Scholar 

  6. Xu DP, Li Y, Meng X, Zhou T, Zhou Y, Zheng J, Zhang JJ, Li HB (2017) Natural antioxidants in foods and medicinal plants: extraction, assessment and resources. Int J Mol 18(1):96

    Article  CAS  Google Scholar 

  7. Gürgen A, Sevindik M, Yıldız S, Akgül H (2020) Determination of antioxidant and oxidant potentials of Pleurotus citrinopileatus mushroom cultivated on various substrates. Kahramanmaraş Sütçü İmam Univ Doğa Bilim Derg 23(3):586–591

    Google Scholar 

  8. Ahmadi A, Shadboorestan A (2016) Oxidative stress and cancer; the role of hesperidin, a citrus natural bioflavonoid, as a cancer chemoprotective agent. Nutr Cancer 68(1):29–39

    Article  CAS  PubMed  Google Scholar 

  9. Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M (2017) Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci 38(7):592–607

    Article  CAS  PubMed  Google Scholar 

  10. Sevindik M, Akgul H, Selamoglu Z, Braidy N (2020) Antioxidant and antigenotoxic potential of Infundibulicybe geotropa mushroom collected from Northwestern Turkey. Oxidative Med Cell Longev. https://doi.org/10.1155/2020/5620484

  11. Ivanova TS, Krupodorova TA, Barshteyn VY, Artamonova AB, Shlyakhovenko VA (2014) Anticancer substances of mushroom origin. Exp Oncol 36(2):58–66

    CAS  PubMed  Google Scholar 

  12. Sevindik M, Akgul H, Akata I, Alli H, Selamoglu Z (2017) Fomitopsis pinicola in healthful dietary approach and their therapeutic potentials. Acta Aliment 46(4):464–469

    Article  CAS  Google Scholar 

  13. Krupodorova TA, Barshteyn VY, Bisko NA, Ivanova TS (2012) Some macronutrient content in mycelia and culture broth of medicinal mushrooms cultivated on amaranth flour. Int J Med Mushrooms 14(3):285–293

    Article  CAS  PubMed  Google Scholar 

  14. Bal C, Sevindik M, Akgul H, Selamoglu Z (2019) Oxidative stress index and antioxidant capacity of Lepista nuda collected from Gaziantep/Turkey. Sigma 37(1):1–5

    Google Scholar 

  15. Bal C, Akgul H, Sevindik M, Akata I, Yumrutas O (2017) Determination of the anti-oxidative activities of six mushrooms. Fresenius Environ Bull 26:6246–6252

    CAS  Google Scholar 

  16. Sevindik M, Akata I (2019) Antioxidant, oxidant potentials and element content of edible wild mushroom Helvella leucopus. Indian J Nat Prod Resour 10(4):266–271

    CAS  Google Scholar 

  17. Ruan-Soto F, Ordaz-Velázquez M, García-Santiago W, Pérez-Ovando C (2017) Traditional processing and preservation of wild edible mushrooms in Mexico. Ann Food Process Preserv 2(1):1013

    Google Scholar 

  18. Krupodorova TA, Barshteyn VY, Zabeida EF, Pokas EV (2016) Antibacterial activity of macromycetes mycelia and culture liquid. Microbiol Biotechnol Lett 44(3):246–253

    Article  CAS  Google Scholar 

  19. Kaya M, Akata I, Baran T, Menteş A (2015) Physicochemical properties of chitin and chitosan produced from medicinal fungus (Fomitopsis pinicola). Biophysik 10(2):162–168

    Google Scholar 

  20. Valverde ME, Hernández-Pérez T, Paredes-López O (2015) Edible mushrooms: improving human health and promoting quality life. Int J Microbiol Res. https://doi.org/10.1155/2015/376387

  21. Süfer Ö, Bozok F, Demir H (2016) Usage of edible mushrooms in various food products. Turjaf 4(3):144–149

    Google Scholar 

  22. Krupodorova TA, Shmarakov IA, Barshteyn VY (2016) Anticancer potential of Trametes versicolor (L.) Lloyd and Auriporia aurea (Peck) Ryvarden mycelia in rat Guerins carcinoma. Adv Biomed Pharma 3:1–8

    Article  CAS  Google Scholar 

  23. Wani BA, Bodha RH, Wani AH (2010) Nutritional and medicinal importance of mushrooms. J Med Plant Res 4(24):2598–2604

    Article  Google Scholar 

  24. Sun Y, Lv F, Tian J, Ye XQ, Chen J, Sun P (2019) Domestic cooking methods affect nutrient, phytochemicals, and flavor content in mushroom soup. Food Sci Nutr 7(6):1969–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Krupodorova T, Barshteyn V, Pokas E (2019) Antibacterial activity of Fomitopsis betulina cultural liquid. Eureka Life Sci 6:10–16

    Article  Google Scholar 

  26. De Silva DD, Rapior S, Sudarman E, Stadler M, Xu J, Alias SA, Hyde KD (2013) Bioactive metabolites from macrofungi: ethnopharmacology, biological activities and chemistry. Fungal Divers 62(1):1–40

    Article  Google Scholar 

  27. Öztürk M, Tel G, Öztürk FA, Duru ME (2014) The cooking effect on two edible mushrooms in Anatolia: fatty acid composition, total bioactive compounds, antioxidant and anticholinesterase activities. Rec Nat Prod 8(2):189

    Google Scholar 

  28. Bandara AR, Rapior S, Bhat DJ, Kakumyan P, Chamyuang S, Xu J, Hyde KD (2015) Polyporus umbellatus, an edible-medicinal cultivated mushroom with multiple developed health-care products as food, medicine and cosmetics: a review. Cryptogam Mycol 36(1):3–42

    Article  Google Scholar 

  29. Sevindik M (2018) Investigation of antioxidant/oxidant status and antimicrobial activities of Lentinus tigrinus. Adv Pharmacol Sci. https://doi.org/10.1155/2018/1718025

  30. McPartland JM, Vilgalys RJ, Cubeta MA (1997) Mushroom poisoning. Am Fam Physician 55:1797–1812

    CAS  PubMed  Google Scholar 

  31. https://indexfungorum.com. Accessed 14 April 2020

  32. http://toxinology.com/index.cfm. Accessed 14 April 2020

  33. https://pubchem.ncbi.nlm.nih.gov. Accessed 14 April 2020

  34. Orsine JVC, da Costa RV, Novaes MRCG (2012) Mushrooms of the genus Agaricus as functional foods. Nutr Hosp 27(4):1017–1024

    Google Scholar 

  35. Karunarathna SC, Chen J, Mortimer PE, Xu JC, Zhao RL, Callac P, Hyde KD (2016) Mycosphere essay 8: a review of the genus Agaricus in tropical and humid subtropical regions of Asia. Mycosphere 7(4):417–439

    Article  Google Scholar 

  36. Kibby G (2013) Fungal portraits no. 55 Agaricus xanthodermus. Field Mycol 3(14):75–76

    Article  Google Scholar 

  37. Kherlenchimeg N (2018) Morphological study of genus Agaricus of Mongolia. Problems of Botany in Southern Siberia and Mongolia (17):268–272

    Google Scholar 

  38. Gill M, Strauch RJ (1984) Constituents of Agaricus xanthodermus Genevier: the first naturally endogenous azo compound and toxic phenolic metabolites. Z Naturforsch C 39(11–12):1027–1029

    Article  CAS  PubMed  Google Scholar 

  39. Bresinsky A (1990) A colour atlas of poisonous fungi: a handbook for pharmacists, doctors, and biologists. CRC Press, Boca Raton

    Google Scholar 

  40. Özaltun B, Sevindik M (2020) Evaluation of the effects on atherosclerosis and antioxidant and antimicrobial activities of Agaricus xanthodermus poisonous mushroom. Eur Respir J. https://doi.org/10.18621/eurj.524149

  41. Singer R (1986) The agaricales in modern taxonomy, 4th edn. Koeltz Scientific Books, Koenigstein. 981 p

    Google Scholar 

  42. Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth and Bisby’s dictionary of fungi, 10th edn. CAB International, Wallingford. 771 p

    Book  Google Scholar 

  43. Block SS, Stephens RL, Murrill WA (1955) Natural food poisons, amanita toxins in mushrooms. J Agric Food Chem 3(7):584–587

    Article  CAS  Google Scholar 

  44. Mitchel DH (1980) Amanita mushroom poisoning. Annu Rev Med 31(1):51–57

    Article  CAS  PubMed  Google Scholar 

  45. Lima AD, Fortes RC, Novaes MG, Percário S (2012) Poisonous mushrooms; a review of the most common intoxications. Nutr Hosp 27(2):402–408

    CAS  PubMed  Google Scholar 

  46. Yilmaz I, Ermis F, Akata I, Kaya E (2015) A case study: what doses of Amanita phalloides and amatoxins are lethal to humans? Wilderness Environ Med 26(4):491–496

    Article  PubMed  Google Scholar 

  47. Satora L, Pach D, Butryn B, Hydzik P, Balicka-Ślusarczyk B (2005) Fly agaric (Amanita muscaria) poisoning, case report and review. Toxicon 45(7):941–943

    Article  CAS  PubMed  Google Scholar 

  48. Benjamín DR (1992) Mushroom poisoning in infants and children: the Amanita pantherina/muscaria group. J Toxicol 30(1):13–22

    Google Scholar 

  49. Michelot D, Melendez-Howell LM (2003) Amanita muscaria: chemistry, biology, toxicology, and ethnomycology. Mycol Res 107(2):131–146

    Article  CAS  PubMed  Google Scholar 

  50. European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) (2006) Hallucinogenic mushrooms: an emerging trend case study. EMCDDA Thematic Papers, Lisbon

    Google Scholar 

  51. Eugster CH, Mueller GF, Good R (1965) The active ingredients from Amanita muscaria: ibotenic acid and muscazone. Tetrahedron Lett 23:1813–1815

    Article  Google Scholar 

  52. Theobald W, Büch O, Kunz HA, Krupp P, Stenger EG, Heimann H (1968) Pharmacological and experimental psychological studies with 2 components of fly agaric (Amanita muscaria). Arzneimitt Forsch 18(3):311

    CAS  PubMed  Google Scholar 

  53. Sarma B, Ghormade PS, Dash SK, Chavali K (2019) Fatal mushroom poisoning: a case-series. J Indian Soc Toxicol 15(1):48–53

    Article  Google Scholar 

  54. Reis FS, Heleno SA, Barros L, Sousa MJ, Martins A, Santos-Buelga C, Ferreira IC (2011) Toward the antioxidant and chemical characterization of mycorrhizal mushrooms from Northeast Portugal. J Food Sci 76(6):C824–C830

    Article  CAS  PubMed  Google Scholar 

  55. Ragupathi V, Stephen A, Arivoli D, Kumaresan S (2018) Antioxidant activity of some wild mushrooms from southern Western Ghats, India. Int J Pharm Drug Anal 6(2):72–79

    Google Scholar 

  56. El Babili F, Chatelain C, Souchard JP (2019) Chemical study of some fungi: evaluation of their antioxidant and xanthine oxidase effects. Jpn J Med 2:4

    Google Scholar 

  57. Nowacka N, Nowak R, Drozd M, Olech M, Los R, Malm A (2015) Antibacterial, antiradical potential and phenolic compounds of thirty-one polish mushrooms. PLoS One 10(10):e0140355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Barceloux DG (2008) Medical toxicology of natural substances: foods, fungi, medicinal herbs, plants, and venomous animals. Wiley, Hoboken

    Book  Google Scholar 

  59. Stříbrný J, Sokol M, Merová B, Ondra P (2012) GC/MS determination of ibotenic acid and muscimol in the urine of patients intoxicated with Amanita pantherina. Int J Med Toxicol Legal Med 126(4):519–524

    Article  Google Scholar 

  60. Satora L, Pach D, Ciszowski K, Winnik L (2006) Panther cap Amanita pantherina poisoning case report and review. Toxicon 47(5):605–607

    Article  CAS  PubMed  Google Scholar 

  61. Vendramin A, Brvar M (2014) Amanita muscaria and Amanita pantherina poisoning: two syndromes. Toxicon 90:269–272

    Article  CAS  PubMed  Google Scholar 

  62. Trim GM, McKeown RV, Le Couteur DG, Lepp H, Hall MJ, McCaughan GW, Duggin GG (1999) Poisoning by Amanita phalloides (“deathcap”) mushrooms in the Australian capital territory. Med J Aust 171(5):247–249

    Article  CAS  PubMed  Google Scholar 

  63. Vetter J (1998) Toxins of Amanita phalloides. Toxicon 36(1):13–24

    Article  CAS  PubMed  Google Scholar 

  64. Bonnet MS, Basson PW (2002) The toxicology of Amanita phalloides. Homeopathy 91(04):249–254

    Article  CAS  PubMed  Google Scholar 

  65. Garcia J, Costa VM, Carvalho A, Baptista P, de Pinho PG, de Lourdes BM, Carvalho F (2015) Amanita phalloides poisoning: mechanisms of toxicity and treatment. Food Chem Toxicol 86:41–55

    Article  CAS  PubMed  Google Scholar 

  66. Marmion VJ, Wiedemann TEJ (2002) The death of Claudius. J R Soc Med 95(5):260–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Healey K, Woo OF, Olson KR, Pond SM, Seward J, Becker CE (1982) Amanita phalloides-type mushroom poisoning. West J Emerg Med 137(4):282

    Google Scholar 

  68. Pauli JL, Foot CL (2005) Fatal muscarinic syndrome after eating wild mushrooms. Med J Aust 182(6):294–295

    Article  PubMed  Google Scholar 

  69. Kumar A, White J, Christie RJ, Dimasi N, Gao C (2017) Antibody-drug conjugates. Annu Rep Med Chem 50:441–480

    CAS  Google Scholar 

  70. Zheleva A, Gadjeva V, Popova S (2004) Antioxidant properties of Amanita phalloides mushroom toxins. Trakia J Sci 2(3):28–30

    Google Scholar 

  71. Zheleva A, Tolekova A, Zhelev M, Dobreva Z, Halacheva K, Popova S (2005) In vivo antioxidant and prooxidant properties of Amanita phalloides mushroom toxins. Trakia J Sci 3:34–38

    Google Scholar 

  72. Luo H, Hallen-Adams HE, Scott-Craig JS, Walton JD (2010) Colocalization of amanitin and a candidate toxin-processing prolyl oligopeptidase in Amanita basidiocarps. Eukaryot Cell 9(12):1891–1900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kim CS, Jo JW, Kwag YN, Kim JH, Shrestha B, Sung GH, Han SK (2013) Taxonomic study of Amanita subgenus Lepidella and three unrecorded Amanita species in Korea. Mycobiology 41(4):183–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tyler VE Jr, Groeger D (1964) Amanita Alkaloids. II. Amanita citrina and Amanita porphyria. Planta Med 12:397

    Article  CAS  Google Scholar 

  75. Vargas N, Bernal A, Sarria V, Franco-Molano A, Restrepo S (2011) Amatoxin and phallotoxin composition in species of the genus Amanita in Colombia: a taxonomic perspective. Toxicon 58(6–7):583–590

    Article  CAS  PubMed  Google Scholar 

  76. Walton J (2018) Chemistry of the Amanita PEPTIDE toxins. In: The cyclic peptide toxins of Amanita and other poisonous mushrooms. Springer, Cham, pp 19–57

    Chapter  Google Scholar 

  77. Reis FS, Pereira E, Barros L, Sousa MJ, Martins A, Ferreira IC (2011b) Biomolecule profiles in inedible wild mushrooms with antioxidant value. Molecules 16(6):4328–4338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schumacher T, Høiland K (1983) Mushroom poisoning caused by species of the genus Cortinarius Fries. Arch Toxicol 53(2):87–106

    Article  CAS  PubMed  Google Scholar 

  79. Danel VC, Saviuc PF, Garon D (2001) Main features of Cortinarius spp. poisoning: a literature review. Toxicon 39(7):1053–1060

    Article  CAS  PubMed  Google Scholar 

  80. Garnica S, Wei M, Oberwinkler F (2003) Morphological and molecular phylogenetic studies in South American Cortinarius species. Mycol Res 107(10):1143–1156

    Article  CAS  PubMed  Google Scholar 

  81. Wu F, Zhou LW, Yang ZL, Bau T, Li TH, Dai YC (2019) Resource diversity of Chinese macrofungi: edible, medicinal and poisonous species. Fungal Divers 98:1–76

    Article  CAS  Google Scholar 

  82. Niskanen T, Laine S, Liimatainen K, Kytövuori I (2012) Cortinarius sanguineus and equally red species in Europe with an emphasis on northern European material. Mycologia 104(1):242–253

    Article  PubMed  Google Scholar 

  83. Tebbett IR, Kidd CBM, Caddy B, Robertson J, Tilstone WJ (1983) Toxicity of Cortinarius species. Trans Br Mycol Soc 81(3):636–638

    Article  Google Scholar 

  84. Michelot D, Tebbett I (1990) Poisoning by members of the genus Cortinarius – a review. Mycol Res 94(3):289–298

    Article  CAS  Google Scholar 

  85. Räisänen R, Nousiainen P, Hynninen PH (2002) Dermorubin and 5-chlorodermorubin natural anthraquinone carboxylic acids as dyes for wool. Text Res J 72(11):973–976

    Article  Google Scholar 

  86. Ge ZW, Jacobs A, Vellinga EC, Sysouphanthong P, van der Walt R, Lavorato C, Yi-Feng A, Yang ZL (2018) A multi-gene phylogeny of Chlorophyllum (Agaricaceae, Basidiomycota): new species, new combination and infrageneric classification. MycoKeys 32:65

    Article  Google Scholar 

  87. Lehmann PF, Khazan U (1992) Mushroom poisoning by Chlorophyllum molybdites in the Midwest United States. Mycopathologia 118(1):3–13

    Article  CAS  PubMed  Google Scholar 

  88. Yoshikawa K, Ikuta M, Arihara S, Matsumura E, Katayama S (2001) Two new steroidal derivatives from the fruit body of Chlorophyllum molybdites. Chem Pharm Bull 49(8):1030–1032

    Article  CAS  Google Scholar 

  89. Al-Fatimi M, Schröder G, Kreisel H, Lindequist U (2013) Biological activities of selected basidiomycetes from Yemen. Pharmazie 68(3):221–226

    CAS  PubMed  Google Scholar 

  90. Guzmán-Dávalos L, Mueller GM, Cifuentes J, Miller AN, Santerre A (2003) Traditional infrageneric classification of Gymnopilus is not supported by ribosomal DNA sequence data. Mycologia 95(6):1204–1214

    Article  PubMed  Google Scholar 

  91. Guzmán-Dávalos L, Herrera M (2006) A new bluing, probably hallucinogenic species of Gymnopilus P. Karst. (Agaricomycetideae) from Mexico. Int J Med Mushrooms 8(3):289–293

    Article  Google Scholar 

  92. Guzmán G, Allen JW, Gartz J (1998) A worldwide geographical distribution of the neurotropic fungi, an analysis and discussion. Ann Mus Civ Rovereto 14:189–280

    Google Scholar 

  93. Miyazaki S, Kitamura N, Nishio A, Tanaka S, Kayano T, Moriya T, Ichiyanagi T, Shimomura N, Shibuya I, Aimi T (2012) Gymnopilin-a substance produced by the hallucinogenic mushroom, Gymnopilus junonius-mobilizes intracellular Ca2+ in dorsal root ganglion cells. Biomed Res 33(2):111–118

    Article  CAS  PubMed  Google Scholar 

  94. Kayano T, Kitamura N, Miyazaki S, Ichiyanagi T, Shimomura N, Shibuya I, Aimi T (2014) Gymnopilins, a product of a hallucinogenic mushroom, inhibit the nicotinic acetylcholine receptor. Toxicon 81:23–31

    Article  CAS  PubMed  Google Scholar 

  95. Lee S, Ryoo R, Choi JH, Kim JH, Kim SH, Kim KH (2020) Trichothecene and tremulane sesquiterpenes from a hallucinogenic mushroom Gymnopilus junonius and their cytotoxicity. Arch Pharm Res 43:1–10

    Google Scholar 

  96. Hatfield GM, Valdes LJ (1978) The occurrence of psilocybin in Gymnopilus species. Lloydia 41(2):140–144

    CAS  PubMed  Google Scholar 

  97. Beatriz Pomilio A, Maris Battista S, Alonso A (2019) Mushroom poisonings. Part 4: early-onset syndromes with complex symptoms. Acta Bioquim Clin L 53(3):361–396

    Google Scholar 

  98. Yin X, Yang AA, Gao JM (2019) Mushroom toxins: chemistry and toxicology. J Agric Food Chem 67(18):5053–5071

    Article  CAS  PubMed  Google Scholar 

  99. Ragupathi V, Stephen A, Arivoli D, Kumaresan S (2018b) Antibacterial activity, in vitro antioxidant potential and GC-MS characterization of methanolic extract of Gymnopilus junonius, a wild mushroom from southern Western Ghats, India. Eur J Biomed 5(3):650–657

    CAS  Google Scholar 

  100. Karlson-Stiber C, Persson H (2003) Cytotoxic fungi – an overview. Toxicon 42(4):339–349

    Article  CAS  PubMed  Google Scholar 

  101. Dart RC (ed) (2004) Medical toxicology. Lippincott Williams & Wilkins, Philadelphia, pp 1719–1735

    Google Scholar 

  102. Diaz JH (2005) Syndromic diagnosis and management of confirmed mushroom poisonings. Crit Care Med 33(2):427–436

    Article  PubMed  Google Scholar 

  103. Deb S, Singh RK (2017) Ascosporogenesis in Gyromitra esculenta (Discinaceae, Pezizales), a poisonous mushroom of North East India. Indian Forester 143(1):69–71

    Google Scholar 

  104. Perisetti A, Raghavapuram S, Sheikh AB, Yendala R, Rahman R, Shanshal M, Thein KZ, Farooq A (2018) Mushroom poisoning mimicking painless progressive jaundice: a case report with review of the literature. Cureus 10(4):e2436

    PubMed  PubMed Central  Google Scholar 

  105. Arłukowicz-Grabowska M, Wójcicki M, Raszeja-Wyszomirska J, Szydłowska-Jakimiuk M, Piotuch B, Milkiewicz P (2019) Acute liver injury, acute liver failure and acute on chronic liver failure: a clinical spectrum of poisoning due to Gyromitra esculenta. Ann Hepatol 18(3):514–516

    Article  PubMed  Google Scholar 

  106. Leal AR, Barros L, Barreira JC, Sousa MJ, Martins A, Santos-Buelga C, Ferreira IC (2013) Portuguese wild mushrooms at the “pharma–nutrition” interface: nutritional characterization and antioxidant properties. Food Res Int 50(1):1–9

    Article  CAS  Google Scholar 

  107. Tel G, Ozturk M, Duru ME, Turkoglu A (2015) Antioxidant and anticholinesterase activities of five wild mushroom species with total bioactive contents. Pharm Biol 53(6):824–830

    Article  CAS  PubMed  Google Scholar 

  108. Cortez VG, Silveira RMBD (2007) Species of Hypholoma (Fr.) P. Kumm.(Strophariaceae, Agaricales) in Rio Grande do Sul State, Brazil. Acta Bot Bras 21(3):609–621

    Article  Google Scholar 

  109. Stamets P (2011) Growing gourmet and medicinal mushrooms, 3rd edn. Ten Speed Press, Berkeley, p 239

    Google Scholar 

  110. Rahaman M, Aminuzzaman FM, Hossain MB, Rashid SN, Rumainul MI (2016) Biodiversity, distribution and morphological characterization of mushrooms in the south western region of Bangladesh. Int J Curr Adv 4(3):60–79

    CAS  Google Scholar 

  111. Suzuki K, Fujimoto H, Yamazaki M (1983) The toxic principles of Naematoloma fasciculare. Chem Pharm Bull 31(6):2176–2178

    Article  CAS  Google Scholar 

  112. Doljak B, Stegnar M, Urleb U, Kreft S, Umek A, Ciglaric M, Strukelj B, Popovic T (2001) Screening for selective thrombin inhibitors in mushrooms. Blood Coagul Fibrinolysis 12(2):123–128

    Article  CAS  PubMed  Google Scholar 

  113. Nomura C, Masayama A, Yamaguchi M, Sakuma D, Kajimura K (2017) PCR-based method for the detection of toxic mushrooms causing food-poisoning incidents. J Food Hyg Soc Jpn Shokuhin Eiseigaku Zasshi 58(3):132–142

    Article  Google Scholar 

  114. Barros L, Venturini BA, Baptista P, Estevinho LM, Ferreira IC (2008) Chemical composition and biological properties of Portuguese wild mushrooms: a comprehensive study. J Agric Food Chem 56(10):3856–3862

    Article  CAS  PubMed  Google Scholar 

  115. Yang Z, Feng B (2013) The genus Omphalotus (Omphalotaceae) in China. Mycosystema 32(3):545–556

    Google Scholar 

  116. Castro ML, Barreiro F, Martínez JJ (2011) Omphalotus olearius (DC: Fr.) Singer: a new non-native species for Galicia (Spain)? Mykes 14:7–11

    Google Scholar 

  117. Schobert R, Seibt S, Mahal K, Ahmad A, Biersack B, Effenberger-Neidnicht K, Padhye S, Sarkar FH, Mueller T (2011) Cancer selective metallocenedicarboxylates of the fungal cytotoxin illudin M. J Med Chem 54(18):6177–6182

    Article  CAS  PubMed  Google Scholar 

  118. Ramspeck D (2014) Omphalotus olearius. Iowa Rev 44(2):123–125

    Article  Google Scholar 

  119. Kalyoncu F, Oskay M, Kayalar H (2010) Antioxidant activity of the mycelium of 21 wild mushroom species. Mycology 1(3):195–199

    Article  CAS  Google Scholar 

  120. Sevindik M, Akgül H, Bal C (2017) Determination of oxidative stress status of Ompholatus olearius gathered from Adana and Antalya provinces in Turkey. Sakarya Univ J Sci 21(3):324–327

    Google Scholar 

  121. Morel S, Arnould S, Vitou M, Boudard F, Guzman C, Poucheret P, Fons F, Rapior S (2018) Antiproliferative and antioxidant activities of wild Boletales mushrooms from France. Int J Med Mushrooms 20(1):13–29

    Article  PubMed  Google Scholar 

  122. Bresinsky A, Jarosch M, Fischer M, Schönberger I, Wittmann-Bresinsky B (1999) Phylogenetic relationships within Paxillus s. I.(Basidiomycetes, Boletales): separation of a Southern hemisphere genus. Plant Biol 1(03):327–333

    Article  CAS  Google Scholar 

  123. Hubregtse J (2019) Fungi in Australia. Basidiomycota (Agaricomycotina II) revision, 2.2. Field Naturalists Club of Victoria Inc., Blackburn

    Google Scholar 

  124. Braesel J, Götze S, Shah F, Heine D, Tauber J, Hertweck C, Tunlid A, Stallforth P, Hoffmeister D (2015) Three redundant synthetases secure redox-active pigment production in the basidiomycete Paxillus involutus. Chem Biol 22(10):1325–1334

    Article  CAS  PubMed  Google Scholar 

  125. Verma N, Bhalla A, Singh S (2019) Mushroom poisoning. Principles and practice of critical care toxicology. Jaypee Brothers Medical Pub, New Delhi

    Google Scholar 

  126. Falandysz J, Kunito T, Kubota R, Brzostowski A, Mazur A, Falandysz JJ, Tanabe S (2007) Selected elements of poison Pax Paxillus involutus. J Envıron Sci Health A 42(8):1161–1168

    Article  CAS  Google Scholar 

  127. Zmitrovich IV, Belova NV, Psurtseva NV, Wasser SP (2019) The brown roll-rim mushroom, Paxillus involutus (Agaricomycetes), as a promising biomedical research resource. Int J Med Mushrooms 21(12):1241–1247

    Article  PubMed  Google Scholar 

  128. Kalyoncu F, Oskay M, Sağlam H, Erdoğan TF, Tamer AÜ (2010b) Antimicrobial and antioxidant activities of mycelia of 10 wild mushroom species. J Med Food 13(2):415–419

    Article  CAS  PubMed  Google Scholar 

  129. Çolak ÖF, Rasul A, Sevindik M (2018) A study on Paxillus involutus: total antioxidant and oxidant potential. Turk J Life Sci 3(2):244–247

    Google Scholar 

  130. Liu Y, Zhou Y, Liu M, Wang Q, Li Y (2018) Extraction optimization, characterization, antioxidant and immunomodulatory activities of a novel polysaccharide from the wild mushroom Paxillus involutus. Int J Biol Macromol 112:326–332

    Article  CAS  PubMed  Google Scholar 

  131. Zhang JX, Lv JH, Zhao LQ, Shui XX, Zhang J, Wang LA (2019) Coumarin-pi, a new antioxidant coumarin derivative from Paxillus involutus. Nat Prod Res 12:1–4

    Google Scholar 

  132. Byrne AR, Šlejkovec Z, Stijve T, Fay L, Goessler W, Gailer J, Lrgolic KJ (1995) Arsenobetaine and other arsenic species in mushrooms. Appl Organomet Chem 9(4):305–313

    Article  CAS  Google Scholar 

  133. Berger KJ, Guss DA (2005) Mycotoxins revisited: part II. J Emerg Med 28(2):175–183

    Article  PubMed  Google Scholar 

  134. Jo WS, Hossain MA, Park SC (2014) Toxicological profiles of poisonous, edible, and medicinal mushrooms. Mycobiology 42(3):215–220

    Article  PubMed  PubMed Central  Google Scholar 

  135. Sevindik M, Akgul H, Korkmaz AI, Sen I (2018) Antioxidant potantials of Helvella leucomelaena and Sarcosphaera coronaria. J Bacteriol Mycol 6(2):00173

    Google Scholar 

  136. Zhao K, Wu G, Yang ZL (2014) A new genus, Rubroboletus, to accommodate Boletus sinicus and its allies. Phytotaxa 188(2):61–77

    Article  Google Scholar 

  137. Patocka J (2018) Bolesatine, a toxic protein from the mushroom rubroboletus satanas. Milit Med Sci Lett 87(1):14–20

    Article  Google Scholar 

  138. Janda V, Kříž M (2016) Rubroboletus satanas f. crataegi, validly published name for xanthoid form of Rubroboletus satanas. Czech Mycol 68(1):109–110

    Article  Google Scholar 

  139. Carteret X, Buyck B (2013) Type studies on some Russula species described by CH Peck. Cryptogam Mycol 34(4):367–391

    Article  Google Scholar 

  140. Çolak ÖF, Işıloğlu M, Kaygusuz O, Battistin E, Solak MH (2018) Ten new and interesting Russula (Basidiomycota: Russulales) records for the mycobiota of Turkey. Nova Hedwigia 106(3–4):499–518

    Google Scholar 

  141. Khatua S, Dutta AK, Acharya K (2015) Prospecting Russula senecis: a delicacy among the tribes of West Bengal. Peer J 3:e810

    Article  PubMed  PubMed Central  Google Scholar 

  142. Rubel W, Arora D (2008) A study of cultural bias in field guide determinations of mushroom edibility using the iconic mushroom, Amanita muscaria, as an example. Econ Bot 62(3):223–243

    Article  Google Scholar 

  143. Roberts P, Evans S (2014) The book of fungi: a life-size guide to six hundred species from around the world. University of Chicago Press, Chicago

    Google Scholar 

  144. Kaewnarin K, Suwannarach N, Kumla J, Choonpicharn S, Tanreuan K, Lumyong S (2016) Characterization of polysaccharides from wild edible mushrooms from Thailand and their antioxidant, antidiabetic, and antihypertensive activities. J Funct Foods 27:352–364

    Article  CAS  Google Scholar 

  145. Jiamworanunkul S, Chomcheon P, Mirasing V (2019) Screening of antimicrobial and antioxidant properties of ethyl acetate extracts from wild edible mushrooms. Thai J Pharm Sci 43(3):161–167

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sevindik, M. (2022). Poisonous Mushroom (Nonedible) as an Antioxidant Source. In: Ekiert, H.M., Ramawat, K.G., Arora, J. (eds) Plant Antioxidants and Health. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-78160-6_8

Download citation

Publish with us

Policies and ethics