Skip to main content

A Higher Order Manifold-Valued Convolutional Neural Network with Applications to Diffusion MRI Processing

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12729))

Included in the following conference series:

Abstract

In this paper, we present a novel generalization of the Volterra Series, which can be viewed as a higher-order convolution, to manifold-valued functions. A special case of the manifold-valued Volterra Series (MVVS) gives us a natural extension of the ordinary convolution to manifold-valued functions that we call, the manifold-valued convolution (MVC). We prove that these generalizations preserve the equivariance properties of the Euclidean Volterra Series and the traditional convolution operator. We present novel deep network architectures using the MVVS and the MVC operations which are then validated via two experiments. These include, (i) movement disorder classification from diffusion magnetic resonance images (dMRI), and (ii) fiber orientation distribution function (fODF) reconstruction from compressed sensed dMRIs. In both the experiments, MVVS and MVC networks outperform the state-of-the-art.

J.J. Bouza and C.H. Yang—Contributed equally to the work presented here.

This research was in part funded by the NSF grant IIS-1724174 to BCV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afsari, B.: Riemannian \({L}^p\) center of mass: existence, uniqueness, and convexity. Proc. Am. Math. Soc. 139(02), 655 (2011). https://doi.org/10.1090/S0002-9939-2010-10541-5

    Article  MathSciNet  MATH  Google Scholar 

  2. Archer, D., Vaillancourt, D., Coombes, S.: A template and probabilistic atlas of the human sensorimotor tracts using diffusion MRI. Cereb. Cortex 28, 1–15 (2017). https://doi.org/10.1093/cercor/bhx066

    Article  Google Scholar 

  3. Banerjee, M., Chakraborty, R., Bouza, J., Vemuri, B.C.: A higher order convolutional network with group equivariance for homogeneous manifolds. IEEE Trans. Pattern Anal. Mach. Intell. 1, 1 (2020). https://doi.org/10.1109/TPAMI.2020.3035130

    Article  Google Scholar 

  4. Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994)

    Article  Google Scholar 

  5. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond Euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017)

    Article  Google Scholar 

  6. Brooks, D., Schwander, O., Barbaresco, F., Schneider, J.Y., Cord, M.: Riemannian batch normalization for SPD neural networks. In: Advances in NeurIPS, pp. 15463–15474 (2019)

    Google Scholar 

  7. Chakraborty, R., Bouza, J., Manton, J., Vemuri, B.C.: Manifoldnet: a deep neural network for manifold-valued data with applications. IEEE Trans. Pattern Anal. Mach. Intell. 1, 1 (2020)

    Google Scholar 

  8. Chakraborty, R., Bouza, J., Manton, J., Vemuri, B.C.: A deep neural network for manifold-valued data with applications to neuroimaging. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 112–124. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_9

    Chapter  Google Scholar 

  9. Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Advances in NeurIPS, pp. 4869–4880 (2019)

    Google Scholar 

  10. Defferrard, M., Milani, M., Gusset, F., Perraudin, N.: Deepsphere: a graph-based spherical CNN. In: ICLR (2019)

    Google Scholar 

  11. Dell’Acqua, F., Tournier, J.D.: Modelling white matter with spherical deconvolution: How and why? NMR Biomed. 32, e3945 (2017). https://doi.org/10.1002/nbm.394518

    Article  Google Scholar 

  12. Gorski, K.M., et al.: Healpix: a framework for high-resolution discretization and fast analysis of data distributed on the sphere. Astrophys. J. 622(2), 759 (2005)

    Article  Google Scholar 

  13. Groisser, D.: Newton’s method, zeroes of vector fields, and the Riemannian center of mass. Adv. Appl. Math. 33(1), 95–135 (2004). https://doi.org/10.1016/j.aam.2003.08.003

    Article  MathSciNet  MATH  Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE CVPR, pp. 770–778 (2016)

    Google Scholar 

  15. Huang, Z., Van Gool, L.J.: A Riemannian network for SPD matrix learning. In: AAAI, vol. 1, p. 3 (2017)

    Google Scholar 

  16. Huang, Z., Wu, J., Van Gool, L.: Building deep networks on Grassmann manifolds. In: 32 AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  17. Jeurissen, B., Tournier, J.D., Dhollander, T., Connelly, A., Sijbers, J.: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. Neuroimage 103, 411–426 (2014)

    Article  Google Scholar 

  18. Kumar, R., Banerjee, A., Vemuri, B.C., Pfister, H.: Trainable convolution filters and their application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1423–1436 (2011)

    Article  Google Scholar 

  19. Lee, J.M.: Riemannian Manifolds. GTM, vol. 176. Springer, New York (1997). https://doi.org/10.1007/b98852

    Book  Google Scholar 

  20. Lin, Z., et al.: Fast learning of fiber orientation distribution function for MR tractography using convolutional neural network. Med. Phys. 46(7), 3101–3116 (2019)

    Article  Google Scholar 

  21. Lucena, O., Vos, S.B., Vakharia, V., Duncan, J., Ourselin, S., Sparks, R.: Convolutional neural networks for fiber orientation distribution enhancement to improve single-shell diffusion MRI tractography. In: Bonet-Carne, E., Hutter, J., Palombo, M., Pizzolato, M., Sepehrband, F., Zhang, F. (eds.) Computational Diffusion MRI. MV, pp. 101–112. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52893-5_9

    Chapter  MATH  Google Scholar 

  22. Lustig, M., Donoho, D., Pauly, J.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  23. Fréchet, M.: Les éléments aléatoires de nature quelconque dans un espace distancié. Annales de l’I. H. P., 10(4), 215–310 (1948)

    Google Scholar 

  24. Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. Int. J. Comput. Vis. 66(1), 41–66 (2006). https://doi.org/10.1007/s11263-005-3222-z

    Article  MATH  Google Scholar 

  25. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Advances in NeurIPS, pp. 3856–3866 (2017)

    Google Scholar 

  26. Schetzen, M.: The Volterra and Wiener Theories of Nonlinear Systems (1980)

    Google Scholar 

  27. Sedlar, S., Papadopoulo, T., Deriche, R., Deslauriers-Gauthier, S.: Diffusion MRI fiber orientation distribution function estimation using voxel-wise spherical U-net. In: Computational Diffusion MRI, MICCAI Workshop (2020)

    Google Scholar 

  28. Srivastava, A., Jermyn, I., Joshi, S.: Riemannian analysis of probability density functions with applications in vision. In: 2007 IEEE CVPR, pp. 1–8. IEEE (2007)

    Google Scholar 

  29. Tournier, J.D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35(4), 1459–1472 (2007)

    Article  Google Scholar 

  30. Tournier, J.D., et al.: Mrtrix3: a fast,flexible and open software framework for medical image processing and visualisation. Neuroimage 202, 116137 (2019)

    Google Scholar 

  31. Van Essen, D.C., et al.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baba C. Vemuri .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 665 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bouza, J.J., Yang, CH., Vaillancourt, D., Vemuri, B.C. (2021). A Higher Order Manifold-Valued Convolutional Neural Network with Applications to Diffusion MRI Processing. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds) Information Processing in Medical Imaging. IPMI 2021. Lecture Notes in Computer Science(), vol 12729. Springer, Cham. https://doi.org/10.1007/978-3-030-78191-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78191-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78190-3

  • Online ISBN: 978-3-030-78191-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics