Skip to main content

Transferable Condition Monitoring for Linear Guidance Systems Using Anomaly Detection

  • Conference paper
  • First Online:
Production at the Leading Edge of Technology (WGP 2021)

Part of the book series: Lecture Notes in Production Engineering ((LNPE))

Included in the following conference series:

Abstract

Condition monitoring is essential for the OEE of machine tools. Existing solutions are customized to specific settings. However, linear guidance systems commonly used in machine tools are exposed to varying process conditions. Thus, this contribution proposes a concept for a transferable condition monitoring system, which enables a static system to be applied to different settings. The solution is composed of a combination of data preparation methods, feature generation and an anomaly detection model. The system is demonstrated on two test beds with different linear guidance systems. The selected isolation forest for anomaly detection is trained on a series of experiments from one test bed before transferring the condition monitoring to the other test bed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cerrada, M., et al.: A review on data-driven fault severity assessment in rolling bearings. Mech. Syst. Signal Process. 99, 169–196 (2018)

    Article  Google Scholar 

  2. Cook, A.A., Mısırlı, G., Fan, Z.: Anomaly detection for IoT time-series data: a survey. IEEE Internet Things J. 7(7), 6481–6494 (2019)

    Article  Google Scholar 

  3. Ellinger, J., Semm, T., Benker, M., Kapfinger, P., Kleinwort, R., Zäh, M.F.: Feed drive condition monitoring using modal parameters. MM Sci. J. 4, 3206–3213 (2019)

    Article  Google Scholar 

  4. Fernández-Francos, D., Martínez-Rego, D., Fontenla-Romero, O., Alonso-Betanzos, A.: Automatic bearing fault diagnosis based on one-class ν-SVM. Comput. Ind. Eng. 64(1), 357–365 (2013)

    Article  Google Scholar 

  5. Galar, D., Kumar, U., Fuqing, Y.: RUL prediction using moving trajectories between SVM hyper planes. In: 2012 Proceedings Annual Reliability and Maintainability Symposium, pp. 1–6. IEEE (2012)

    Google Scholar 

  6. Hillenbrand, J., Fleischer, J.: Autoconfiguration of a vibration-based anomaly detection system with sparse a-priori knowledge using autoencoder networks. In: Behrens, B.-A., Brosius, A., Hintze, W., Ihlenfeldt, S., Wulfsberg, J.J. (eds.) WGP 2020. LNPE, pp. 518–527. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-662-62138-7_52

    Chapter  Google Scholar 

  7. Höflinger, F., Müller, J., Zhang, R., Reindl, L., Burgard, W.: A wireless micro inertial measurement unit. IEEE Trans. Instrum. Meas. 62(9), 2583–2595 (2013)

    Article  Google Scholar 

  8. Ikizoglu, S., Sahin, K., Atas, A., Kara, E., Cakar, T.: IMU Acceleration drift compensation for position tracking in ambulatory gait analysis. Proceedings of the 14th International Conference on Informatics in Control, Automation and Robotics, vol. 1, pp. 582–589 (2017)

    Google Scholar 

  9. Kim, M.S., Yun, J.P., Park, P.: An explainable convolutional neural network for fault diagnosis in linear motion guide. IEEE Trans. Ind. Inform. 17, 4036–4045 (2020)

    Article  Google Scholar 

  10. Kowalczuk, Z., Merta, T.: Evaluation of position estimation based on accelerometer data. In: Proceedings of the 10th International Workshop on Robot Motion Control, Poznan, Poland (2015)

    Google Scholar 

  11. Lawbootsa, S., Chommaungpuck, P., Srisertpol, J.: Linear bearing fault detection in operational condition using artificial neural network. In: ITM Web of Conferences, vol. 24. EDP Science (2019)

    Google Scholar 

  12. Li, C., Guo, L., Gao, H., Li, Y.: Similarity-measured isolation forest: anomaly detection method for machine monitoring data. IEEE Trans. Instrum. Meas. 70, 1–12 (2021)

    Google Scholar 

  13. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data (TKDD) 6(1), 1–39 (2012)

    Article  Google Scholar 

  14. Mizell, D.: Using gravity to estimate accelerometer orientation. In: Proceedings of the 7th IEEE International Symposium on Wearable Computers (ISWC) (2003)

    Google Scholar 

  15. Peng, Z.K., Peter, W.T., Chu, F.L.: A comparison study of improved Hilbert-Huang transform and wavelet transform: application to fault diagnosis for rolling bearing. Mech. Syst. Signal Process. 19(5), 974–988 (2005)

    Article  Google Scholar 

  16. Sutrisno, E., Oh, H., Vasan, A.S.S., Pecht, M.: Estimation of remaining useful life of ball bearings using data driven methodologies. In: 2012 IEEE Conference on Prognostics and Health Management, pp. 1–7. IEEE (2012)

    Google Scholar 

  17. Tedaldi, D., Pretto, A., Menegatti, E.: A robust and easy to implement method for IMU calibration without external equipments. In: 2014 IEEE International Conference on Robotics & Automation (ICRA) (2014)

    Google Scholar 

  18. Xi, T., Kehne, S., Fujita, T., Epple, A., Brecher, C.: Condition monitoring of ball-screw drives based on frequency shift. IEEE/ASME Trans. Mechatron. 25(3), 1211–1219 (2020)

    Article  Google Scholar 

  19. Widodo, R., Wada, C.: Attitude estimation using Kalman filtering: external acceleration compensation considerations. J. Sens. (2016)

    Google Scholar 

  20. Zhong, J., Yang, K.: Failure prediction for linear ball bearings based on wavelet transformation and self-organizing map. In: 2018 IEEE 4th International Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, pp. 34–38 (2018)

    Google Scholar 

Download references

Acknowledgements

The life cycle test bed was operated by Danny Staroszyk. We would like to thank Mr. Staroszyk for the acquisition and provision of the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Schwarzenberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schwarzenberger, M., Drowatzky, L., Wiemer, H., Ihlenfeldt, S. (2022). Transferable Condition Monitoring for Linear Guidance Systems Using Anomaly Detection. In: Behrens, BA., Brosius, A., Drossel, WG., Hintze, W., Ihlenfeldt, S., Nyhuis, P. (eds) Production at the Leading Edge of Technology. WGP 2021. Lecture Notes in Production Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-78424-9_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78424-9_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78423-2

  • Online ISBN: 978-3-030-78424-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics