Skip to main content

Wells Turbine as a Power Take-Off Mechanism for Wave Energy Converters

  • Chapter
  • First Online:
Ocean Wave Energy Systems

Part of the book series: Ocean Engineering & Oceanography ((OEO,volume 14))

  • 1120 Accesses

Abstract

Wells turbine is an axial flow bi-directional turbine used for wave energy conversion by Oscillating Water Column (OWC) system. Different variations of Wells turbine have been studied and tested to find out the best rotor geometry. A comprehensive review of Wells turbine is presented here to familiarize the reader with the state of the art of Wells turbine. Turbines are broadly classified into two types: monoplane and biplane, with further classifications including attachment of guide vanes and variation of blade pitch angles. Numerical optimization works carried out on air turbines for wave energy system are also presented in this chapter. Turbines with optimized geometry give a better performance compared to standard turbines in terms of overall system performance, efficiency, and energy absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clément, A., McCullen, P., Falcão, A., Fiorentino, A., Gardner, F., Hammarlund, K., Lemonis, G., Lewis, T., Nielsen, K., Petroncini, S., Pontes, M. T., Schild, P., Sjöström, B. O., Sørensen, H. C., & Thorpe, T. (2002). Wave energy in Europe: Current status and perspectives. Renewable and Sustainable Energy Reviews, 6(5), 405–431.

    Article  Google Scholar 

  2. Sannasiraj, S. A., & Sundar, V. (2016). Assessment of wave energy potential and its harvesting approach along the Indian coast. Renewable Energy, 99, 398–409.

    Article  Google Scholar 

  3. Drew, B., Plummer, A. R., & Sahinkaya, M. N. (2009). A review of wave energy converter technology. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 223(8), 887–902.

    Google Scholar 

  4. Sabzehgar, R., & Moallem, M. (2009). A review of ocean wave energy conversion systems. In Proceedings of the IEEE Electrical Power & Energy Conference (pp. 1–6).

    Google Scholar 

  5. Falcao, A. F. D. O. (2010). A review of wave energy extraction. Renewable and Sustainable Energy Reviews, 14, 899–918.

    Article  Google Scholar 

  6. Guedes Soares, C., Bhattacharjee, J., & Karmakar, D. (2014). Overview and prospects for development of wave and offshore wind energy. Brodogradnja/Shipbuilding, 65(2), 87–109.

    Google Scholar 

  7. López, I., Andreu, J., Ceballos, S., Martínez de Alegría, I., & Kortabarria, I. (2013). Review of wave energy technologies and the necessary power-equipment. Renewable and Sustainable Energy Reviews, 27, 413–434.

    Article  Google Scholar 

  8. Das, T. K., & Samad, A. (2020). Influence of stall fences on the performance of Wells turbine. Energy, 194, 116864.

    Google Scholar 

  9. Falcão, A. F. D. O., & Gato, L. M. C. (2012). Air turbines. In Sayigh A. A. (Ed.), Comprehensive renewable energy, ocean energy (Vol. 8, pp. 111–149). Elsevier.

    Google Scholar 

  10. Setoguchi, T., & Takao, M. (2006). Current status of self rectifying air turbines for wave energy conversion. Energy Conversion and Management, 47(15–16), 2382–2396.

    Article  Google Scholar 

  11. Falcão, A. F. D. O., & Henriques, J. C. C. (2016). Oscillating-water-column wave energy converters and air turbines: A review. Renewable Energy, 85, 1391–1424.

    Article  Google Scholar 

  12. Kaneko, K., Setoguchi, T., & Raghunathan, S. (1992). Self-rectifying turbines for wave energy conversion. International Journal of Offshore and Polar Engineering, 2(3), 238–240.

    Google Scholar 

  13. Masuda, Y. (1986). An experience of wave power generator through tests and improvement. In Falcao A. F. D. O. & Evans D. V. (Eds.), Hydrodynamics of ocean wave-energy utilization (pp. 445–452). Berlin: Springer.

    Google Scholar 

  14. Masuda, Y., & McCormick, M. (1986). Experiences in pneumatic wave energy conversion in Japan. In McCormick M. E. & Kim Y. C. (Eds.), Utilization of ocean waves—Wave to energy conversion, American Society of Civil Engineers (pp. 1–33).

    Google Scholar 

  15. Suzuki, M., Arakawa, C., & Takahashi, S. (2004). Performance of wave power generating system installed in breakwater at sakata port in Japan. In Proceedings of The 14th International Offshore and Polar Engineering Conference, Toulon, France, May, 2004 (vol. 1, pp. 23–28).

    Google Scholar 

  16. Ravindran, M., & Koola, P. (1991). Energy from sea waves: The Indian wave energy program. Current Science, 60, 676–680.

    Google Scholar 

  17. Falcao, A. F. D. O. (2000). The shoreline OWC wave power plant at the Azores. In Proceedings of the 4th European Wave Energy Conference, Denmark (pp. 42–47).

    Google Scholar 

  18. Boake, C. B., Whittaker, T. J. T., Folley, M., & Ellen, H. (2002). Overview and initial operational experience of the LIMPET wave energy plant. In Proceedings of The 12th International Offshore and Polar Engineering Conference, Japan, May 26–31 (pp. 586–594).

    Google Scholar 

  19. Zhang, D., Li, W., & Lin, Y. (2009). Wave energy in China: Current status and perspectives. Renewable Energy, 34(10), 2089–2092.

    Article  Google Scholar 

  20. Ortubia, I., De Aguileta, L. I. L., & Marqués, J. (2009). Mutriku wave power plant: From the thinking out to the reality. In 8th European Wave and Tidal Energy Conference, Sweden (pp. 319–329).

    Google Scholar 

  21. Wells, A. A. (1976). Fluid driven rotary transducer. British Patent Spec. No. 1595700.

    Google Scholar 

  22. Kaneko, K., & Setoguchi, T. (1988). Wells turbine for wave activated power generation, Patent No. JPS6385201 (A).

    Google Scholar 

  23. Dennis, T., Obeyesekera, B., Finnigan, T., & Alcorn, R. (2010). A blade pitch control mechanism. Patent No. US 2010/0290908 A1.

    Google Scholar 

  24. Carter, R. W. (2012). Bi directional axial flow turbine with self-pivoting blades for use in wave energy converter. Patent No. US2012/0124986 A1.

    Google Scholar 

  25. Arlitt, R., Carlous, T., & Tease, K. (2014). Rotor blade design for a Wells turbine, Patent No. US8678745 B2.

    Google Scholar 

  26. Arlitt, R., Banzhaf, H.-U., Starzmann, R., & Biskup, F. (2009). Air turbine for a wave power station, Patent No. WO2009089902.

    Google Scholar 

  27. Gato, L. M. C., & Falcão, A. F. D. O. (1988). Aerodynamics of the Wells turbine. International Journal of Mechanical Science, 30(6), 383–395.

    Article  Google Scholar 

  28. Raghunathan, S., & Tan, C. P. (1983). Aerodynamic performance of a Wells air turbine. Journal of Energy, 7(January), 226–230.

    Article  Google Scholar 

  29. Sheldahl, R. E., & Klimas, P. C. (1981). Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines. Sandia National Laboratories Energy Report, The United States of America.

    Google Scholar 

  30. Raghunathan, S., & Tan, C. P. (1996). The performance of biplane Wells turbine. Journal of Energy, 118(7), 210–215.

    Google Scholar 

  31. Gareev, A. (2011). Analysis of variable pitch air turbines for oscillating water column (OWC) wave energy converters. Australia: University of Woollongong.

    Google Scholar 

  32. Raghunathan, S. (1995). The Wells air turbine for wave energy conversion. Progress in Aerospace Sciences, 31(4), 335–386.

    Article  Google Scholar 

  33. Raghunathan, S. (1995). A methodology for Wells turbine design for wave energy conversion. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 209(31), 221–232.

    Google Scholar 

  34. Raghunathan, S., & Tan, C. P. (1981). Performance of the Wells turbine at starting. Journal of Energy, 6(6), 430–431.

    Article  Google Scholar 

  35. Watterson, J. K., & Raghunathan, S. (1998). Computed effects of solidity on Wells turbine performance. JSME International Journal, Series B, 41(1), 177–183.

    Article  Google Scholar 

  36. Raghunathan, S., Setoguchi, T., & Kaneko, K. (1994). Aerodynamics of monoplane Wells turbine—A review. International Journal of Offshore and Polar Engineering, 4(1), 68–75.

    Google Scholar 

  37. Halder, P., & Samad, A. (2015). Tip leakage effect on Wells turbine. In Renewable Energies Offshore (pp. 555–560).

    Google Scholar 

  38. Halder, P., Samad, A., Kim, J.-H., & Choi, Y.-S. (2015). High performance ocean energy harvesting turbine design—A new casing treatment scheme. Energy, 86, 219–231.

    Article  Google Scholar 

  39. Taha, Z., Sugiyono, Tuan Ya, T. M. Y. S., & Sawada, T. (2011). Numerical investigation on the performance of Wells turbine with non-uniform tip clearance for wave energy conversion. Applied Ocean Research, 33(4), 321–331.

    Google Scholar 

  40. Kim, T. H., Setoguchi, T., Kinoue, Y., & Kaneko, K. (2001). Effects of blade geometry on performance of Wells turbine for wave power conversion. Journal of Thermal Science, 10(4), 293–300.

    Article  Google Scholar 

  41. Webster, M., & Gato, L. M. C. (2003). The effect of rotor blade shape on the performance of Wells turbine. International Journal of Offshore and Polar Engineering, 11(3), 227–230.

    Google Scholar 

  42. Setoguchi, T. (2003). Effect of rotor geometry on the performance of Wells turbine. In Proceedings of the thirteenth International Polar and Offshore Engineering Conference, Honolulu, Hawaii, USA May 25–30, 2003 (pp. 374–381).

    Google Scholar 

  43. Takao, M., Thakker, A., Abdulhadi, R., & Setoguchi, T. (2006). Effect of blade profile on the performance of a large-scale Wells turbine for wave-energy conversion. International Journal of Sustainable Energy, 25(1), 53–61.

    Article  Google Scholar 

  44. Thakker, A., & Abdulhadi, R. (2007). Effect of blade profile on the performance of wells turbine under unidirectional sinusoidal and real sea flow conditions. International Journal of Rotating Machinery, 2007, 1–8, Article ID 51598.

    Google Scholar 

  45. Setoguchi, T., Kim, T. W., Takao, M., Thakker, A., & Raghunathan, S. (2004). The effect of rotor geometry on the performance of a Wells turbine for wave energy conversion. International Journal of Ambient Energy, 25(3), 137–150.

    Article  Google Scholar 

  46. Suzuki, M., & Arakawa, C. (2008). Influence of blade profiles on flow around Wells turbine. International Journal of Fluid Machinery and Systems, 1(1), 148–154.

    Article  Google Scholar 

  47. Webster, M., & Superior, I. (1998). The effect of rotor blade sweep on the performance of the Wells turbine. In Proceeding of the Eighth International Polar and Offshore Engineering Conference, Montreal, Canada, May 24–29, 1998 (pp. 94–99).

    Google Scholar 

  48. Kim, T. H., Setoguchi, T., Kaneko, K., & Raghunathan, S. (2002). Numerical investigation on the effect of blade sweep on the performance of Wells turbine. Renewable Energy, 25(2), 235–248.

    Article  Google Scholar 

  49. Starzmann, R., & Carolus, T. (2013). Effect of blade skew strategies on the operating range and aeroacoustic performance of the Wells turbine. Journal of Turbomachinery, 136(1), 11003.

    Article  Google Scholar 

  50. Govardhan, M., & Chauhan, V. S. (2014). Numerical studies on performance improvement of self-rectifying air turbine for wave energy conversion. Engineering Applications of Computational Fluid Mechanics, 1(1), 57–70.

    Article  Google Scholar 

  51. Soltanmohamadi, R., & Lakzian, E. (2015). Improved design of Wells turbine for wave energy conversion using entropy generation. Meccanica, 51(8), 1–10.

    Google Scholar 

  52. Takao, M., Takasaki, K., Okuhara, S., & Setoguchi, T. (2014). Wells turbine for wave energy conversion-improvement of stall characteristics by the use of 3-dimensional blades. Journal of Fluid Science and Technology, 9(3), 1–5.

    Article  Google Scholar 

  53. Takao, M., Takasaki, K., Tsunematsu, T., Alam, M. M. A., & Setoguchi, T. (2015). Wells turbines with 3-dimensional blades-the performance under unsteady flow conditions. In Proceedings of the ASME-JSME-KSME 2015 Joint Fluids Engineering Conference AJK Fluids 2015 (pp. 1–4).

    Google Scholar 

  54. Takasaki, K., Takao, M., & Setoguchi, T. (2014). Effect of blade shape on the performance of Wells turbine for wave energy conversion. International Journal of Mechanical, Aerospace, Industrial and Mechatronics Engineering, 8(12), 1999–2002.

    Google Scholar 

  55. Halder, P., & Samad, A. (2015). Wave energy harvesting turbine: Performanc enhancement. Procedia Engineering, 116, 97–102, Apac.

    Google Scholar 

  56. Takao, M., Setoguchi, T., Kinoue, Y., & Kaneko, K. (2007). Wells turbine with end plates for wave energy conversion. Ocean Engineering, 34(11–12), 1790–1795.

    Article  Google Scholar 

  57. Takao, M., Setoguchi, T., Kinoue, Y., & Kaneko, K. (2006). Effect of end plates on the performence of a wells turbine for wave energy conversion. Journal of Thermal Science, 15(4), 319–323.

    Article  Google Scholar 

  58. Takao, M., Setoguchi, T., Kinoue, Y., Kaneko, K., & Nagata, S. (2006). Improvement of Wells turbine performance by means of end plate. In Proceedings of the Sixteenth (2006) International Offshore and Polar Engineering Conference (Vol. 4, pp. 480–484).

    Google Scholar 

  59. Cui, Y., & Hyun, B.-S. (2016). Numerical study on Wells turbine with penetrating blade tip treatments for wave energy conversion. International Journal of Naval Architecture and Ocean Engineering, 2016.

    Google Scholar 

  60. Gato, L. M. C., & Curran, R. (1996). Performance of the biplane Wells turbine. Journal of offshore Mechanics and Arctic Engineering, 118, 210–215.

    Article  Google Scholar 

  61. Kaneko, K., Setoguchi, T., Hamakawa, H., & Inoue, M. (1991). Biplane axial turbine for wave power generator. International Journal of Offshore and Polar Engineering, I(2), 122–128.

    Google Scholar 

  62. Shaaban, S. (2012). Insight analysis of biplane Wells turbine performance. Energy Conversion and Management, 59, 50–57.

    Article  Google Scholar 

  63. Gato, L. M. C., & Curran, R. (1996). Performance of the contrarotating Wells turbine. International Journal of Offshore and Polar Engineering, 6(1), 68–75.

    Google Scholar 

  64. Curran, B. R., Whittaker, T., Raghunathan, S., & Beattie, W. C. (1998). Performance prediction of contrarotating Wells turbine for wave energy converter design. Journal of Energy Engineering, 124(2), 35–53.

    Article  Google Scholar 

  65. Folley, M., Curran, R., & Whittaker, T. (2006). Comparison of LIMPET contra-rotating Wells turbine with theoretical and model test predictions. Ocean Engineering, 33(8–9), 1056–1069.

    Article  Google Scholar 

  66. Inoue, M., & Kaneko, K. (1985). Studies on Wells turbine for wave power generator (part 3: Effect of guide vanes). Bulletin of JSME, 28(243), 1986–1991.

    Article  Google Scholar 

  67. Gato, L. M. C., & Falcao, A. F. D. O. (1990). Performance of the Wells turbine with a double row of guide vanes. JSME International Journal, 33(2), 265–271.

    Google Scholar 

  68. Gato, L. M. C., Warfield, V., & Thakker, A. (1996). Performance of a high-solidity wells turbine for an OWC wave power plant. Journal of Energy Resources Technology, 118(December), 263–268.

    Google Scholar 

  69. Takao, M., Setoguchi, T., & Kaneko, K. (1996). Performance of Wells turbine with guide vanes for wave energy conversion. Journal of Thermal Science, 5(2), 82–87.

    Article  Google Scholar 

  70. Govardhan, M., Srikanth, J., & Gopalakrishna, G. (1997). Effect of guide vanes on the performance of the Wells turbine. Journal of Energy, Heat and Mass Transfer, 19, 187–197.

    Google Scholar 

  71. Setoguchi, T., Takao, M., & Kaneko, K. (1998). Effect of guide vanes on the performance of Wells turbine for wave energy conversion. International Journal of Offshore and Polar Engineering, 8(2), 155–160.

    Google Scholar 

  72. Govardhan, M., & Dhanasekaran, T. S. (1998). Effect of guide vanes on the performance of a variable chord self-rectifying air turbine. Journal of Thermal Science, 7(4), 209–217.

    Article  Google Scholar 

  73. Govardhan, M., & Dhanasekaran, T. S. (2002). Effect of guide vanes on the performance of a self-rectifying air turbine with constant and variable chord rotors. Renewable Energy, 26(2), 201–219.

    Article  Google Scholar 

  74. Suzuki, M., & Arakawa, C. (2000). Guide vanes effect of Wells turbine for wave power generator. International Journal of Offshore and Polar Engineering, 10(2), 153–159.

    Google Scholar 

  75. Suzuki, M. (2006). Design method of guide vane for Wells turbine. Journal of Thermal Science, 15(2), 126–131.

    Article  Google Scholar 

  76. Setoguchi, T., Santhakumar, S., Takao, M., Kim, T. H., & Kaneko, K. (2001). Effect of guide vane shape on the performance of a Wells turbine. Renewable Energy, 23(1), 1–15.

    Article  Google Scholar 

  77. Takao, M., Setoguchi, T., Kim, T. H., Kaneko, K., & Inoue, M. (2001). The performance of a Wells turbine with 3D guide vanes. International Journal of Offshore and Polar Engineering, 11(1), 72–76.

    Google Scholar 

  78. Halder, P., & Samad, A. (2014). Effect of guide vane angle on Wells turbine performance. In Proceedings of the ASME 2014 Gas Turbine India Conference (pp. 1–7).

    Google Scholar 

  79. Curran, R., & Gato, L. M. C. (1997). The energy conversion performance of several types of Wells turbine designs. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 211(2), 133–145.

    Google Scholar 

  80. Gato, L. M. C., & Falcao, A. F. D. O. (1989). Aerodynamics of the Wells turbine: Control by swinging rotor blades. International Journal of Mechanical Science, 31(6), 425–434.

    Article  Google Scholar 

  81. Setoguchi, T., Santhakumar, S., Takao, M., Kim, T. H., & Kaneko, K. (2003). A modified Wells turbine for wave energy conversion. Renewable Energy, 28(1), 79–91.

    Article  Google Scholar 

  82. Raghunathan, S., & Tan, C. P. (1985). Effect of blade profile on the performance of the Wells self-rectifying air turbine. International Journal of Heat and Fluid Flow, 6(1), 17–22.

    Article  Google Scholar 

  83. Inoue, M., Kaneko, K., Setoguchi, T., & Hamakawa, H. (1989). Air turbine with self-pitch controlled blades for wave power generator (estimation of performance by model testing). JSME International Journal, Series II, 32(1), 19–24.

    Google Scholar 

  84. Setoguchi, T., Kaneko, K., Takao, M., & Inoue, M. (1996). Air turbine with self-pitch-controlled blades for wave energy conversion. In Proceeding of the sixth International Polar and Offshore Engineering Conference, Los Angeles, USA May 26–31, 1996 (Vol. I pp. 70–74).

    Google Scholar 

  85. Setoguchi, T., Raghunathan, S., Takao, M., & Kaneko, K. (1997). Air turbine with self pitch controlled blades for wave energy conversion (estimation of performances in periodically oscillating flow). International Journal of rotating machinery, 3(4), 233–238.

    Article  Google Scholar 

  86. Takao, M., Setoguchi, T., Kaneko, K., & Inoue, M. (1997). Air turbine with self-pitch controlled blades for wave energy conversion. International Journal of Offshore and Polar Engineering, 7(4), 308–312.

    Google Scholar 

  87. Kim, T., Setoguchi, T., Kaneko, K., & Takao, M. (2001). The optimization of blade pitch settings of an air turbine using self-pitch-controlled blades for wave power conversion. Journal of Solar Energy Engineering, 123(4), 382.

    Article  Google Scholar 

  88. Kinoue, Y., Setoguchi, T., Kaneko, K., Takao, M., & Lee, Y. W. (2002). Air turbine using self-pitch-controlled blades for wave energy conversion. In Proceedings of the Twelfth (2002) International Offshore and Polar Engineering Conference (Vol. 3, pp. 668–673).

    Google Scholar 

  89. Tease, W. K. (2009). Dynamic response of a variable pitch Wells turbine. Acta Anaesthesiologica Scandinavica, 53(6), 1341–1347.

    Google Scholar 

  90. Taylor, J. R. M., & Caldwell, N. J. (1998). Design and construction of the variable-pitch air turbine for the Azores wave energy plant. Third European Wave Power Conference (October, pp. 7–12).

    Google Scholar 

  91. Kinoue, Y., Setoguchi, T., Kim, T. H., Kaneko, K., & Inoue, M. (2003). Mechanism of hysteretic characteristics of Wells turbine for wave power conversion. Transactions of the ASME, 125(March), 302–307.

    Google Scholar 

  92. Thakker, A., & Abdulhadi, R. (2008). The performance of Wells turbine under bi-directional airflow. Renewable Energy, 33(11), 2467–2474.

    Article  Google Scholar 

  93. Setoguchi, T., Kinoue, Y., Kim, T. H., Kaneko, K., & Inoue, M. (2003). Hysteretic characteristics of Wells turbine for wave power conversion. Renewable Energy, 28(13), 2113–2127.

    Article  Google Scholar 

  94. Kim, T. H., Kinoue, Y., Setoguchi, T., & Kaneko, K. (2002). Effects of hub-to-tip ratio and tip clearance on hysteretic characteristics of wells turbine for wave power conversion. Journal of Thermal Science, 11(3), 207–213.

    Article  Google Scholar 

  95. Paderi, M., & Puddu, P. (2013). Experimental investigation in a Wells turbine under bi-directional flow. Renewable Energy, 57, 570–576.

    Article  Google Scholar 

  96. Puddu, P., Paderi, M., & Manca, C. (2014). Aerodynamic characterization of a Wells turbine under bi-directional airflow. Energy Procedia, 45, 278–287.

    Article  Google Scholar 

  97. Setoguchi, T., Kinoue, Y., Moharnrnad, M., Kaneko, K., & Takao, M. (2004). Unsteady flow phenomena of Wells turbine in deep stall condition. In Proceedings of The 14th International Offshore and Polar Engineering Conference, Toulon, France, May 23–28,2004 (pp. 266–271).

    Google Scholar 

  98. Kinoue, Y., Setoguchi, T., Kim, T. H., Mamum, M., Kaneko, K., & Inoue, M. (2004). Hysteretic characteristics of the Wells turbine in a deep stall condition. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 218(3), 167–173.

    Google Scholar 

  99. Mamun, M. (2006). The study on the hysteretic characteristics of the Wells turbine in a deep stall condition. Japan: Saga University.

    Google Scholar 

  100. Ghisu, T., Puddu, P., & Cambuli, F. (2016). Physical explanation of the hysteresis in Wells turbines: A critical reconsideration. Journal of Fluids Engineering, 138(11), 1–9.

    Article  Google Scholar 

  101. Kinoue, Y., Kim, T. H., Setoguchi, T., Mohammad, M., Kaneko, K., & Inoue, M. (2004). Hysteretic characteristics of monoplane and biplane Wells turbine for wave power conversion. Energy Conversion and Management, 45(9–10), 1617–1629.

    Article  Google Scholar 

  102. Inoue, M., Kaneko, K., Setoguchi, T., & Shimamoto, K. (1986). Studies on Wells turbine for wave power generator (part 4: Starting and running characteristics in periodically oscillating flow). Bulletin of JSME, 29(250), 1177–1182.

    Article  Google Scholar 

  103. Inoue, M., Kaneko, K., Setoguchi, T., & Raghunathan, S. (1986). Simulation of starting characteristics of the Wells turbine. In 4th Joint Fluid Mechanics, Plasma Dynamics and Lasers Conference.

    Google Scholar 

  104. Kim, T. H., Takao, M., Setoguchi, T., Kaneko, K., & Inoue, M. (2001). Performance comparison of turbines for wave power conversion. International Journal of Thermal Sciences, 40(7), 681–689.

    Article  Google Scholar 

  105. Baños, R., Manzano-Agugliaro, F., Montoya, F. G., Gil, C., Alcayde, A., & Gómez, J. (2011). Optimization methods applied to renewable and sustainable energy: A review. Renewable and Sustainable Energy Reviews, 15(4), 1753–1766.

    Article  Google Scholar 

  106. Chattopadhyay, A., Pagaldipti, N., & Chang, K. T. (1993). A design optimization procedure for efficient turbine airfoil design. Computers and Mathematics with Applications, 26(4), 21–31.

    Article  MathSciNet  MATH  Google Scholar 

  107. Chen, X., & Agarwal, R. K. (2013). Optimization of wind turbine blade airfoils using a multi-objective genetic algorithm. Journal of Aircraft, 50(2), 519–527.

    Article  Google Scholar 

  108. Coutandin, D., Bucchieri, L., Brugali, L., & Galbiati, M. (2005). Optimisation techniques applied to the design of gas turbine blades cooling systems. In International Congress on FEM Technology with ANSYS CFX & ICEM CFD Conference (pp. 1–11).

    Google Scholar 

  109. Derksen, R. W., & Rogalsky, T. (2010). Bezier-PARSEC: An optimized aerofoil parameterization for design. Advances in Engineering Software, 41(7–8), 923–930.

    Article  MATH  Google Scholar 

  110. Shahrokhi, A., & Jahangirian, A. (2007). Airfoil shape parameterization for optimum Navier-Stokes design with genetic algorithm. Aerospace Science and Technology, 11(6), 443–450.

    Article  MATH  Google Scholar 

  111. Chehouri, A., Younes, R., Ilinca, A., & Perron, J. (2015). Review of performance optimization techniques applied to wind turbines. Applied Energy, 142, 361–388.

    Article  Google Scholar 

  112. Gato, L. M. C., & Henriques, J. C. C. (1996). Optimization of symmetrical profiles for the Wells turbine rotor blades. In ASME Fluids Engineering Division Summer Meeting.

    Google Scholar 

  113. Han, Z.-H., & Zhang, K.-S. (2008). Surrogate-based optimization. Real-World Applications of Genetic Algorithms, pp. 343–362.

    Google Scholar 

  114. Samad, A., & Kim, K.-Y. (2009). Surrogate based optimization techniques for aerodynamic design of turbomachinery. International Journal of Fluid Machinery and Systems, 2(2), 179–188.

    Article  Google Scholar 

  115. Samad, A., Kim, K.-Y., Goel, T., Haftka, R. T., & Shyy, W. (2008). Multiple surrogate modeling for axial compressor blade shape optimization. Journal of Propulsion and Power, 24(2), 301–310.

    Article  Google Scholar 

  116. Badhurshah, R., & Samad, A. (2014). Efficiency enhancement of a bidirectional impulse turbine using artificial neural network. In Proceedings of the ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis (pp. 1–8).

    Google Scholar 

  117. Badhurshah, R., & Samad, A. (2014). Surrogate assisted design optimization of an air turbine. International Journal of Rotating Machinery, pp. 1–8. Article ID 563483.

    Google Scholar 

  118. Badhurshah, R., & Samad, A. (2015). Multi-objective optimization of a bidirectional impulse turbine. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 229(6), 584–596.

    Google Scholar 

  119. Badhurshah, R., & Samad, A. (2015). Multiple surrogate based optimization of a bidirectional impulse turbine for wave energy conversion. Renewable Energy, 74, 749–760.

    Article  Google Scholar 

  120. Halder, P., & Samad, A. (2016). Optimal Wells turbine speeds at different wave conditions. International Journal of Marine Energy, 16, 133–149.

    Article  Google Scholar 

  121. Halder, P., Rhee, S. H., & Samad, A. (2016). Numerical optimization of Wells turbine for wave energy extraction. International Journal of Naval Architecture and Ocean Engineering, 2016.

    Google Scholar 

  122. Mohamed, M. H. (2011). Design optimization of savonius and Wells turbines. Germany: Otto-von-Guericke-Universität Magdeburg.

    Google Scholar 

  123. Thévenin, D., & Janiga, G. (2008). Optimization and computational fluid dynamics. Berlin, Heidelberg: Springer.

    Book  MATH  Google Scholar 

  124. Mohamed, M. H., Janiga, G., Pap, E., & Thévenin, D. (2011). Optimal blade shape of a modified Savonius turbine using an obstacle shielding the returning blade. Energy Conversion and Management, 52(1), 236–242.

    Article  Google Scholar 

  125. Mohamed, M. H., Janiga, G., Pap, E., & Thévenin, D. (2011). Multi-objective optimization of the airfoil shape of Wells turbine used for wave energy conversion. Energy, 36(1), 438–446.

    Article  Google Scholar 

  126. Mohamed, M. H., Janiga, G., & Pap, E. (2008). Optimal shape of a modified Wells turbine considering mutual interaction between the blades. In First International Conference of Energy Engineering ICEE-1, Aswan, Egypt (pp. 1–15).

    Google Scholar 

  127. Mohamed, M. H., & Shaaban, S. (2014). Numerical optimization of axial turbine with self-pitch-controlled blades used for wave energy conversion. International journal of energy research, 38, 592–601.

    Article  Google Scholar 

  128. Mohamed, M. H., & Shaaban, S. (2013). Optimization of blade pitch angle of an axial turbine used for wave energy conversion. Energy, 56, 229–239.

    Article  Google Scholar 

  129. Shaaban, S. (2016). Aero-economical optimization of Wells turbine rotor geometry. Energy Conversion and Management, 126, 20–31.

    Article  Google Scholar 

  130. Bonaiuti, D., & Zangeneh, M. (2009). On the coupling of inverse design and optimization techniques for the multiobjective, multipoint design of turbomachinery blades. Journal of Turbomachinery, 131(2), 21014.

    Article  Google Scholar 

  131. Gomes, R. P. F., Henriques, J. C. C., Gato, L. M. C., & Falcão, A. F. D. O. (2012). Multi-point aerodynamic optimization of the rotor blade sections of an axial-flow impulse air turbine for wave energy conversion. Energy, 45(1), 570–580.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, T.K., Samad, A. (2022). Wells Turbine as a Power Take-Off Mechanism for Wave Energy Converters. In: Samad, A., Sannasiraj, S., Sundar, V., Halder, P. (eds) Ocean Wave Energy Systems. Ocean Engineering & Oceanography, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-78716-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78716-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78715-8

  • Online ISBN: 978-3-030-78716-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics