Skip to main content

Wave Energy Convertors

  • Chapter
  • First Online:
Ocean Wave Energy Systems

Part of the book series: Ocean Engineering & Oceanography ((OEO,volume 14))

  • 1070 Accesses

Abstract

A detailed review of the works carried out in connection with wave energy extraction devices are presented in this chapter. Although, there are a few methods of extracting the energy from waves, the emphasis is laid on Oscillating water column (OWC) devices due to its’ more attractive, simple, and proven technology. The classification of the OWC devices based on location, its principle and the different options for its installation is made. If one works out the cost-benefit ratio, it is rather not encouraging to plan for a device to extract energy. Hence, the possibilities of merging OWC with breakwaters would be more viable and cost-effective too. Here again, one should consider the purpose of the breakwater as it may be either for development harbor or coastal protection. With this background, the different options of multi-purposed wave energy devices and, in specific, the conceptual design of integrating the breakwater and OWC are presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambli, N., Bonke, K., Malmo, O., & Reitan. H. (1982). The Kvaener miltiresonant OWC. In Proceedings of The 2nd International Symposium on Wave Energy Utilisation, Trondheim, Norway, Tapir, (pp. 275–295).

    Google Scholar 

  2. Ashlin, S. J., Sundar, V., & Sannasiraj, S. A. (2016). Effects of bottom profile of an oscillating water column device on its hydrodynamic characteristics. Renewable Energy, 96(Part A), 341–353. https://doi.org/10.1016/j.renene.2016.04.091

  3. Ashlin, S. J., Sundar, V., & Sannasiraj, S. A. (2017). Pressures and forces on an oscillating water column type wave energy caisson breakwater. Journal of Waterway, Port, Coastal, and Ocean Engineering, 143, 1–18. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000405

    Article  Google Scholar 

  4. Ashlin, S. J., Sannasiraj, S. A., & Sundar, V. (2018). Performance of an array of oscillating water column devices integrated with an offshore detached breakwater. Ocean Engineering, 163, 518–532. https://doi.org/10.1016/j.oceaneng.2018.05.043

    Article  Google Scholar 

  5. Boccotti, P. (2003). On a new wave energy absorber. Ocean Engineering, 30, 1191.

    Article  Google Scholar 

  6. Boccotti, P. (2007). Caisson breakwaters embodying an OWC with a small opening—Part I: Theory. Ocean Engineering, 34, 806–819.

    Article  Google Scholar 

  7. Boccotti, P., Filianoti, P., Fiamma, V., & Arena, F. (2007a). Caisson breakwaters embodying an OWC with a small opening—Part I: Theory. Ocean Engineering, 34(5–6).

    Google Scholar 

  8. Boccotti, P., Filianoti, P., Fiamma, V., & Arena, F. (2007b). Caisson breakwaters embodying an OWC with a small opening—Part II: A small-scale field experiment. Ocean Engineering, 34(5–6).

    Google Scholar 

  9. Brooke, J. (2003). (2003) Wave energy conversion. New York: Elsevier Ocean Engineering.

    Google Scholar 

  10. Cuan B. B., Trevor J. T., & Whittaker, M. F. (2002). Overview and initial operational experience of the LIMPET wave energy plant. In Proceedings of 12th ISOPE, Kitakyushu, Japan, May 26–31 (pp 586–594).

    Google Scholar 

  11. Dalton, G. J., Alcorn, R., & Lewis, T. (2009). Case study feasibility analysis of the Pelamis wave energy convertor in Ireland, Portugal, and North America. Renewable Energy (article in press), 1–13.

    Google Scholar 

  12. Dhinakaran. G., Sundar. V., & Sundaravadivelu. R. (2012). Review of the research on emerged and submerged semicircular breakwaters. Journal of Engineering for the Maritime Environment, Proceedings of IMechE, Part M, 226(4). 397–409.

    Google Scholar 

  13. Evans, D. V. (1982). Wave power absorption within a resonant harbour. In Proceedings of the 2nd International Symposium on Wave Energy Utilization, Trondheim, Norway (pp. 371–378).

    Google Scholar 

  14. Falcão, AF de O. (2000). The shoreline OWC wave power plant at the Azores. In Proceedings of 4th European Wave Energy Conference, Aalborg, Denmark (pp. 42–47).

    Google Scholar 

  15. Falcão, A. F. O. (2002). Control of an oscillating-water-column wave power plant for maximum, energy production. Applied Ocean Research, 24(2), 73–82.

    Article  Google Scholar 

  16. Falcão, A. F. O. (2002). Wave-power absorption by a periodic linear array of oscillating water columns. Ocean Engineering, 29(10), 1163–1186.

    Article  Google Scholar 

  17. Falcão, A. F. de O. (2010). Wave energy utilization: A review of the technologies. Renewable Sustainable Energy Review. 14(3), 899–918. https://doi.org/10.1016/j.rser.2009.11.003

  18. Falcão, A. F. O., & Rodrigues, R. J. A. (2002). Stochastic modeling of OWC plant for maximum energy production. Applied Ocean Research, 24(2), 59–71.

    Article  Google Scholar 

  19. Falnes, J. (1993). Wave energy converters: generic technical evaluation study. Final report for the B-study of the DG XII Joule Wave Energy Initiative. Commission of the European Communities under contract number JOU2-0003-DK.

    Google Scholar 

  20. Falnes, J., & McIver, P. (1985). Surface wave interactions with systems of oscillating bodies and pressure distributions. Applied Ocean Research, 7(4), 225–234.

    Article  Google Scholar 

  21. Hagerman, G. M. (1985). Oceanographic criteria and site selection for ocean wave energy conversion. In D. V. Even & A. F. O. Falcão (Eds.), Hydrodynamics of ocean wave energy utilization (pp. 169–178). Berlin, Heidelberg: Springer

    Google Scholar 

  22. Hong, D. C., Hong, S. Y., & Hong, S. W. (2004). Numerical study of the motions and drift force of a floating OWC device. Ocean Engineering, 31(2), 139–164.

    Article  Google Scholar 

  23. Hong, D. C., Hong, S. Y., & Hong, S. W. (2006). Reduction of hydroelastic responses of a very-long floating structure by a floating oscillating-water –column breakwater system. Ocean Engineeering, 33, 610–634.

    Article  Google Scholar 

  24. Hotta, H., Washio, Y., Yokozawa, H., & Miyazaki, T. (1996). Research and development on the development of the wave power device “Mighty Whale.” Renewable Energy, 9, 1223–1226.

    Article  Google Scholar 

  25. Hunter, R. S. (1982). Future possibilities for the NEL Oscillating water column wave energy converter—Experimental measurements and theoretical predictions of the phase control in regular waves. Report Pr39: WAVE/0R0 for Department of Energy, National Engineering Laboratory, East Kilbride, Glasgow.

    Google Scholar 

  26. IEA-OES. (2008). International energy agency-Implementing agreement on ocean energy systems. Annual report.

    Google Scholar 

  27. Kim, D., & Iwata, K. (1991). Dynamic behavior of tautly moored semi-submerged structure with pressurized air-chamber and resulting wave transformation. Coastal Engineering in Japan, 34(2), 223–242.

    Article  Google Scholar 

  28. Kofoed J. P. (2002). Wave overtopping of marine structures—Utilization of wave energy (Ph.D. thesis). Hydraulics & Coastal Engineering Laboratory, Department of Civil Engineering, Aalborg University.

    Google Scholar 

  29. Koola, P. M. (1990). Investigations on the performance behavior of oscillating water column wave energy device (Ph.D. thesis). Ocean Engineering Centre, Indian Institute of Technology Madras, Chennai, India.

    Google Scholar 

  30. Korde, U. A. (1997a) Performance of a wave energy device in shallow-water nonlinear waves: Part I. Applied Ocean Research, 19(1), 1–11.

    Google Scholar 

  31. Korde, U. A. (1997). Performance of a wave energy device in shallow-water nonlinear waves: Part II. Applied Ocean Research, 1, 13–20.

    Article  Google Scholar 

  32. Korde, U. A. (1999). On providing a reaction for efficient wave energy absorption by floating devices. Applied Ocean Research, 19(5), 235–248.

    Article  Google Scholar 

  33. Korde, U. A. (2002). Latching control of deep-water energy devices using an active reference. Ocean Engineering, 29(11), 1343–1355.

    Article  Google Scholar 

  34. Koo, W. (2009). Nonlinear time-domain analysis of motion-restrained pneumatic floating breakwater. Ocean Engineering, 36, 723–731.

    Article  Google Scholar 

  35. Koo, W. C., Kim, M. H., Lee, D. H., & Hong, S. A. (2006). Nonlinear time–domain simulation of pneumatic floating breakwater. International Journal of Offshore and Polar Engineering, 16(1), 25–32.

    Google Scholar 

  36. Koo, W. (2009). Numerical analysis of pneumatic damping effect on a motion-constraint floating breakwater. In Proceedings of the ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. Volume 4: Ocean Engineering; Ocean Renewable Energy; Ocean Space Utilization, Parts A and B. Honolulu, Hawaii, USA. May 31–June 5, 2009 (pp. 177–181).

    Google Scholar 

  37. Masuda. Y. (1971). Wave-activated generator. In International Colloq exposition oceans. Bordeaux, France.

    Google Scholar 

  38. McCormick. M. E. (1981). Ocean wave energy conversion. New York: Wiley.

    Google Scholar 

  39. McIver, P., & Evans, D. V. (1988) An approximate theory for the performance of a number of wave energy devices set into a reflecting wall. Applied Ocean Research, 10(2) 58–65.

    Google Scholar 

  40. Malmo, O., & Reitan, A. (1985). wave power absorption by an oscillating water column in a channel. Journal of Fluid Mechanics, 158, 153–175.

    Article  Google Scholar 

  41. Mavrakos, S. A., & Mclver, P. (1997). Comparison of methods for computing hydrodynamic characteristics of arrays of wave power devices. Applied Ocean Reserch, 19(5–6), 283–291.

    Article  Google Scholar 

  42. Ohneda, H., Igarashi, S., Shinbo, O., Sekihara, S., Suzuki, K, Kubota, H, Ogino, H, Morita, H. (1991). Construction procedure of a wave power extracting caisson breakwater, Proc. 3rd Symp. Ocean Energy utilization, Tokyo, 171–179 .

    Google Scholar 

  43. Pilarczyk, K. W., & Zeidler, R. B. (1996). Offshore breakwaters and shore evolution control. Rotterdam: A.A. Balkema (balkema@balkema.nl).

    Google Scholar 

  44. Ravindran, M., & Koola, P. M. (1991). Energy from sea waves—The Indian wave energy program. Current Science, 60, 676–680.

    Google Scholar 

  45. Ravindran, M., Pathak, A. G., Koola, P. M., & Latha, G. (1995). Indian wave energy programme: Progress and future plans. In Proceedings of the Second European Wave Power Conference, Lisvon, Portugal, November, 14–19.

    Google Scholar 

  46. Rademakers, L. W. M. M., Schie, R. G., Schuitema, R., Vriesema, B. Gardner, F. (1998). Physical model testing for characterizing the AWS. In Proceedings of the Third European Wave Power Conference, Partras, Greece (pp. 31–38).

    Google Scholar 

  47. Roberts, I., & Shepherd. K. (2009). WaveRush: A new concept for a breakwater wave energy converter. In Proceedings of Coasts, Marine Structures and Breakwaters, September 16–18

    Google Scholar 

  48. Salter, S. H. (1974). Wave Power. Nature, 249, 720–724.

    Article  Google Scholar 

  49. Seymour, R. J. (1992). Ocean energy recovery: The state of the art. New York: American Society of Civil Engineers.

    Google Scholar 

  50. Sjostrom, B. O. (1993). The past, present, and furture of the hose pump wave energy converter. In Proceedings of the European Wave Energy Symposium, Edinburgh.

    Google Scholar 

  51. Suzuki, M., & Arakawa, C. (2003). Numerical methods to predict characteristics of oscillating water column for terminator type of wave energy converter. In Proceedings of 13th International Offshore and Polar Engineering Conference, (Vol. 1, pp. 333–340). Honolulu, HI: ISOPE

    Google Scholar 

  52. Takahashi, S. A. (1988). Study on design of a wave power extracting caisson breakwater. Wave Power Laboratory, Port and Harbour Research Institute Japan.

    Google Scholar 

  53. Takahashi, S., Nakada, H., Ohneda, H., & Shikamori, M. (1992) Wave power conversion by a prototype wave power extracting Occasion in Sakata Port. In Proceedings of International Conference on Coastal Engineering.

    Google Scholar 

  54. Tseng, R.-S., Wu, Z. S., & Huang, C. C. (2000). Model study of a shoreline. Wave Power System, Ocean Engineering, 27, 801–821.

    Google Scholar 

  55. Vicinanza, D., Ciardulli, F., Buccino, M., Calabrese, M., & Kofoed, J. P. (2011). Wave loadings acting on innovative breakwaters for energy production. The Journal of Coastal Research, 64, 608–612 (17) (PDF) The SSG Wave Energy Converter: Performance, Status and Recent Developments. Available from https://www.researchgate.net/publication/233420375_The_SSG_Wave_Energy_Converter_Performance_Status_and_Recent_Developments. Accessed September 20, 2020.

  56. Vicinanza, D., Lauro, E. D., Contestabile, P., Gisonni. C., Lara. J. L., & Losada. I. J. (2019). Review of innovative harbor breakwaters for wave-energy conversion. Journal of Waterway, Port, Coastal, Ocean Engineering, 145(4), 03119001, 1–18.

    Google Scholar 

  57. Wang, D. J., Katory, M., & Li, Y. S. (2002). Analytical and experimental investigation on the hydrodynamic performance of onshore wave-power devices. Ocean Engineering, 29(8), 871–885.

    Article  Google Scholar 

  58. Whittaker, T. J. T., & Stewart, T. P. (1993). An experimental study of nearshore and shorline oscillating water columns with harbours. In Proceedings of the European Wave Energy Symposium, Edinburgh, Scotland, July (pp. 151–156).

    Google Scholar 

  59. Wilbert, R., Sundar, V., & Sannasiraj, S. A. (2013). Wave interaction with a double chamber oscillating water column device. International Journal of Ocean and Climate Systems, 4(1), 21–40.

    Article  Google Scholar 

  60. Zheng, W. (1989). Experimental research and parameters optimization of a prototype OWC wave power device. In Proceedings of the International Conference on Ocean Energy Recovery (ICOER'89) (pp. 43–50).

    Google Scholar 

Bibliography

  1. Lópeza, I., Carballoa, R., & Iglesiasb, G. (2019). Site-specific wave energy conversion performance of an oscillating water column device. Energy Conversion and Management, 195, 457–465.

    Article  Google Scholar 

  2. Martins, E., Carrilho, L., Neumann, F., Ramos, F. S., Justino, P. A., Gato, L., & Trigo, L. (2005). Ceodouro project: Overall design of an OWC in the new OPorto break water. EWTEC—European Wave and Tidal Energy Conference, Glasgow (United Kingdom), 29 Aug–2 Sep.

    Google Scholar 

  3. Retzler, C. (2006). Measurements of the slow drift dynamics of a model Pelamis wave energy converter. Renewable Energy, 31(2), 257–269.

    Google Scholar 

  4. Kofoed, J. P., Frigaard, P., Madsen, E. F. & Sørensen. H. C. (2006). Prototype testing of the wave energy converter wave dragon. Renewable Energy, 31(2), 181–189.

    Google Scholar 

  5. Tanimoto, K., & Takahashi, S. (1994). Design and construction of caisson breakwaters—the Japanese experience. In Coastal Engineering, Special Issue on ‘Vertical Breakwaters’, Oumeraci, H. et al. (eds.), Amsterdam, Holland: Elsevier Science Publishers B.V., Bd. 22, Nr. 1/2, S. 57–77.

    Google Scholar 

  6. Malmo, O., & Reitan, A. (1986) Wave power absorption by an oscillating water column in a reflecting wall. Applied Ocean Research, 8(1) 42–48.

    Google Scholar 

  7. Heath, T., Whittaker, T. J. T., Boake, C. B. (2000). The design, construction and operation of the LIMPET wave energy converter (Islay, Scotland). In Proc. 4th European Wave Energy Conf., Aalborg, Denmark, 2000, pp. 49–55.

    Google Scholar 

  8. Thorpe, T. W.(1992). A review of wave energy. ETSU-R-72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sundar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sundar, V., Sannasiraj, S.A. (2022). Wave Energy Convertors. In: Samad, A., Sannasiraj, S., Sundar, V., Halder, P. (eds) Ocean Wave Energy Systems. Ocean Engineering & Oceanography, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-78716-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78716-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78715-8

  • Online ISBN: 978-3-030-78716-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics