Skip to main content

Ball Milled Al Spheres for the Manufacturing of Casting-Based Al-CNT Composites

  • Conference paper
  • First Online:
Innovations in Mechanical Engineering (icieng 2021)

Abstract

Carbon nanotube reinforced aluminum matrix composites are considered a promising solution for applications that require high specific mechanical properties. Even though there are numerous methods for their manufacturing, these are frequently based on powder metallurgy approaches, limiting the fabrication of components with significant volumes and complex shapes. Casting, as a manufacturing technique, is regarded as the most appropriate route to obtain complex-shaped components with a relative high microstructural quality. These techniques to obtain Al-CNT cast components is still challenging due to the agglomeration, lack of dispersion, reduced bonding and density of the CNTs in Al. To address these issues, CNTs are usually pre-processed by ball-milling with Al powder to promote bonding and disperse the reinforcement, however, these techniques are not really beneficial to casting approaches due to the increase of Al2O3 content that do not disperse within the Al alloy melts. This study proposes the use of Al spheres (~1 mm) in these ball milling techniques to prevent significant plastic deformation, the formation of Al flakes and the increase in Al2O3 content. It is shown that CNTs may be dispersed and bonded to the Al sphere surfaces. Results suggest that this is a promising novel technique to allow a successful implementation of casting-based routes to fabricate high-volume and complex-shaped Al-CNT components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  2. Tjong, S.C.: Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater. Sci. Eng. R Rep. 74, 281–350 (2013)

    Article  Google Scholar 

  3. Coleman, J.N., Khan, U., Blau, W.J., Gunko, Y.K.: Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44, 1624–1652 (2006)

    Article  Google Scholar 

  4. Bakshi, S.R., Lahiri, D., Agarwal, A.: Carbon nanotube reinforced metal matrix composites - a review. Int. Mater. Rev. 55, 41–64 (2010)

    Article  Google Scholar 

  5. Jargalsaikhan, B., Bor, A., Lee, J., Choi, H.: Al/CNT nanocomposite fabrication on the different property of raw material using a planetary ball mill. Adv. Powder Technol. 31, 1957–1962 (2020)

    Article  Google Scholar 

  6. Hou, Y., Tang, J., Zhang, H., Qian, C., Feng, Y., Liu, J.: Functionalized few-walled carbon nanotubes for mechanical reinforcement of polymeric composites. ACS Nano 3, 1057–1062 (2009)

    Article  Google Scholar 

  7. Thostenson, E.T., Ren, Z., Chou, T.-W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899–1912 (2001)

    Article  Google Scholar 

  8. Peigney, A., Laurent, C., Flahaut, E., Rousset, A.: Carbon nanotubes in novel ceramic matrix nanocomposites. Ceram. Int. 26, 677–683 (2000)

    Article  Google Scholar 

  9. Liao, J., Tan, M.-J.: Mixing of carbon nanotubes (CNTs) and aluminum powder for powder metallurgy use. Powder Technol. 208, 42–48 (2011)

    Article  Google Scholar 

  10. Liu, F., et al.: Preparation of short carbon nanotubes by mechanical ball milling and their hydrogen adsorption behavior. Carbon 41, 2527–2532 (2003)

    Article  Google Scholar 

  11. Bradbury, C.R., Gomon, J.-K., Kollo, L., Kwon, H., Leparoux, M.: Hardness of Multi Wall Carbon Nanotubes reinforced aluminium matrix composites. J. Alloy. Compd. 585, 362–367 (2014)

    Article  Google Scholar 

  12. George, R., Kashyap, K.T., Rahul, R., Yamdagni, S.: Strengthening in carbon nanotube/aluminium (CNT/Al) composites. Scripta Mater. 53, 1159–1163 (2005)

    Article  Google Scholar 

  13. Choi, H., Shin, J., Min, B., Park, J., Bae, D.: Reinforcing effects of carbon nanotubes in structural aluminum matrix nanocomposites. J. Mater. Res. 24(8), 2610–2616 (2009). https://doi.org/10.1557/jmr.2009.0318

    Article  Google Scholar 

  14. Sridhar, I., Narayanan, K.R.: Processing and characterization of MWCNT reinforced aluminum matrix composites. J. Mater. Sci. 44(7), 1750–1756 (2009). https://doi.org/10.1007/s10853-009-3290-5

    Article  Google Scholar 

  15. Esawi, A.M.K., Morsi, K., Sayed, A., Taher, M., Lanka, S.: Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos. Sci. Technol. 70, 2237–2241 (2010)

    Article  Google Scholar 

  16. Popov, V.N.: Carbon nanotubes: properties and application. Mater. Sci. Eng. R Rep. 43, 61–102 (2004)

    Article  Google Scholar 

  17. Casati, R., Vedani, M.: Metal matrix composites reinforced by nano-particles - a review. Metals 4, 65–83 (2014)

    Article  Google Scholar 

  18. Kim, K.T., Eckert, J., Menzel, S.B., Gemming, T., Hong, S.H.: Grain refinement assisted strengthening of carbon nanotube reinforced copper matrix nanocomposites. Appl. Phys. Lett. 92, 121901 (2008)

    Article  Google Scholar 

  19. Liu, Z.Y., Xiao, B.L., Wang, W.G., Ma, Z.Y.: Modelling of carbon nanotube dispersion and strengthening mechanisms in Al matrix composites prepared by high energy ball milling-powder metallurgy method. Compos. A Appl. Sci. Manuf. 94, 189–198 (2017)

    Article  Google Scholar 

  20. Prabhakar, G.V.N.B., Pavan Kumar, Y.V.R.S.N., Dileep Kumar, P., Prasanna Kumar, B., Gopi Raju, M., Naseema, S., Ravi Kumar, N., Jagannatham, M., Ratna Sunil, B.: Producing Al5083-CNT composites by friction stir processing: influence of grain refinement and CNT on mechanical and corrosion properties. Mater. Today Proc. 15, 44–49 (2019)

    Google Scholar 

  21. Khanna, V., Kumar, V., Bansal, S.A.: Mechanical properties of aluminium-graphene/carbon nanotubes (CNTs) metal matrix composites: advancement, opportunities and perspective. Mater. Res. Bull. 138, 111224 (2021)

    Article  Google Scholar 

  22. Bi, S., et al.: Enhancing strength-ductility synergy of carbon nanotube/7055Al composite via a texture design by hot-rolling. Mater. Sci. Eng. A 806, 140830 (2021)

    Article  Google Scholar 

  23. Ramkumar, K.R., Dinaharan, I.: Accumulative roll bonding route for composite materials production. In: Reference Module in Materials Science and Materials Engineering. Elsevier (2020)

    Google Scholar 

  24. Alladi, A., Aluri, M., Maddela, N., Abbadi, C.R.: Recent progress of CNTs reinforcement with metal matrix composites using friction stir processing. Mater. Today Proc. (2021, in press)

    Google Scholar 

  25. Liu, Z.Y., Xiao, B.L., Wang, W.G., Ma, Z.Y.: Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing. Carbon 50, 1843–1852 (2012)

    Article  Google Scholar 

  26. Chen, M., et al.: Design of an efficient flake powder metallurgy route to fabricate CNT/6061Al composites. Mater. Des. 142, 288–296 (2018)

    Article  Google Scholar 

  27. Trinh, P.V., et al.: Microstructure, microhardness and thermal expansion of CNT/Al composites prepared by flake powder metallurgy. Compos. A Appl. Sci. Manuf. 105, 126–137 (2018)

    Article  Google Scholar 

  28. Zhang, Y., Wang, Q., Chen, G., Ramachandran, C.S.: Mechanical, tribological and corrosion physiognomies of CNT-Al metal matrix composite (MMC) coatings deposited by cold gas dynamic spray (CGDS) process. Surf. Coat. Technol. 403, 126380 (2020)

    Article  Google Scholar 

  29. Guo, B., et al.: Microstructures and mechanical properties of carbon nanotubes reinforced pure aluminum composites synthesized by spark plasma sintering and hot rolling. Mater. Sci. Eng. A 698, 282–288 (2017)

    Article  Google Scholar 

  30. Toozandehjani, M., Ostovan, F., Jamaludin, K.R., Amrin, A., Matori, K.A., Shafiei, E.: Process−microstructure−properties relationship in Al−CNTs−Al2O3 nanocomposites manufactured by hybrid powder metallurgy and microwave sintering process. Trans. Nonferrous Metals Soc. China 30, 2339–2354 (2020)

    Google Scholar 

  31. Ma, P.-C., Siddiqui, N.A., Marom, G., Kim, J.-K.: Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos. A Appl. Sci. Manuf. 41, 1345–1367 (2010)

    Article  Google Scholar 

  32. Bakshi, S.R., Agarwal, A.: An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites. Carbon 49, 533–544 (2011)

    Article  Google Scholar 

  33. Rodríguez-Reyes, M., Pech-Canul, M.I., Rendón-Angeles, J.C., López-Cuevas, J.: Limiting the development of Al4C3 to prevent degradation of Al/SiCp composites processed by pressureless infiltration. Compos. Sci. Technol. 66, 1056–1062 (2006)

    Article  Google Scholar 

  34. Fan, G., et al.: Enhanced interfacial bonding and mechanical properties in CNT/Al composites fabricated by flake powder metallurgy. Carbon 130, 333–339 (2018)

    Article  Google Scholar 

  35. Lalet, G., Kurita, H., Miyazaki, T., Kawasaki, A., Silvain, J.-F.: Microstructure of a carbon fiber-reinforced aluminum matrix composite fabricated by spark plasma sintering in various pulse conditions. J. Mater. Sci. 49(8), 3268–3275 (2014). https://doi.org/10.1007/s10853-014-8032-7

    Article  Google Scholar 

  36. Kurita, H., et al.: Load-bearing contribution of multi-walled carbon nanotubes on tensile response of aluminum. Compos. A Appl. Sci. Manuf. 68, 133–139 (2015)

    Article  Google Scholar 

  37. Esawi, A.M.K., Morsi, K., Sayed, A., Taher, M., Lanka, S.: The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites. Compos. A Appl. Sci. Manuf. 42, 234–243 (2011)

    Article  Google Scholar 

  38. Ostovan, F., et al.: Effects of CNTs content and milling time on mechanical behavior of MWCNT-reinforced aluminum nanocomposites. Mater. Chem. Phys. 166, 160–166 (2015)

    Article  Google Scholar 

  39. Liu, Z.Y., Xu, S.J., Xiao, B.L., Xue, P., Wang, W.G., Ma, Z.Y.: Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminum matrix composites. Compos. A Appl. Sci. Manuf. 43, 2161–2168 (2012)

    Article  Google Scholar 

  40. Hassan, M.T.Z., Esawi, A.M.K., Metwalli, S.: Effect of carbon nanotube damage on the mechanical properties of aluminium–carbon nanotube composites. J. Alloy. Compd. 607, 215–222 (2014)

    Article  Google Scholar 

  41. Soni, S.K., Thomas, B., Kar, V.R.: A comprehensive review on CNTs and CNT-reinforced composites: syntheses. Charact. Appl. Mater. Today Commun. 25, 101546 (2020)

    Google Scholar 

  42. Li, G., Qu, Y., Yang, Y., Zhou, Q., Liu, X., Li, R.: Improved multi-orientation dispersion of short carbon fibers in aluminum matrix composites prepared with square crucible by mechanical stirring. J. Mater. Sci. Technol. 40, 81–87 (2020)

    Article  Google Scholar 

  43. Yan, H., Huang, Z.-X., Qiu, H.-X.: Microstructure and mechanical properties of CNTs/A356 nanocomposites fabricated by high-intensity ultrasonic processing. Metall. Mater. Trans. A 48(2), 910–918 (2016). https://doi.org/10.1007/s11661-016-3872-1

    Article  Google Scholar 

  44. Li, Q., Rottmair, C.A., Singer, R.F.: CNT reinforced light metal composites produced by melt stirring and by high pressure die casting. Compos. Sci. Technol. 70, 2242–2247 (2010)

    Article  Google Scholar 

  45. Mansoor, M., Shahid, M.: Carbon nanotube-reinforced aluminum composite produced by induction melting. J. Appl. Res. Technol. 14, 215–224 (2016)

    Article  Google Scholar 

  46. Yuan, C., et al.: Enhanced ductility by Mg addition in the CNT/Al-Cu composites via flake powder metallurgy. Mater. Today Commun. 26, 101854 (2020)

    Google Scholar 

  47. Saif, M.T.A., Zhang, S., Haque, A., Hsia, K.J.: Effect of native Al2O3 on the elastic response of nanoscale Al films. Acta Mater. 50, 2779–2786 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by PTDC/EMEEME/30967/2017 and NORTE-0145-FEDER-030967, co-financed by the European Regional Development Fund (ERDF), through the Operational Programme for Competitiveness and Internationalization (COMPETE 2020), under Portugal 2020, and by the Fundação para a Ciência e a Tecnologia – FCT I.P. national funds. Also, this work was supported by Portuguese FCT, under the reference project UIDB/04436/2020, Stimulus of Scientific Employment Application CEECIND/03991/2017.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Puga, H., Carneiro, V.H., Vieira, M. (2022). Ball Milled Al Spheres for the Manufacturing of Casting-Based Al-CNT Composites. In: Machado, J., Soares, F., Trojanowska, J., Ottaviano, E. (eds) Innovations in Mechanical Engineering. icieng 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-79165-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79165-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79164-3

  • Online ISBN: 978-3-030-79165-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics