Skip to main content

Physics and Radiation Dosage Issues in Neuroradiosurgical Treatment of Meningiomas

  • Chapter
  • First Online:
Stereotactic Radiosurgery for the Treatment of Central Nervous System Meningiomas
  • 409 Accesses

Abstract

Radiosurgery is a special therapy technique in which intracranial targets are treated using ionizing radiations, delivering the dose to the lesions and sparing at the same time the surrounding organs at risk. Radiosurgical treatment involves dispensing the dose in a single session or, in the case of the so-called multisession radiosurgery, in a small number of fractions (up to 5).

To this end, it is necessary for the equipment to provide high mechanical, geometric, and dosimetric accuracy and a submillimetric accuracy of patient positioning. Indeed, when administering a limited number of fractions, the impact of all potential systematic and random uncertainties tends to be more significant than with conventional treatment.

In this chapter an up-to-date reference on neuroradiosurgical treatment from the perspective of medical physics, based on a review of the literature, has been provided. A general cross-sectional overview of the most important aspects of medical physics as applied to radiosurgery for meningioma and other brain pathologies is presented, and pertinent issues are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Commission on Radiation Unit and Measurements. ICRU 91. Prescribing, Recording, and Reporting of Stereotactic Treatments with Small Photon Beams. 2017. Report no. 91.

    Google Scholar 

  2. International Atomic Energy Agency. Dosimetry of small static fields used in external beam radiotherapy. IAEA Technical Reports Series. 2017. vol. 483.

    Google Scholar 

  3. Patel KS, Bussiere M, Loeffler JS, Chen CC. Handbook of neuro-oncology neuroimaging. 2nd ed. Academic Press; 2016. p. 257–71.

    Book  Google Scholar 

  4. Corvò R, Zeverino M, Vagge S, et al. Helical tomotherapy targeting total bone marrow after total body irradiation for patients with relapsed acute leukemia undergoing an allogeneic stem cell transplant. Radiother Oncol. 2011;98(3):82–386. https://doi.org/10.1016/j.radonc.2011.01.016.

    Article  Google Scholar 

  5. Soisson ET, Hoban PW, Kammeyer T, et al. A technique for stereotactic radiosurgery treatment planning with helical tomotherapy. Med Dosim. 2011;36(1):46–56. https://doi.org/10.1016/j.meddos.2009.11.003.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Elekta whitepapers. https://www.elekta.com.

  7. AlDahlawi I, et al. Evaluation of stability of stereotactic space defined by cone-beam CT for the Leksell Gamma Knife Icon. J Appl Clin Med Phys. 2017;18:67–72. https://doi.org/10.1002/acm2.12073.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chung H, et al. Assessment of the accuracy and stability of frameless gamma knife radiosurgery. J Appl Clin Med Phys. 2018;19(4):148–54. https://doi.org/10.1002/acm2.12365).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Duggar W, et al. Gamma Knife® Icon CBCT offers improved localization workflow for frame-based treatment. J Appl Clin Med Phys. https://doi.org/10.1002/acm2.12745.

  10. Carminucci A, et al. Assessment of motion error for frame-based and noninvasive mask-based fixation using the Leksell Gamma Knife Icon radiosurgery system. J Neurosurg. 2018;129:133–9. https://doi.org/10.3171/2018.7.GKS181516.

    Article  PubMed  Google Scholar 

  11. Dade Lunsford L, et al. Frame versus frameless Leksell stereotactic radiosurgery. Prog Neurol Surg Basel, Karger. 2019;34:19–27. https://doi.org/10.1159/000493046.

    Article  Google Scholar 

  12. Torrens M, Chung C, Chung H-T, Hanssens P, Jaffray D, Kemeny A, Larson D, Levivier M, Lindquist C, Lippitz B, Josef Novotny IP Jr, Prasad D, Yu CP. Standardization of terminology in stereotactic radiosurgery: Report from the Standardization Committee of the International Leksell Gamma Knife Society. Special topic. J Neurosurg. 2014;121(Suppl. 2):2–15.

    Article  Google Scholar 

  13. American Association of Physicists in Medicine. Stereotactic body radiation therapy. AAPM Task Group Report 101, 2010.

    Google Scholar 

  14. Yaacov R, Lowrence X, Li A, El Naqa I, Hahn CA, Marks LB, Merchant TE, Dicker AP. Radiation dose-volume effects in the brain. Int J Radiation Oncol Biol Phys. 2010;76(Suppl 3):S20–7.

    Google Scholar 

  15. American Association of Physicists in Medicine. The use and QA of biologically related models for treatment planning. AAPM Task Group Report 166, 2012.

    Google Scholar 

  16. Macià IGM. Radiobiology of Stereotactic Body Radiation Therapy (SBRT). Rep Pract Oncol Radiother. 2017;22:86–95.

    Article  Google Scholar 

  17. Chang W. Song, Mi-Sook Kim, L. Chinsoo Cho, Kathryn Dusenbery, Paul W. Sperduto. Radiobiological basis of SBRT and SRS. Int J Clin Oncol. 2014;19:570–8.

    Article  Google Scholar 

  18. Garcia LM, Leblanc J, Wilkins D, Raaphorst GP. Fitting the linear-quadratic model to detailed data sets for different dose ranges. Phys Med Biol. 2006;51(11):2813–23.

    Article  CAS  Google Scholar 

  19. Brenner DJ. The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Semin Radiat Oncol. 18(4):234–9.

    Google Scholar 

  20. Sperduto PW, Song CW, Kirkpatrick JP, Glatstein E. A hypothesis: indirect cell death in the radiosurgery Era. Int J Radiation Oncol Biol Phys. 2015;91:11–3.

    Article  Google Scholar 

  21. Gilbert CW, Hendry JH, Major D. The approximation in the formulation for survival S = exp − (D + D2). Int J Radiat Biol. 1980;37(4):469–71.

    CAS  Google Scholar 

  22. Niemierko A. Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys. 1997;24(1):103–10. https://doi.org/10.1118/1.598063.

    Article  CAS  PubMed  Google Scholar 

  23. McGary JE, Grant W III, Woo SY. Applying the equivalent uniform dose formulation based on the linear-quadratic model to inhomogeneous tumor dose distributions: caution for analyzing and reporting. Radiat Oncol Phys. https://doi.org/10.1120/jacmp.vli4.2634.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. del Vecchio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

del Vecchio, A., Bassetti, C., Broggi, S., De Martin, E., Zivelonghi, E. (2021). Physics and Radiation Dosage Issues in Neuroradiosurgical Treatment of Meningiomas. In: Longhi, M., Motti, E.D.F., Nicolato, A., Picozzi, P. (eds) Stereotactic Radiosurgery for the Treatment of Central Nervous System Meningiomas. Springer, Cham. https://doi.org/10.1007/978-3-030-79419-4_2

Download citation

Publish with us

Policies and ethics