Skip to main content

Abstract

Active threats are associated with attacks that cause direct damage to a system, eventually jeopardizing it. This comprise either generation of erroneous results [MWP+09, GSC19a] or preventing result generation within deadline [GSC17, GSC19b]. The former is an attack to system integrity, while the latter is an issue related to system availability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.A.M. Amin, Y. Alkabani, G.M.I. Selim, System-level protection and hardware Trojan detection using weighted voting. J. Adv. Res. 5(4), 499–505 (2014)

    Article  Google Scholar 

  2. S. Bhunia, M.S. Hsiao, M. Banga, S. Narasimhan, Hardware trojan attacks: threat analysis and countermeasures. Proc. IEEE 102(8), 1229–1247 (2014)

    Article  Google Scholar 

  3. C. Bolchini, A. Miele, Reliability-driven system-level synthesis for mixed-critical embedded systems. IEEE Trans. Comput. 62(12), 2489–2502 (2013)

    Article  MathSciNet  Google Scholar 

  4. S. Bhunia, M. Tehranipoor, Hardware Security—A Hands on Approach (Elsevier Morgan Kaufmann Publishers, 2018). ISBN: 9780128124772

    Google Scholar 

  5. M.-S. Bouguerra, D. Trystram, F. Wagner, Complexity analysis of checkpoint scheduling with variable costs. IEEE Trans. Comput. 62(6), 1269–1275 (2013)

    Article  MathSciNet  Google Scholar 

  6. K. Chatterjee, D. Das, Semiconductor manufacturers’ efforts to improve trust in the electronic part supply chain. IEEE Trans. Compon. Packag. Technol. 30(3), 547–549 (2007)

    Article  Google Scholar 

  7. X. Cui, K. Ma, L. Shi, K. Wu, High-level synthesis for run-time hardware Trojan detection and recovery, in Proceedings of the 51st Annual Design Automation Conference, DAC ’14 (2014), pp. 157:1–157:6

    Google Scholar 

  8. U. Guin, D. DiMase, M. Tehranipoor, Counterfeit integrated circuits: detection, avoidance, and the challenges ahead. J. Electron. Test. 30(1), 9–23 (2014)

    Article  Google Scholar 

  9. K. Guha, A. Majumder, D. Saha, A. Chakrabarti, Reliability driven mixed critical tasks processing on FPGAS against hardware Trojan attacks, in 21st Euromicro Conference on Digital System Design, DSD 2018, Prague, Czech Republic, August 29–31, 2018, ed. by M. Novotný, N. Konofaos, A. Skavhaug (IEEE Computer Society, 2018), pp. 537–544

    Google Scholar 

  10. K. Guha, A. Majumder, D. Saha, A. Chakrabarti, Criticality based reliability against hardware trojan attacks for processing of tasks on reconfigurable hardware. Microprocess. Microsyst. 71 (2019)

    Google Scholar 

  11. K. Guha, D. Saha, A. Chakrabarti, Self aware SoC security to counteract delay inducing hardware Trojans at runtime, in 2017 30th International Conference on VLSI Design and 2017 16th International Conference on Embedded Systems (VLSID) (2017), pp. 417–422

    Google Scholar 

  12. K. Guha, S. Saha, A. Chakrabarti, Shirt (self healing intelligent real time) scheduling for secure embedded task processing, in 2018 31st International Conference on VLSI Design and 2018 17th International Conference on Embedded Systems (VLSID) (2018), pp. 463–464

    Google Scholar 

  13. K. Guha, D. Saha, A. Chakrabarti, SARP: self aware runtime protection against integrity attacks of hardware Trojans, in VLSI Design and Test, Singapore (2019), pp. 198–209

    Google Scholar 

  14. K. Guha, D. Saha, A. Chakrabarti, Stigmergy-based security for SoC operations from runtime performance degradation of SoC components. ACM Trans. Embed. Comput. Syst. 18(2), 14:1–14:26 (2019)

    Google Scholar 

  15. U. Guin, X. Zhang, D. Forte, M. Tehranipoor, Low-cost on-chip structures for combating die and IC recycling, in Proceedings of the 51st Annual Design Automation Conference, DAC ’14 (2014), pp. 87:1–87:6

    Google Scholar 

  16. T. Hayashi, A. Kojima, T. Miyazaki, N. Oda, K. Wakita, T. Furusawa, Application of FPGA to nuclear power plant I&C systems, in Progress of Nuclear Safety for Symbiosis and Sustainability (Springer, 2014), pp. 41–47

    Google Scholar 

  17. T.H. Kim, R. Persaud, C.H. Kim, Silicon odometer: an on-chip reliability monitor for measuring frequency degradation of digital circuits. IEEE J. Solid-State Circuits 43(4), 874–880 (2008)

    Article  Google Scholar 

  18. C. Liu, J. Jou, Efficient coverage analysis metric for HDL design validation. IEE Proc. Comput. Digit. Tech. 148(1), 1–6 (2001)

    Article  Google Scholar 

  19. C. Liu, J. Rajendran, C. Yang, R. Karri, Shielding heterogeneous MPSoCs from untrustworthy 3PIPs through security-driven task scheduling, in 2013 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS) (2013), pp. 101–106

    Google Scholar 

  20. C. Liu, J. Rajendran, C. Yang, R. Karri, Shielding heterogeneous MPSoCs from untrustworthy 3PIPs through security-driven task scheduling. IEEE Trans. Emerg. Top. Comput. 2(4), 461–472 (2014)

    Article  Google Scholar 

  21. S. Mal-Sarkar, R. Karam, S. Narasimhan, A. Ghosh, A. Krishna, S. Bhunia, Design and validation for FPGA trust under hardware Trojan attacks. IEEE Trans. Multi-Scale Comput. Syst. 2(3), 186–198 (2016)

    Article  Google Scholar 

  22. D. McIntyre, F. Wolff, C. Papachristou, S. Bhunia, D. Weyer, Dynamic evaluation of hardware trust, in 2009 IEEE International Workshop on Hardware-Oriented Security and Trust (2009), pp. 108–111

    Google Scholar 

  23. S. Narasimhan, D. Du, R.S. Chakraborty, S. Paul, F.G. Wolff, C.A. Papachristou, K. Roy, S. Bhunia, Hardware Trojan detection by multiple-parameter side-channel analysis. IEEE Trans. Comput. 62(11), 2183–2195 (2013)

    Article  MathSciNet  Google Scholar 

  24. J.J. Rajendran, O. Sinanoglu, R. Karri, Building trustworthy systems using untrusted components: a high-level synthesis approach. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 24(9), 2946–2959 (2016)

    Google Scholar 

  25. S. Sarma, N. Dutt, P. Gupta, N. Venkatasubramanian, A. Nicolau, Cyberphysical-system-on-chip (CPSoC): a self-aware MPSoC paradigm with cross-layer virtual sensing and actuation, in Proceedings of the 2015 Design, Automation, Test in Europe Conference & Exhibition, DATE ’15 (2015), pp. 625–628

    Google Scholar 

  26. M. Tehranipoor, F. Koushanfar, A survey of hardware Trojan taxonomy and detection. IEEE Des. Test Comput. 27(1), 10–25 (2010)

    Article  Google Scholar 

  27. K. Xiao, D. Forte, M. Tehranipoor, A novel built-in self-authentication technique to prevent inserting hardware Trojans. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33(12), 1778–1791 (2014)

    Article  Google Scholar 

  28. K. Xiao, X. Zhang, M. Tehranipoor, A clock sweeping technique for detecting hardware Trojans impacting circuits delay. IEEE Des. Test 30(2), 26–34 (2013)

    Article  Google Scholar 

  29. Y. Zheng, X. Wang, S. Bhunia, SACCI: scan-based characterization through clock phase sweep for counterfeit chip detection. IEEE Trans. VLSI Syst. 23(5), 831–841 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnendu Guha .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guha, K., Saha, S., Chakrabarti, A. (2021). Counteracting Active Attacks. In: Self Aware Security for Real Time Task Schedules in Reconfigurable Hardware Platforms. Springer, Cham. https://doi.org/10.1007/978-3-030-79701-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79701-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79700-3

  • Online ISBN: 978-3-030-79701-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics