Skip to main content

Magneto-Acoustic Hybrid Micro-/Nanorobot

  • Chapter
  • First Online:
Field-Driven Micro and Nanorobots for Biology and Medicine
  • 1728 Accesses

Abstract

Combining different fuel-free propulsion modes for multimodal micro-/nanorobotic design allows adaptive operation in changing and complicated biological environments. Among the energy sources that have been used to power micro-/nanorobotics, magnetics and acoustics play significant roles in modern medicine in disease diagnostics and treatments. Combining magnetic and acoustic fields to actuate and control micro-/nanorobotics allows untethered, sophisticated control of the individual and collective behavior of micro-/nanorobotics and leads to the promise of merging them with the clinical magnetic and acoustic devices for translational applications. This chapter talks about the design, working principle, fabrication of magneto-acoustic hybrid micro-/nanorobots, and their potential applications.

Note: Results of this chapter are mainly based on the work published in: Li et al. Nano Lett. 2015, 15, 7, 4814–4821; and Ahmed et al. Nature Commun. 2017, 8, 770.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Purcell, E. M. (1977). Life at low Reynolds number. American Journal of Physics, 45, 3–11.

    Google Scholar 

  2. Schliwa, M., & Woehlke, G. (2003). Molecular motors. Nature, 422, 759–765.

    Google Scholar 

  3. van den Heuvel, M. G. L., & Dekker, C. (2007). Motor proteins at work for nanotechnology. Science, 317, 333–336.

    Google Scholar 

  4. Guix, M., Mayorga-Martinez, C. C., & Merkoçi, A. (2014). Nano/micromotors in (bio)chemical science applications. Chemical Reviews, 114, 6285–6322.

    Google Scholar 

  5. Ozin, G. A., Manners, I., Fournier-Bidoz, S., & Arsenault, A. (2005). Dream nanomachines. Advanced Materials, 17, 3011–3018.

    Google Scholar 

  6. Wang, J. (2013). Nanomachines: Fundamentals and applications. Wiley-VCH.

    Google Scholar 

  7. Mei, Y., Solovev, A. A., Sanchez, S., & Schmidt, O. G. (2011). Rolled-up nanotech on polymers: From basic perception to self-propelled catalytic microengines. Chemical Society Reviews, 40, 2109–2119.

    Google Scholar 

  8. Mallouk, T. E., & Sen, A. (2009). Powering nanorobots. Scientific American, 300, 72–77.

    Google Scholar 

  9. Nelson, B. J., Kaliakatsos, I. K., & Abbott, J. J. (2010). Microrobots for minimally invasive medicine. Annual Review of Biomedical Engineering, 12, 55–85.

    Google Scholar 

  10. Moo, J. G. S., & Pumera, M. (2015). Chemical energy powered nano/micro/macromotors and the environment. Chemistry – A European Journal, 21, 58–72.

    Google Scholar 

  11. Li, J., de Ávila, B. E.-F., Gao, W., Zhang, L., & Wang, J. (2017). Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Science Robotics, 2.

    Google Scholar 

  12. Alapan, Y., et al. (2019). Microrobotics and microorganisms: Biohybrid autonomous cellular robots. Annual Review of Control, Robotics, and Autonomous Systems, 2, 205–230.

    Google Scholar 

  13. Gao, W., et al. (2015). Artificial micromotors in the mouse’s stomach: A step toward in vivo use of synthetic motors. ACS Nano, 9, 117–123.

    Google Scholar 

  14. Li, J., et al. (2016). Enteric micromotor can selectively position and spontaneously propel in the gastrointestinal tract. ACS Nano, 10, 9536–9542.

    Google Scholar 

  15. de Ávila, B. E.-F., et al. (2017). Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nature Communications, 8, 272.

    Google Scholar 

  16. Dreyfus, R., et al. (2005). Microscopic artificial swimmers. Nature, 437, 862–865.

    Google Scholar 

  17. Liu, M., Zentgraf, T., Liu, Y., Bartal, G., & Zhang, X. (2010). Light-driven nanoscale plasmonic motors. Nature Nanotechnology, 5, 570–573.

    Google Scholar 

  18. Loget, G., & Kuhn, A. (2010). Propulsion of microobjects by dynamic bipolar self-regeneration. Journal of the American Chemical Society, 132, 15918–15919.

    Google Scholar 

  19. Chang, S. T., Paunov, V. N., Petsev, D. N., & Velev, O. D. (2007). Remotely powered self-propelling particles and micropumps based on miniature diodes. Nature Materials, 6, 235–240.

    Google Scholar 

  20. Wang, W., Castro, L. A., Hoyos, M., & Mallouk, T. E. (2012). Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano, 6, 6122–6132.

    Google Scholar 

  21. Garcia-Gradilla, V., et al. (2013). Functionalized ultrasound-propelled magnetically guided nanomotors: Toward practical biomedical applications. ACS Nano, 7, 9232–9240.

    Google Scholar 

  22. Schamel, D., et al. (2014). Nanopropellers and their actuation in complex viscoelastic media. ACS Nano, 8, 8794–8801.

    Google Scholar 

  23. Qiu, T., et al. (2014). Swimming by reciprocal motion at low Reynolds number. Nature Communications, 5, 5119.

    Google Scholar 

  24. Venugopalan, P. L., et al. (2014). Conformal cytocompatible ferrite coatings facilitate the realization of a nanovoyager in human blood. Nano Letters, 14, 1968–1975.

    Google Scholar 

  25. Ghosh, A., & Fischer, P. (2009). Controlled propulsion of artificial magnetic nanostructured propellers. Nano Letters, 9, 2243–2245.

    Google Scholar 

  26. Wu, Z., et al. (2014). Turning erythrocytes into functional micromotors. ACS Nano, 8, 12041–12048.

    Google Scholar 

  27. Loget, G., & Kuhn, A. (2011). Electric field-induced chemical locomotion of conducting objects. Nature Communications, 2, 535.

    Google Scholar 

  28. Wu, Z., et al. (2014). Near-infrared light-triggered “on/off” motion of polymer multilayer rockets. ACS Nano, 8, 6097–6105.

    Google Scholar 

  29. Sridhar, V., et al. (2020). Carbon nitride-based light-driven microswimmers with intrinsic photocharging ability. Proceedings of the National Academy of Sciences, 117, 24748–24756.

    Google Scholar 

  30. Dong, X., et al. (2020). Bioinspired cilia arrays with programmable nonreciprocal motion and metachronal coordination. Science Advances, 6, eabc9323.

    Google Scholar 

  31. Palagi, S., et al. (2016). Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nature Materials, 15, 647–653.

    Google Scholar 

  32. Gao, W., Manesh, K. M., Hua, J., Sattayasamitsathit, S., & Wang, J. (2011). Hybrid nanomotor: A catalytically/magnetically powered adaptive nanowire swimmer. Small, 7, 2047–2051.

    Google Scholar 

  33. Gao, W., D’Agostino, M., Garcia-Gradilla, V., Orozco, J., & Wang, J. (2013). Multi-fuel driven Janus micromotors. Small, 9, 467–471.

    Google Scholar 

  34. Wang, W., et al. (2014). A tale of two forces: Simultaneous chemical and acoustic propulsion of bimetallic micromotors. Chemical Communications, 51, 1020–1023.

    Google Scholar 

  35. Bell, D. J., Leutenegger, S., Hammar, K. M., Dong, L. X., & Nelson, B. J. (2007). Flagella-like propulsion for microrobots using a nanocoil and a rotating electromagnetic field. In Proceedings 2007 IEEE international conference on robotics and automation (pp. 1128–1133). https://doi.org/10.1109/ROBOT.2007.363136

    Chapter  Google Scholar 

  36. Zhang, L., et al. (2009). Artificial bacterial flagella: Fabrication and magnetic control. Applied Physics Letters, 94, 064107.

    Google Scholar 

  37. Zhang, L., et al. (2009). Characterizing the swimming properties of artificial bacterial flagella. Nano Letters, 9, 3663–3667.

    Google Scholar 

  38. Lighthill, J. (1976). Flagellar hydrodynamics. SIAM Review, 18, 161–230.

    MathSciNet  MATH  Google Scholar 

  39. Brennen, C., & Winet, H. (1977). Fluid mechanics of propulsion by cilia and flagella. Annual Review of Fluid Mechanics, 9, 339–398.

    MATH  Google Scholar 

  40. Jang, B., et al. (2015). Undulatory locomotion of magnetic multilink nanoswimmers. Nano Letters, 15, 4829–4833.

    Google Scholar 

  41. Li, T., et al. (2017). Highly efficient freestyle magnetic nanoswimmer. Nano Letters, 17, 5092–5098.

    Google Scholar 

  42. Fan, X., Dong, X., Karacakol, A. C., Xie, H., & Sitti, M. (2020). Reconfigurable multifunctional ferrofluid droplet robots. Proceedings of the National Academy of Sciences, 117, 27916–27926.

    Google Scholar 

  43. Kim, Y., Yuk, H., Zhao, R., Chester, S. A., & Zhao, X. (2018). Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature, 558, 274–279.

    Google Scholar 

  44. Huang, H.-W., Sakar, M. S., Petruska, A. J., Pané, S., & Nelson, B. J. (2016). Soft micromachines with programmable motility and morphology. Nature Communications, 7, 12263.

    Google Scholar 

  45. Wixforth, A., et al. (2004). Acoustic manipulation of small droplets. Analytical and Bioanalytical Chemistry, 379, 982–991.

    Google Scholar 

  46. Ding, X., et al. (2012). On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proceedings of the National Academy of Sciences, 109, 11105–11109.

    Google Scholar 

  47. Lu, X., et al. (2019). A human microrobot interface based on acoustic manipulation. ACS Nano, 13, 11443–11452.

    Google Scholar 

  48. Nama, N., Huang, P.-H., Huang, T. J., & Costanzo, F. (2014). Investigation of acoustic streaming patterns around oscillating sharp edges. Lab on a Chip, 14, 2824–2836.

    Google Scholar 

  49. Melde, K., Mark, A. G., Qiu, T., & Fischer, P. (2016). Holograms for acoustics. Nature, 537, 518–522.

    Google Scholar 

  50. Nadal, F., & Lauga, E. (2014). Asymmetric steady streaming as a mechanism for acoustic propulsion of rigid bodies. Physics of Fluids, 26, 082001.

    Google Scholar 

  51. Aghakhani, A., Yasa, O., Wrede, P., & Sitti, M. (2020). Acoustically powered surface-slipping mobile microrobots. Proceedings of the National Academy of Sciences, 117, 3469–3477.

    Google Scholar 

  52. Kagan, D., et al. (2012). Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation. Angewandte Chemie, International Edition, 51, 7519–7522.

    Google Scholar 

  53. Ahmed, D., et al. (2016). Artificial swimmers propelled by acoustically activated flagella. Nano Letters, 16, 4968–4974.

    Google Scholar 

  54. Li, J., et al. (2015). Magneto-acoustic hybrid nanomotor. Nano Letters, 15, 4814–4821.

    Google Scholar 

  55. Wang, J., & Manesh, K. M. (2010). Motion control at the nanoscale. Small, 6, 338–345.

    Google Scholar 

  56. Tottori, S., et al. (2012). Magnetic helical micromachines: Fabrication, controlled swimming, and cargo transport. Advanced Materials, 24, 811–816.

    Google Scholar 

  57. Lauga, E., & Powers, T. R. (2009). The hydrodynamics of swimming microorganisms. Reports on Progress in Physics, 72, 096601.

    MathSciNet  Google Scholar 

  58. Vicsek, T., & Zafeiris, A. (2012). Collective motion. Physics Reports, 517, 71–140.

    Google Scholar 

  59. Laurell, T., Petersson, F., & Nilsson, A. (2007). Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chemical Society Reviews, 36, 492–506.

    Google Scholar 

  60. Xu, T., et al. (2015). Reversible swarming and separation of self-propelled chemically powered nanomotors under acoustic fields. Journal of the American Chemical Society, 137, 2163–2166.

    Google Scholar 

  61. Grossman, D., Aranson, I. S., & Jacob, E. B. (2008). Emergence of agent swarm migration and vortex formation through inelastic collisions. New Journal of Physics, 10, 023036.

    Google Scholar 

  62. Ingham, C. J., & Jacob, E. B. (2008). Swarming and complex pattern formation in Paenibacillus vortex studied by imaging and tracking cells. BMC Microbiology, 8, 36.

    Google Scholar 

  63. Ahmed, D., et al. (2017). Neutrophil-inspired propulsion in a combined acoustic and magnetic field. Nature Communications, 8, 770.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxing Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sanchez, S.W., Li, J. (2022). Magneto-Acoustic Hybrid Micro-/Nanorobot. In: Sun, Y., Wang, X., Yu, J. (eds) Field-Driven Micro and Nanorobots for Biology and Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-80197-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80197-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80196-0

  • Online ISBN: 978-3-030-80197-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics