Skip to main content

On Information Links

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12829))

Included in the following conference series:

  • 2314 Accesses

Abstract

In a joint work with D. Bennequin [8], we suggested that the (negative) minima of the 3-way multivariate mutual information correspond to Borromean links, paving the way for providing probabilistic analogs of linking numbers. This short note generalizes the correspondence of the minima of k multivariate interaction information with k Brunnian links in the binary variable case. Following [16], the negativity of the associated K-L divergence of the joint probability law with its Kirkwood approximation implies an obstruction to local decomposition into lower order interactions than k, defining a local decomposition inconsistency that reverses Abramsky’s contextuality local-global relation [1]. Those negative k-links provide a straightforward definition of collective emergence in complex k-body interacting systems or dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As the proof relies on a weak concavity theorem D [7] which proof has not been provided yet, this theorem shall be considered as a conjecture as long as the proof of theorem D [7] is not given.

References

  1. Abramsky, S., Brandenburger, A.: The sheaf-theoretic structure of non-locality and contextuality. New J. Phys. 13, 1–40 (2011)

    Article  Google Scholar 

  2. Baas, N.: New states of matter suggested by new topological structures. Int. J. Gen Syst 42(2), 137–169 (2012)

    Article  MathSciNet  Google Scholar 

  3. Baas, N.: On the mathematics of higher structures. Int. J. Gen Syst 48(6), 603–624 (2019)

    Article  MathSciNet  Google Scholar 

  4. Baez, J.C., Fritz, T.: A bayesian characterization of relative entropy. Theory Appl. Categories 29(16), 422–456 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Baez, J., Fritz, T., Leinster, T.: A characterization of entropy in terms of information loss. Entropy 13, 1945–1957 (2011)

    Article  MathSciNet  Google Scholar 

  6. Baudot, P.: The Poincare-Shannon machine: statistical physics and machine learning aspects of information cohomology. Entropy 21(9), 881 (2019)

    Google Scholar 

  7. Baudot, P., Bennequin, D.: The homological nature of entropy. Entropy 17(5), 3253–3318 (2015)

    Article  MathSciNet  Google Scholar 

  8. Baudot, P., Tapia, M., Bennequin, D., Goaillard, J.: Topological information data analysis. Entropy 21(9), 869 (2019)

    Google Scholar 

  9. Bennequin, D., Peltre, O., Sergeant-Perthuis, G., Vigneaux, J.: Extra-fine sheaves and interaction decompositions. arXiv:2009.12646 (2020)

  10. Bertschinger, N., Rauh, J., Olbrich, E., Jost, J., Ay, N.: Quantifying unique information. Entropy 16, 2161–2183 (2014)

    Google Scholar 

  11. Brenner, N., Strong, S., Koberle, R., Bialek, W.: Synergy in a neural code. Neural Comput. 12, 1531–1552 (2000)

    Article  Google Scholar 

  12. Cerf, N., Adami, C.: Negative entropy and information in quantum mechanic. Phys. Rev. Lett. 79, 5194 (1997)

    Article  MathSciNet  Google Scholar 

  13. Galas, D., Sakhanenko, N.: Symmetries among multivariate information measures explored using möbius operators. Entropy 21(1(88)), 1–17 (2019)

    Google Scholar 

  14. Horodecki, M., Oppenheim, J., Winter, A.: Quantum state merging and negative information. Comm. Math. Phys. 1, 107–136 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Hu, K.T.: On the amount of information. Theory Probab. Appl. 7(4), 439–447 (1962)

    Article  Google Scholar 

  16. Jakulin, A., Bratko, I.: Quantifying and visualizing attribute interactions. arXiv:cs/0308002 (2004)

  17. Khovanov, M.: Link homology and categorification. In: International Congress of Mathematicians, vol. II, pp. 989–999. European Mathematical Society, Zürich (2006)

    Google Scholar 

  18. Kirkwood, J.: Statistical mechanics of fluid mixtures. J. Chem. Phys. 3, 300 (1935)

    Google Scholar 

  19. Kolmogorov, A.N.: Grundbegriffe der Wahrscheinlichkeitsrechnung. (English translation (1950): Foundations of the Theory of Probability.). Springer, Berlin (Chelsea, New York) (1933)

    Google Scholar 

  20. Kullback, S., Leibler, R.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)

    Article  MathSciNet  Google Scholar 

  21. Manin, Y., Marcolli, M.: Homotopy theoretic and categorical models of neural information networks. arXiv:2006.15136 (2020)

  22. Matsuda, H.: Physical nature of higher-order mutual information: intrinsic correlations and frustration. Phys. Rev. E 62(3), 3096–3102 (2000)

    Article  Google Scholar 

  23. McGill, W.: Multivariate information transmission. Psychometrika 19, 97–116 (1954)

    Article  Google Scholar 

  24. Milnor, J.: Link groups. Ann. Math. 59(2), 177–195 (1954)

    Article  MathSciNet  Google Scholar 

  25. Olbrich, E., Bertschinger, N., Rauh, J.: Information decomposition and synergy. Entropy 17(5), 3501–3517 (2015)

    Google Scholar 

  26. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, 2nd edn. Morgan Kaufmann, San Francisco (1988)

    MATH  Google Scholar 

  27. Peltre, O.: Message-passing algorithms and homology. From thermodynamics to statistical learning. PhD thesis of Institut Mathematique de Jussieu arXiv:2009.11631 (2020)

  28. Rosas, F.E., et al.: Reconciling emergences: an information-theoretic approach to identify causal emergence in multivariate data. PLoS Comput. Biol. 16(12), p1-23 (2020)

    Article  Google Scholar 

  29. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  30. Vigneaux, J.: Topology of statistical systems. A cohomological approach to information theory. Ph.D. thesis, Paris 7 Diderot University (2019)

    Google Scholar 

  31. Williams, P., Beer, R.: Nonnegative decomposition of multivariate information. arXiv:1004.2515v1 (2010)

Download references

Acknowledgments

I thank warmly anonymous reviewer for helpful remarks improving the manuscript and Daniel Bennequin whose ideas are at the origin of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Baudot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baudot, P. (2021). On Information Links. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2021. Lecture Notes in Computer Science(), vol 12829. Springer, Cham. https://doi.org/10.1007/978-3-030-80209-7_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80209-7_68

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80208-0

  • Online ISBN: 978-3-030-80209-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics