Skip to main content

Compatible Solute Engineering: An Approach for Plant Growth Under Climate Change

  • Chapter
  • First Online:
Compatible Solutes Engineering for Crop Plants Facing Climate Change

Abstract

Agriculture is not only a livelihood source but also fulfils the nutritional requirement of humans. To feed the world population increasing at an alarming rate, crop production must be increased. However, crop production is adversely affected by various abiotic factors or changes in climatic conditions worldwide. Climate exhibits a direct impact on the yield of the crop. In stress condition, the physiological state of plants gets altered that ultimately affects the overall growth of plants. Plants exhibit different mechanisms to survive these stress conditions. Plants synthesize and accumulated non-toxic, non-reactive organic compounds to counter the unfavourable conditions, and these compounds are known as compatible solutes. Compatible solutes exhibit beneficial characteristics by which plants could survive in hostile environments. Hereby, we discussed the role of few important compatible compounds and their role in plant growth as well as in different stress conditions. We have also summarized the effect of inducible changes in the compatible solutes on plant growth under different climatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131(4):1748–1755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahmad I, Larher F, Stewart GR (1979) Sorbitol, a compatible osmotic solute in Plantago maritima. New Phytol 82(3):671–678

    Article  CAS  Google Scholar 

  • Al-Janabi J, Lösel D (2003) Changes in carbohydrate composition of cucumber leaves during the development of powdery mildew infection. Plant Pathol 52:256–265

    Article  Google Scholar 

  • Anderson J (2007) Additive effects of alcohols and polyols on thermostability of pepper leaf extracts. J Am Soc Hortic Sci 132:67–72

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166(1):3–16

    Article  CAS  Google Scholar 

  • Bieleski RL (1982) Sugar alcohols. In: Loewus FA, Tanner W (eds) Plant carbohydrates I: intracellular carbohydrates. Springer, Berlin/Heidelberg, pp 158–192

    Chapter  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7(7):1099–1111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boote K, Ibrahim A, Lafitte H, McCulley R, Messina C, Murray S, Specht J, Taylor S, Westgate M, Glasener K, Bijl C, Giese J (2011) Position statement on crop adaptation to climate change. Crop Sci 51:2337–2343

    Article  Google Scholar 

  • Borlaug NE (2002) Feeding a world of 10 billion people: the miracle ahead. In Vitro Cell Dev Biol Plant 38(2):221–228

    Article  Google Scholar 

  • Bowler C, Slooten L, Vandenbranden S, De Rycke R, Botterman J, Sybesma C, Van Montagu M, Inze D (1991) Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J 10(7):1723–1732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Briens M, Larher F (1982) Osmoregulation in halophytic higher plants: a comparative study of soluble carbohydrates, polyols, betaines and free proline. Plant Cell Environ 5(4):287–292

    CAS  Google Scholar 

  • Brown PH, Hu H (1996) Phloem mobility of boron is species dependent: evidence for phloem mobility in sorbitol-rich species. Ann Bot 77(5):497–506

    Article  CAS  Google Scholar 

  • Brown PH, Bellaloui N, Hu H, Dandekar A (1999) Transgenically enhanced sorbitol synthesis facilitates phloem boron transport and increases tolerance of tobacco to boron deficiency. Plant Physiol 119(1):17–20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiang Y-J, Stushnoff C, McSay A, Jones M, Bohnert H (2005) Overexpression of mannitolphosphate dehydrogenase increases mannitol accumulation and adds protection against chilling injury in Petunia. J Am Soc Hortic Sci 130(4):605–610

    Article  CAS  Google Scholar 

  • Clark AJ, Blissett KJ, Oliver RP (2003) Investigating the role of polyols in Cladosporium fulvum during growth under hyper-osmotic stress and in planta. Planta 216(4):614–619

    Article  PubMed  CAS  Google Scholar 

  • Cuin TA, Shabala S (2007) Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots. Plant Cell Environ 30(7):875–885

    Article  PubMed  CAS  Google Scholar 

  • DaMatta F, Grandis A, Arenque-Musa B, Buckeridge M (2010) Impacts of climate changes on crop physiology and food quality. Food Res Int 43

    Google Scholar 

  • Delauney A, Verma D (2002) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  Google Scholar 

  • Dell B, Huang L (1997) Physiological response of plants to low boron. Plant Soil 193(1–2):103–120

    Article  CAS  Google Scholar 

  • FAO (2010) The state of food insecurity in the world: Addressing food insecurity in protracted crises. Retrieved from http://www.fao.org/3/i1683e/i1683e00.htm

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179(4):945–963

    Article  PubMed  CAS  Google Scholar 

  • Gao Z, Maurousset L, Lemoine R, Yoo SD, van Nocker S, Loescher W (2003) Cloning, expression, and characterization of sorbitol transporters from developing sour cherry fruit and leaf sink tissues. Plant Physiol 131(4):1566–1575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gouffi K, Blanco C (2000) Is the accumulation of osmoprotectant the unique mechanism involved in bacterial osmoprotection? Int J Food Microbiol 55(1–3):171–174

    Article  PubMed  CAS  Google Scholar 

  • Hayashi H, Alia LML, Deshnium P, Ida M, Murata N (1997) Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J Cell Mol Biol 12(1):133–142

    Article  CAS  Google Scholar 

  • Holmberg N, Bülow L (1998) Improving stress tolerance in plants by gene transfer. Trends Plant Sci 3(2):61–66

    Article  Google Scholar 

  • Holmström K-O, Mäntylä E, Welin B, Mandal A, Palva ET, Tunnela OE, Londesborough J (1996) Drought tolerance in tobacco. Nature 379(6567):683–684

    Article  Google Scholar 

  • Hu H, Penn SG, Lebrilla CB, Brown PH (1997) Isolation and characterization of soluble boron complexes in higher plants. The mechanism of phloem mobility of boron. Plant Physiol 113(2):649–655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu L, Lu H, Liu Q, Chen X, Jiang X (2005) Overexpression of mtlD gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannitol. Tree Physiol 25(10):1273–1281

    Article  PubMed  CAS  Google Scholar 

  • Jaindl M, Popp M (2006) Cyclitols protect glutamine synthetase and malate dehydrogenase against heat induced deactivation and thermal denaturation. Biochem Biophys Res Commun 345(2):761–765

    Article  PubMed  CAS  Google Scholar 

  • Jaleel C, Manivannan P, Wahid A, Farooq M, Al-Juburi H, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11

    Google Scholar 

  • Jebbar M, Champion C, Blanco C, Bonnassie S (1998) Carnitine acts as a compatible solute in Brevibacterium linens. Res Microbiol 149(3):211–219

    Article  PubMed  CAS  Google Scholar 

  • Jennings DB, Daub ME, Pharr DM, Williamson JD (2002) Constitutive expression of a celery mannitol dehydrogenase in tobacco enhances resistance to the mannitol-secreting fungal pathogen Alternaria alternata. Plant J 32(1):41–49

    Article  PubMed  CAS  Google Scholar 

  • Jobic C, Boisson AM, Gout E, Rascle C, Fevre M, Cotton P, Bligny R (2007) Metabolic processes and carbon nutrient exchanges between host and pathogen sustain the disease development during sunflower infection by Sclerotinia sclerotiorum. Planta 226(1):251–265

    Article  PubMed  CAS  Google Scholar 

  • Juchaux-Cachau M, Landouar-Arsivaud L, Pichaut JP, Campion C, Porcheron B, Jeauffre J, Noiraud-Romy N, Simoneau P, Maurousset L, Lemoine R (2007) Characterization of AgMaT2, a plasma membrane mannitol transporter from celery, expressed in phloem cells, including phloem parenchyma cells. Plant Physiol 145(1):62–74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karakas B, Ozias-Akins P, Stushnoff C, Suefferheld M, Rieger M (1997) Salinity and drought tolerance of mannitol-accumulating transgenic tobacco. Plant Cell Environ 20(5):609–616

    Article  Google Scholar 

  • Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170(5):319–330

    Article  PubMed  CAS  Google Scholar 

  • Khan M, Yu X, Kikuchi A, Asahina M, Watanabe K (2009) Genetic engineering of Glycine betaine biosynthesis to enhance abiotic stress tolerance in plants. Plant Biotechnol 26:125–134

    Article  CAS  Google Scholar 

  • Kishor P, Hong Z, Miao GH, Hu C, Verma D (1995) Overexpression of [delta]-Pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerancein transgenic plants. Plant Physiol 108(4):1387–1394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kobayashi Y, Iwata H, Yoshida J, Ogihara J, Kato J, Kasumi T (2015) Metabolic correlation between polyol and energy-storing carbohydrate under osmotic and oxidative stress condition in Moniliellamegachiliensis. J Biosci Bioeng 120(4):405–410

    Article  PubMed  CAS  Google Scholar 

  • Kodama H, Hamada T, Horiguchi G, Nishimura M, Iba K (1994) Genetic enhancement of cold tolerance by expression of a gene for chloroplast [omega]-3 fatty acid desaturase in transgenic tobacco. Plant Physiol 105(2):601–605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar V, Khare T, Srivastav A, Surekha C, Shriram V, Wani SH (2019) Oxidative stress and leaf senescence: important insights. In: Senescence signalling and control in plants. Academic, London, pp 139–163

    Chapter  Google Scholar 

  • Lang F (2007) Mechanisms and significance of cell volume regulation. J Am Coll Nutr 26(sup5):613S–623S

    Article  PubMed  CAS  Google Scholar 

  • Lewis DH (1986) Storage carbohydrates in vascular plants: distribution, physiology and metabolism. Plant Growth Regul 4:299–303

    Article  Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333(6042):616–620

    Article  PubMed  CAS  Google Scholar 

  • Macaluso L, Lo Bianco R, Rieger M (2007) Mannitol-producing tobacco exposed to varying levels of water, light, temperature and paraquat. J Hortic Sci Biotechnol 82:979–985

    Article  CAS  Google Scholar 

  • Moing A, Carbonne F, Zipperlin B, Svanella L, Gaudillère J-P (2006) Phloem loading in peach: symplastic or apoplastic? Physiol Plant 101:489–496

    Article  Google Scholar 

  • Nadwodnik J, Lohaus G (2008) Subcellular concentrations of sugar alcohols and sugars in relation to phloem translocation in Plantago major, Plantago maritima, Prunus persica, and Apium graveolens. Planta 227(5):1079–1089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nelson DE, Rammesmayer G, Bohnert HJ (1998) Regulation of cell-specific inositol metabolism and transport in plant salinity tolerance. Plant Cell 10(5):753–764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27(1):29–34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Panikulangara TJ, Eggers-Schumacher G, Wunderlich M, Stransky H, Schoffl F (2004) Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. Plant Physiol 136(2):3148–3158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paul D (2013) Osmotic stress adaptations in rhizobacteria. J Basic Microbiol 53(2):101–110

    Article  PubMed  CAS  Google Scholar 

  • Pilon-Smits E, Ebskamp M, Paul MJ, Jeuken M, Weisbeek PJ, Smeekens S (1995) Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol 107(1):125–130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sah S, Kaur G, Wani S (2016) Metabolic engineering of compatible solute trehalose for abiotic stress tolerance in plants. In: Osmolytes and plants acclimation to changing environment: emerging omics technologies, pp 83–96

    Chapter  Google Scholar 

  • Schuppler U, He PH, John PC, Munns R (1998) Effect of water stress on cell division and cell-division-cycle 2-like cell-cycle kinase activity in wheat leaves. Plant Physiol 117(2):667–678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25(2):333–341

    Article  PubMed  Google Scholar 

  • Sharma KK, Sharma HC, Seetharama N, Ortiz R (2002) Development and deployment of transgenic plants: biosafety considerations. In Vitro Cell Dev Biol Plant 38(2):106

    Article  Google Scholar 

  • Shen B, Jensen RG, Bohnert HJ (1997) Mannitol protects against oxidation by hydroxyl radicals. Plant Physiol 115(2):527–532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shen B, Hohmann S, Jensen RG, Bohnert a, H. (1999) Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiol 121(1):45–52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sheveleva EV, Marquez S, Chmara W, Zegeer A, Jensen RG, Bohnert HJ (1998) Sorbitol-6-phosphate dehydrogenase expression in transgenic tobacco. High amounts of sorbitol lead to necrotic lesions. Plant Physiol 117(3):831–839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tarczynski MC, Jensen RG, Bohnert HJ (1993) Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259(5094):508–510

    Article  PubMed  CAS  Google Scholar 

  • Thomas JC, Sepahi M, Arendall B, Bohnert HJ (1995) Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant Cell Environ 18(7):801–806

    Article  CAS  Google Scholar 

  • Vernon DM, Bohnert HJ (1992) A novel methyl transferase induced by osmotic stress in the facultative halophyte Mesembryanthemum crystallinum. EMBO J 11(6):2077–2085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wani SH, Kumar V, Khare T, Guddimalli R, Parveda M, Solymosi K, Kishor PK (2020) Engineering salinity tolerance in plants: progress and prospects. Planta 251(4):1–29

    Article  CAS  Google Scholar 

  • Watari J, Kobae Y, Yamaki S, Yamada K, Toyofuku K, Tabuchi T, Shiratake K (2004) Identification of sorbitol transporters expressed in the phloem of apple source leaves. Plant Cell Physiol 45(8):1032–1041

    Article  PubMed  CAS  Google Scholar 

  • Wheeler T, von Braun J (2013) Climate change impacts on global food security. Science 341(6145):508–513

    Article  PubMed  CAS  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho T, Wu R (1996) Expression of a late embryogenesis abundant protein gene, hva1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110(1):249–257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217(4566):1214–1222

    Article  CAS  PubMed  Google Scholar 

  • Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38(10):1095–1102

    Article  PubMed  CAS  Google Scholar 

  • Yu-Jen C, Stushnoff C, McSay AE, Jones ML, Bohnert HJ (2005) Overexpression of mannitol-1-phosphate dehydrogenase increases mannitol accumulation and adds protection against chilling injury in Petunia. J Am Soc Hortic Sci 130(4):605–610

    Article  Google Scholar 

  • Zhang LY, Peng YB, Pelleschi-Travier S, Fan Y, Lu YF, Lu YM, Gao XP, Shen YY, Delrot S, Zhang DP (2004) Evidence for apoplasmic phloem unloading in developing apple fruit. Plant Physiol 135(1):574–586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou R, Cheng L (2008) Competitive inhibition of phosphoglucose isomerase of apple leaves by sorbitol 6-phosphate. J Plant Physiol 165(9):903–910

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124(3):941–948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu J-K (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK, Liu J, Xiong L (1998) Genetic analysis of salt tolerance in Arabidopsis. Evidence for a critical role of potassium nutrition. Plant Cell 10(7):1181–1191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paliwal, A. et al. (2021). Compatible Solute Engineering: An Approach for Plant Growth Under Climate Change. In: Wani, S.H., Gangola, M.P., Ramadoss, B.R. (eds) Compatible Solutes Engineering for Crop Plants Facing Climate Change. Springer, Cham. https://doi.org/10.1007/978-3-030-80674-3_11

Download citation

Publish with us

Policies and ethics