Skip to main content

A Sparse-Grid Probabilistic Scheme for Approximation of the Runaway Probability of Electrons in Fusion Tokamak Simulation

  • Conference paper
  • First Online:
Sparse Grids and Applications - Munich 2018

Abstract

Runaway electrons (RE) generated during magnetic disruptions present a major threat to the safe operation of plasma nuclear fusion reactors. A critical aspect of understanding RE dynamics is to calculate the runaway probability, i.e., the probability that an electron in the phase space will runaway on, or before, a prescribed time. Such probability can be obtained by solving the adjoint equation of the underlying Fokker-Planck equation that controls the electron dynamics. In this effort, we present a sparse-grid probabilistic scheme for computing the runaway probability. The key ingredient of our approach is to represent the solution of the adjoint equation as a conditional expectation, such that discretizing the differential operator reduces to the approximation of a set of integrals. Adaptive sparse grid interpolation is utilized to approximate the map from the phase space to the runaway probability. The main novelties of this effort are the integration of the sparse-grid method into the probabilistic numerical scheme for computing escape probability, and the application of the proposed method in computing RE probabilities. Two numerical examples are given to illustrate that the proposed method can achieve \(\mathcal {O}(\varDelta t)\) convergence, and that the local anisotropic adaptive refinement strategy (M. Stoyanov, Adaptive sparse grid construction in a context of local anisotropy and multiple hierarchical parents. In: Sparse Grids and Applications-Miami 2016, Springer, Berlin, 2018, pp. 175–199) can effectively handle the sharp transition layer between the runaway and non-runaway regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    ITER (originally the International Thermonuclear Experimental Reactor) is an international nuclear fusion research and engineering mega project, which will be the world’s largest magnetic confinement plasma physics experiment. See https://www.iter.org/ for details.

  2. 2.

    http://genecode.org/.

  3. 3.

    The escape time \(\tau _{t_n,x}\) in Eq. (3.6) should be defined by replacing \(\boldsymbol X_s^{t,x}\) with the Euler discretization, i.e., \(\boldsymbol X_{s}^{t_n,x} = \boldsymbol x + b(\boldsymbol x)(s-t_n)+ \sigma (\boldsymbol x)(\boldsymbol W_s-\boldsymbol W_{t_n})\) for s ≥ t n in Eq. (3.2). We use the same notation without creating confusion.

References

  1. M. M. Ali, P. E. Strazdins, B. Harding, and M. Hegland. Complex scientific applications made fault-tolerant with the sparse grid combination technique. The International Journal of High Performance Computing Applications, 30(3):335–359, 2016.

    Article  Google Scholar 

  2. A. H. Boozer. Theory of runaway electrons in ITER: Equations, important parameters, and implications for mitigation. Physics of Plasmas, 22(3):032504, 2015.

    Google Scholar 

  3. H.-J. Bungartz. Concepts for higher order finite elements on sparse grids. Houston Journal of Mathematics, pages 159–170, 1996.

    Google Scholar 

  4. H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numerica, 13:1–123, June 2004.

    Article  MathSciNet  Google Scholar 

  5. N. W. Eidietis, N. Commaux, E. M. Hollmann, D. A. Humphreys, T. C. Jernigan, R. A. Moyer, E. J. Strait, M. A. VanZeeland, J. C. Wesley, and J. H. Yu. Control of post-disruption runaway electron beams in diii-d. Physics of Plasmas, 19(5):056109, 2012.

    Google Scholar 

  6. I.-G. Farcas, T. Görler, H.-J. Bungartz, F. Jenko, and T. Neckel. Sensitivity-driven adaptive sparse stochastic approximations in plasma microinstability analysis. arXiv e-prints, page arXiv:1812.00080, Nov 2018.

    Google Scholar 

  7. T. Gerstner and M. Griebel. Dimension–Adaptive Tensor–Product Quadrature. Computing, 71(1):65–87, Aug. 2003.

    Article  MathSciNet  Google Scholar 

  8. M. Griebel. Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences. Computing, 61(2):151–179, June 1998.

    Article  MathSciNet  Google Scholar 

  9. M. Heene, A. P. Hinojosa, M. Obersteiner, H.-J. Bungartz, and D. Pflüger. EXAHD: An exa-scalable two-level sparse grid approach for higher-dimensional problems in plasma physics and beyond. In W. E. Nagel, D. H. Kröner, and M. M. Resch, editors, High Performance Computing in Science and Engineering ’ 17, pages 513–529, Cham, 2018. Springer International Publishing.

    Google Scholar 

  10. E. M. Hollmann, P. B. Aleynikov, T. Fülöp, D. A. Humphreys, V. A. Izzo, M. Lehnen, V. E. Lukash, G. Papp, G. Pautasso, F. Saint-Laurent, and J. A. Snipes. Status of research toward the ITER disruption mitigation system. Physics of Plasmas, 22(2):021802, 2015.

    Google Scholar 

  11. A. Klimke and B. Wohlmuth. Algorithm 847: Spinterp: piecewise multilinear hierarchical sparse grid interpolation in matlab. ACM Transactions on Mathematical Software (TOMS), 31(4):561–579, 2005.

    Article  MathSciNet  Google Scholar 

  12. H. Knoepfel and D. A. Spong. Runaway electrons in toroidal discharges. Nuclear Fusion, 19:785–829, June 1979.

    Article  Google Scholar 

  13. K. Kormann and E. Sonnendrücker. Sparse grids for the Vlasov–Poisson equation. In J. Garcke and D. Pflüger, editors, Sparse Grids and Applications - Stuttgart 2014, pages 163–190, Cham, 2016. Springer International Publishing.

    Google Scholar 

  14. C. Liu, D. P. Brennan, A. Bhattacharjee, and A. H. Boozer. Adjoint Fokker-Planck equation and runaway electron dynamics. Physics of Plasmas, 23(1):010702, 2016.

    Google Scholar 

  15. E. Marsch. Kinetic physics of the solar corona and solar wind. Living Reviews in Solar Physics, 3(1):1, Jul 2006.

    Google Scholar 

  16. J. R. Martín-Solís, A. Loarte, and M. Lehnen. Runaway electron dynamics in tokamak plasmas with high impurity content. Physics of Plasmas, 22(9):092512, 2015.

    Google Scholar 

  17. M. Obersteiner, A. P. Hinojosa, M. Heene, H.-J. Bungartz, and D. Pflüger. A highly scalable, algorithm-based fault-tolerant solver for gyrokinetic plasma simulations. In Proceedings of the 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, ScalA’17, New York, NY, USA, 2017. Association for Computing Machinery.

    Google Scholar 

  18. B. K. Øksendal. Stochastic Differential Equations. An Introduction with Applications. Springer Science & Business, Berlin, Heidelberg, Nov. 2010.

    Google Scholar 

  19. É. Pardoux. Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic PDEs of second order. In Stochastic Analysis and Related Topics VI, pages 79–127, Boston, MA, 1998. Birkhäuser Boston.

    Google Scholar 

  20. S. Peng. A general stochastic maximum principle for optimal control problems. SIAM Journal on control and optimization, 28(4):966–979, 1990.

    Article  MathSciNet  Google Scholar 

  21. D. Pflüger, B. Peherstorfer, and H.-J. Bungartz. Spatially adaptive sparse grids for high-dimensional data-driven problems. Journal of Complexity, 26(5):508–522, 2010.

    Article  MathSciNet  Google Scholar 

  22. D. M. Pflüger. Spatially Adaptive Sparse Grids for High-Dimensional Problems. Dissertation, Technische Universität München, München, 2010.

    MATH  Google Scholar 

  23. A. Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics, volume 332. Springer Science Business Media &, 2007.

    Google Scholar 

  24. L. F. Ricketson and A. J. Cerfon. Sparse grid techniques for particle-in-cell schemes. Plasma Physics and Controlled Fusion, 59(2):024002, dec 2016.

    Google Scholar 

  25. M. Rosenbluth and S. Putvinski. Theory for avalanche of runaway electrons in tokamaks. Nuclear Fusion, 37(10):1355–1362, oct 1997.

    Google Scholar 

  26. Z. Schuss. Brownian Dynamics at Boundaries and Interfaces. In Physics, Chemistry, and Biology. Springer Science & Business Media, Aug. 2013.

    Google Scholar 

  27. S. Smolyak. Quadrature and interpolation formulas for tensor products of certain classes of functions. Doklady Akademii Nauk SSSR, 4:240–243, 1963.

    MATH  Google Scholar 

  28. M. Stoyanov. User manual: Tasmanian sparse grids. Technical Report ORNL/TM-2015/596, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN, 2015.

    Google Scholar 

  29. M. Stoyanov. Adaptive sparse grid construction in a context of local anisotropy and multiple hierarchical parents. In Sparse Grids and Applications-Miami 2016, pages 175–199. Springer, 2018.

    Google Scholar 

  30. M. Stoyanov, D. Lebrun-Grandie, J. Burkardt, and D. Munster. Tasmanian, November 2013.

    Google Scholar 

  31. Z. Tao, W. Guo, and Y. Cheng. Sparse grid discontinuous Galerkin methods for the Vlasov-Maxwell system. Journal of Computational Physics: X, 3:100022, 2019.

    MathSciNet  Google Scholar 

  32. J. Yang, G. Zhang, and W. Zhao. A First-Order Numerical Scheme for Forward-Backward Stochastic Differential Equations in Bounded Domains. Journal of Computational Mathematics, 36(2):237–258, 2018.

    Article  MathSciNet  Google Scholar 

  33. G. Zhang and D. del Castillo-Negrete. A backward Monte-Carlo method for time-dependent runaway electron simulations. Physics of Plasmas, 24(9):092511, Sept. 2017.

    Google Scholar 

  34. W. Zhao, G. Zhang, and L. Ju. A stable multistep scheme for solving backward stochastic differential equations. SIAM Journal on Numerical Analysis, 48(4):1369–1394, 2010.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported in part by the U.S. Department of Energy, Office of Science, Offices of Advanced Scientific Computing Research and Fusion Energy Science, and by the Laboratory Directed Research and Development program at the Oak Ridge National Laboratory, which is operated by UT-Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guannan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, M., Zhang, G., del-Castillo-Negrete, D., Stoyanov, M., Beidler, M. (2021). A Sparse-Grid Probabilistic Scheme for Approximation of the Runaway Probability of Electrons in Fusion Tokamak Simulation. In: Bungartz, HJ., Garcke, J., Pflüger, D. (eds) Sparse Grids and Applications - Munich 2018. Lecture Notes in Computational Science and Engineering, vol 144. Springer, Cham. https://doi.org/10.1007/978-3-030-81362-8_11

Download citation

Publish with us

Policies and ethics