Skip to main content

Product Representation for Disassembly Sequence Planning

  • Chapter
  • First Online:
Optimisation of Robotic Disassembly for Remanufacturing

Abstract

Most disassembly optimisation problems start with designing a mathematical representation that can describe component relations. This chapter discusses and compares three major groups of component relation models: the matrix-based model, graph-based model and hybrid-based model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bourjault A (1984) Contribution à une approche méthodologique de l’assemblage automatisé: élaboration automatique des séquences opératoires. Université de Franche-Comté, Thèse D’état

    Google Scholar 

  2. Dini G, Santochi M (1992) Automated sequencing and subassembly detection in assembly planning. CIRP Ann—Manuf Technol 41(1):1–4

    Google Scholar 

  3. Huang Y, Huang C (2002) Disassembly matrix for disassembly process of products. Int J Prod Res 40(2):255–273

    Article  Google Scholar 

  4. Güngör A, Gupta M (2001) Disassembly sequence plan generation using a branch-and-bound algorithm. Int J Prod Res 39(3):481–509

    Article  Google Scholar 

  5. Tao F, Bi L, Zuo Y, Nee A (2018) Partial/parallel disassembly sequence planning for complex products. J Manuf Sci Eng 140(1)

    Google Scholar 

  6. Kalayci C, Gupta S (2014) Ant colony optimization for sequence-dependent disassembly line balancing problem. J Manuf Technol Manag 24(3):413–427

    Article  Google Scholar 

  7. Prenting TO, Battaglin RM (1964) The precedence diagram: a tool for analysis in assembly line balancing. J Ind Eng XV(4):208–213

    Google Scholar 

  8. Ahmadi R, Wurgaft H (1994) Design for synchronized flow manufacturing. Manage Sci 40(11):1395–1578

    MATH  Google Scholar 

  9. De Mello L, Sanderson A (1990) AND/OR graph representation of assembly plans. IEEE Trans Robot Autom 6(2):188–199

    Article  Google Scholar 

  10. Koc A, Sabuncuoglu I, Erel E (2009) Two exact formulations for disassembly line balancing problems with task precedence diagram construction using an AND/OR graph. IIE Trans 41(10):866–881

    Article  Google Scholar 

  11. Tseng H, Li J, Chang Y (2004) Connector-based approach to assembly planning using a genetic algorithm. Int J Prod Res 42(11):2243–2261

    Article  Google Scholar 

  12. Li J, Khoo L, Tor S (2005) An object-oriented intelligent disassembly sequence planner for maintenance. Elsevier Science Publishers B.V., 56(7):699–718

    Google Scholar 

  13. Zhang H, Kuo T (1997) A graph-based disassembly sequence planning for EOL product recycling. IEEE/CPMT Int 140–151

    Google Scholar 

  14. Smith S, Smith G, Chen W (2012) Disassembly sequence structure graphs: an optimal approach for multiple-target selective disassembly sequence planning. Adv Eng Inform 26(2):306–316

    Article  Google Scholar 

  15. Zhang X, Zhang S (2010) Product cooperative disassembly sequence planning based on branch-and-bound algorithm. Int J Adv Manuf Technol 51(9–12):1139–1147

    Article  Google Scholar 

  16. Zhou M, Venkatesh K (1998) Modeling, simulation and control of flexible manufacturing systems: a Petri net approach. World Sci 6(3)

    Google Scholar 

  17. Guo X, Liu S, Zhou M, Tian G (2015) Disassembly sequence optimization for large-scale products with multiresource constraints using scatter search and Petri nets. IEEE Trans Cybern 46(22):2435–2446

    Google Scholar 

  18. Zhang W, Ma M, Li H, Yu J (2016) Generating interference matrices for automatic assembly sequence planning. Int J Adv Manuf 1–15

    Google Scholar 

  19. Xue J, Qian S, Zhang Y (2010) Disassembly sequence planning based on ant colony optimization algorithm. In: IEEE fifth international conference on bio-inspired computing: theories & applications, pp 1125–1129

    Google Scholar 

  20. Tseng Y, Yu F, Huang F (2011) A green assembly sequence planning model with a closed-loop assembly and disassembly sequence planning using a particle swarm optimization method. Int J Adv Manuf Technol 57(9–12):1183–1197

    Article  Google Scholar 

  21. González B, Adenso-Díaz B (2006) A scatter search approach to the optimum disassembly sequence problem. Comput Oper Res 33(6):1776–1793

    Article  Google Scholar 

  22. Kalayci C, Polat O (2014) A variable neighborhood search algorithm for disassembly lines. J Manuf Technol Manag 26(2)

    Google Scholar 

  23. Pinto PA, Dannenbring DG, Khumawala BM (1983) Assembly line balancing with processing alternatives: an application. Manage Sci 29(7):817–830

    Article  MathSciNet  Google Scholar 

  24. Lu M, Li H (2003) Resource-activity critical-path method for construction planning. J Construct Eng Manag 129(4)

    Google Scholar 

  25. Boysen N, Filedner M, Scholl A (2009) Assembly line balancing joint precedence graphs under high product variety. IIE Trans 41(3):183–193

    Article  Google Scholar 

  26. Riggs RJ, Battaïa O, Hu SJ (2015) Disassembly line balancing under high variety of end of life states using a joint precedence graph approach. J Manuf Sys 37:638–648

    Article  Google Scholar 

  27. Ghandi S, Masehian E (2015) Review and taxonomies of assembly and disassembly path planning problems and approaches. Comput Aided Des 67–68:58–86

    Article  Google Scholar 

  28. Lambert AJD (1999) Linear programming in disassembly/clustering sequence generation. Comput Ind Eng 36(4):723–738

    Article  Google Scholar 

  29. Huang HH, Wang MH, Johnson MR (2000) Disassembly sequence generation using a neural network approach. J Manuf Sys 19(2):73–82

    Article  Google Scholar 

  30. Ma YS, Jun HB, Kim HW, Lee DH (2011) Disassembly process planning algorithms for end-of-life product recovery and environmentally conscious disposal. Int J Prod Res 49(23):7007–7027

    Article  Google Scholar 

  31. Zhou MC, DiCesare F (1993) Petri net synthesis for discrete event control of manufacturing systems. Kluwer, Norwell, MA, USA

    Book  Google Scholar 

  32. Altekin FT (2016) A piecewise linear model for stochastic disassembly line balancing. IFAC-PapersOnLine 49(12):932–937

    Article  Google Scholar 

  33. Ren Y, Yu D, Zhang C, Tian G, Meng L, Zhou X. An improved gravitational search algorithm for profit-oriented partial disassembly line balancing problem. Int J Prod Res 55(24):7302–7316

    Google Scholar 

  34. Bentaha ML, Battaïa O, Dolgui A (2014) Disassembly line balancing and sequencing under uncertainty. Procedia CIRP 15:239–244

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Laili, Y., Wang, Y., Fang, Y., Pham, D.T. (2022). Product Representation for Disassembly Sequence Planning. In: Optimisation of Robotic Disassembly for Remanufacturing. Springer Series in Advanced Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-030-81799-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81799-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81798-5

  • Online ISBN: 978-3-030-81799-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics