Skip to main content

Aerosol Impacts on Atmospheric and Precipitation Chemistry

  • Chapter
  • First Online:
Atmospheric Chemistry in the Mediterranean Region

Abstract

This chapter summarizes current knowledge on the impact of aerosols on atmospheric chemistry and composition combining recent chamber, field, and modeling results focusing on the Mediterranean region. Particularly, the chapter addresses issues related to heterogeneous reactions on aerosol surfaces, attenuation of solar radiation and its effect on key atmospheric species, and aerosol formation from gaseous precursors. Finally, the effects of strong acidity on the composition and amounts of semi-volatile aerosol and the concentration of trace nutrients and toxic soluble metals are discussed.

Chapter reviewed by Frank J. Dentener (Joint Research Centre (JRS), European Commission,Ispra (VA), Italy), as part of the book Part IX Impacts of Air Pollution on Precipitation Chemistry and Climate also reviewed by Lucia Mona (CNR/IMAA, Tito Scalo (PZ), Italy)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., & Wennberg, P. O. (2011). Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric Chemistry and Physics, 11, 4039–4072. https://doi.org/10.5194/acp-11-4039-2011

    Article  CAS  Google Scholar 

  • Arsene, C., Bougiatioti, A., Kanakidou, M., Bonsang, B., & Mihalopoulos, N. (2007). Tropospheric OH and Cl levels deduced from non-methane hydrocarbon measurements in a marine site. Atmospheric Chemistry and Physics, 7, 4661–4673. https://doi.org/10.5194/acp-7-4661-2007

    Article  CAS  Google Scholar 

  • Astitha, M., & Kallos, G. (2009). Gas-phase and aerosol chemistry interactions in South Europe and the Mediterranean region. Environmental Fluid Mechanics, 9, 3–22. https://doi.org/10.1007/s10652-008-9110-7

    Article  CAS  Google Scholar 

  • Astitha, M., Kallos, G., Katsafados, P., Pytharoulis, I., & Mihalopoulos, N. (2007). Chapter 5.7 Radiative effects of natural PMs on photochemical processes in the Mediterranean region. In C. Borrego & E. Renner (Eds.), Dev. Environ. Sci., 6, 548–559 Air pollution modeling and its application XVIII. Elsevier. https://doi.org/10.1016/S1474-8177(07)06057-3

    Chapter  Google Scholar 

  • Astitha, M., Kallos, G., Katsafados, P., & Mavromatidis, E. (2008). Heterogeneous chemical processes and their role on particulate matter formation in the Mediterranean region. In C. Borrego & A. I. Miranda (Eds.), NATO Science for Peace and Security Series Series C Air pollution modeling and its application XIX. Springer. https://doi.org/10.1007/978-1-4020-8453-9_55

    Chapter  Google Scholar 

  • Becagli, S. (2022). Aerosol composition ad reactivity. In F. Dulac, S. Sauvage, & E. Hamonou (Eds.), Atmospheric chemistry in the Mediterranean Region (Vol. 2, From air pollutant sources to impacts). Springer, this volume. https://doi.org/10.1007/978-3-030-82385-6_13

  • Bauer, S. E., Balkanski, Y., Schulz, M., Hauglustaine, D. A., & Dentener, F. J. (2004). Global modeling of heterogeneous chemistry on mineral aerosol surfaces: Influence on tropospheric ozone chemistry and comparison to observations. Journal of Geophysical Research, 109, D02304. https://doi.org/10.1029/2003JD003868

    Article  CAS  Google Scholar 

  • Berresheim, H., Plass-Dülmer, C., Elste, T., Mihalopoulos, N., & Rohrer, F. (2003). OH in the coastal boundary layer of Crete during MINOS: Measurements and relationship with ozone photolysis. Atmospheric Chemistry and Physics, 3, 639–649. https://doi.org/10.5194/acp-3-639-2003

    Article  CAS  Google Scholar 

  • Bian, H., & Zender, C. S. (2003). Mineral dust and global tropospheric chemistry: Relative roles of photolysis and heterogeneous uptake. Journal of Geophysical Research, 108, 4672. https://doi.org/10.1029/2002JD003143

    Article  CAS  Google Scholar 

  • Bougiatioti, A., Stavroulas, I., Kostenidou, E., Zarmpas, P., Theodosi, C., Kouvarakis, G., Canonaco, F., Prévôt, A. S. H., Nenes, A., Pandis, S. N., & Mihalopoulos, N. (2014). Processing of biomass burning aerosol in the Eastern Mediterranean during summertime. Atmospheric Chemistry and Physics, 14, 4793–4807. https://doi.org/10.5194/acp-14-4793-2014

    Article  CAS  Google Scholar 

  • Bougiatioti, A., Bezantakos, S., Stavroulas, I., Kalivitis, N., Kokkalis, P., Biskos, G., Mihalopoulos, N., Papayannis, A., & Nenes, A. (2016a). Biomass-burning impact on CCN number, hygroscopicity and cloud formation during summertime in the eastern Mediterranean. Atmospheric Chemistry and Physics, 16, 7389–7409. https://doi.org/10.5194/acp-16-4579-2016

    Article  CAS  Google Scholar 

  • Bougiatioti, A., Nikolaou, P., Stavroulas, I., Kouvarakis, G., Weber, R., Nenes, A., Kanakidou, M., & Mihalopoulos, N. (2016b). Particle water and pH in the eastern Mediterranean: Source variability and implications for nutrient availability. Atmospheric Chemistry and Physics, 16, 4579–4591. https://doi.org/10.5194/acp-16-4579-2016

    Article  CAS  Google Scholar 

  • Brown, S. S., Ryerson, T. B., Wollny, A. G., Brock, C. A., Peltier, R., Sullivan, A. P., Weber, R. J., Dube, W. P., Trainer, M., Meagher, J. F., Fehsenfeld, F. C., & Ravishankara, A. R. (2006). Variability in nocturnal nitrogen oxide processing and its role in regional air quality. Science, 311, 67–70. https://doi.org/10.1126/science.1120120

    Article  CAS  Google Scholar 

  • Brown, S. S., Dube, W. P., Fuchs, H., Ryerson, T. B., Wollny, A. G., Brock, C. A., Bahreini, R., Middlebrook, A. M., Neuman, J. A., Atlas, E., Roberts, J. M., Osthoff, H. D., Trainer, M., Fehsenfeld, F. C., & Ravishankara, A. R. (2009). Reactive uptake coefficients for N2O5 determined from aircraft measurements during the Second Texas Air Quality Study: Comparison to current model parameterizations. Journal of Geophysical Research, 114, D00F10. https://doi.org/10.1029/2008JD011679

    Article  CAS  Google Scholar 

  • Budisulistiorini, S. H., Nenes, A., Carlton, A. G., Surratt, J. D., McNeill, V. F., & Pye, H. O. T. (2017). Simulating aqueous-phase isoprene-epoxydiol (IEPOX) secondary organic aerosol production during the 2013 Southern Oxidant and Aerosol Study (SOAS). Environmental Science & Technology, 51(9), 5026–5034. https://doi.org/10.1021/acs.est.6b05750

    Article  CAS  Google Scholar 

  • Carlton, A. G., Turpin, B. J., Altieri, K. E., Seitzinger, S., Reff, A., Lim, H.-J., & Ervens, B. (2007). Atmospheric oxalic acid and SOA production from glyoxal: Results of aqueous photooxidation experiments. Atmospheric Environment, 41, 7588–7602. https://doi.org/10.1016/j.atmosenv.2007.05.035

    Article  CAS  Google Scholar 

  • Chen, H. H., Nanayakkara, C. E., & Grassian, V. H. (2012). Titanium dioxide photocatalysis in atmospheric chemistry. Chemical Reviews, 112(11), 5919–5948. https://doi.org/10.1021/cr3002092

    Article  CAS  Google Scholar 

  • Clegg, S. L., Brimblecombe, P., & Wexler, A. S. (1998). A thermodynamic model of the system H+–NH4+–SO42−–NO3–H2O at tropospheric temperatures. The Journal of Physical Chemistry. A, 102, 2137–2154. https://doi.org/10.1021/jp973042r

    Article  CAS  Google Scholar 

  • Crowley, J. N., Ammann, M., Cox, R. A., Hynes, R. G., Jenkin, M. E., Mellouki, A., Rossi, M. J., Troe, J., & Wallington, T. J. (2010). Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V – heterogeneous reactions on solid substrates. Atmospheric Chemistry and Physics, 10, 9059–9223. https://doi.org/10.5194/acp-10-9059-2010

    Article  CAS  Google Scholar 

  • Crutzen, P. J., & Andreae, M. O. (1990). Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science, 250, 1669–1678. https://doi.org/10.1126/science.250.4988.1669

    Article  CAS  Google Scholar 

  • Cwiertny, D. M., Young, M. A., & Grassian, V. H. (2008). Chemistry and photochemistry of mineral dust aerosol. Annual Review of Physical Chemistry, 59, 27–51. https://doi.org/10.1146/annurev.physchem.59.032607.093630

    Article  CAS  Google Scholar 

  • De Laurentiis, E., Socorro, J., Vione, D., Quivet, E., Brigante, M., Mailhot, G., Wortham, H., & Gligorovski, S. (2013). Phototransformation of 4-phenoxyphenol sensitised by 4-carboxybenzophenone: Evidence of new photochemical pathways in the bulk aqueous phase and on the surface of aerosol deliquescent particles. Atmospheric Environment, 81, 569–578. https://doi.org/10.1016/j.atmosenv.2013.09.036

    Article  CAS  Google Scholar 

  • de Reus, M., Dentener, F., Thomas, A., Borrmann, S., Ström, J., & Lelieveld, J. (2000). Airborne observations of dust aerosol over the North Atlantic Ocean during ACE-2: Indications for heterogeneous ozone destruction, Journal of Geophysical Research, 105, 15263–15275, https://doi.org/10.1029/2000JD900164

  • de Reus, M., Fischer, H., Sander, R., Gros, V., Kormann, R., Salisbury, G., Van Dingenen, R., Williams, J., Zöllner, M., & Lelieveld, J. (2005). Observations and model calculations of trace gas scavenging in a dense Saharan dust plume during MINATROC. Atmospheric Chemistry and Physics, 5, 1787–1803. https://doi.org/10.5194/acp-5-1787-2005

    Article  Google Scholar 

  • Dentener, F. J., & Crutzen, P. J. (1993). Reaction of N2O5 on tropospheric aerosols: Impact on the global distributions of NOx, O3, and OH. Journal of Geophysical Research, 98, 7149–7163. https://doi.org/10.1029/92JD02979

    Article  CAS  Google Scholar 

  • Dentener, F. J., Carmichael, G. R., Zhang, Y., Lelieveld, J., & Crutzen, P. J. (1996). Role of mineral aerosol as a reactive surface in the global troposphere. Journal of Geophysical Research, 101, 22869–22889. https://doi.org/10.1029/96JD01818

    Article  CAS  Google Scholar 

  • Drozd, G., Woo, J., Häkkinen, S. A. K., Nenes, A., & McNeill, V. F. (2014). Inorganic salts interact with oxalic acid in submicron particles to form material with low hygroscopicity and volatility. Atmospheric Chemistry and Physics, 14, 5205–5215. https://doi.org/10.5194/acp-14-5205-2014

    Article  CAS  Google Scholar 

  • Finlayson-Pitts, B. J. (2003). The Tropospheric chemistry of sea salt: A molecular-level view of the chemistry of NaCl and NaBr. Chemical Reviews, 103(12), 4801–4822. https://doi.org/10.1021/cr020653t

    Article  CAS  Google Scholar 

  • Fountoukis, C., & Nenes, A. (2007). ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-NH4+-Na+-SO42−-NO3−-Cl--H2O aerosols. Atmospheric Chemistry and Physics, 7, 4639–4659. https://doi.org/10.5194/acp-7-4639-2007

    Article  CAS  Google Scholar 

  • George, C., Ammann, M., D’Anna, B., Donaldson, D. J., & Nizkorodov, S. A. (2015). Heterogeneous photochemistry in the atmosphere. Chemical Reviews, 115, 4218–4258. https://doi.org/10.1021/cr500648z

    Article  CAS  Google Scholar 

  • Gerasopoulos, E., Kazadzis, S., Vrekoussis, M., Kouvarakis, G., Liakakou, E., Kouremeti, N., Giannadaki, D., Kanakidou, M., Bohn, B., & Mihalopoulos, N. (2012). Factors affecting O3 and NO2 photolysis frequencies measured in the eastern Mediterranean during the five-year period 2002–2006. Journal of Geophysical Research, 117, D22305. https://doi.org/10.1029/2012JD017622

    Article  CAS  Google Scholar 

  • Gilman, J. B., Lerner, B. M., Kuster, W. C., Goldan, P. D., Warneke, C., Veres, P. R., Roberts, J. M., de Gouw, J. A., Burling, I. R., & Yokelson, R. J. (2015). Biomass burning emissions and potential air quality impacts of volatile organic compounds and other trace gases from fuels common in the US. Atmospheric Chemistry and Physics, 15, 13915–13938. https://doi.org/10.5194/acp-15-13915-2015

    Article  CAS  Google Scholar 

  • Guieu, C., & Ridame, C. (2022) Impact of atmospheric deposition on marine chemistry and biogeochemistry. In F. Dulac, S. Sauvage, & E. Hamonou (Eds.), Atmospheric chemistry in the Mediterranean Region (Vol. 2, From air pollutant sources to impacts). Springer, this volume. https://doi.org/10.1007/978-3-030-82385-6_23

  • Guo, H., Liu, J., Froyd, K. D., Roberts, J. M., Veres, P. R., Hayes, P. L., Jimenez, J. L., Nenes, A., & Weber, R. J. (2017). Fine particle pH and gas-particle phase partitioning of inorganic species in Pasadena, California, during the 2010 CalNex campaign. Atmospheric Chemistry and Physics, 17, 5703–5719. https://doi.org/10.5194/acp-17-5703-2017

    Article  CAS  Google Scholar 

  • Guo, H., Nenes, A., & Weber, R. J. (2018). The underappreciated role of nonvolatile cations in aerosol ammonium-sulfate molar ratios. Atmospheric Chemistry and Physics, 18, 17307–17323. https://doi.org/10.5194/acp-18-17307-2018

    Article  CAS  Google Scholar 

  • Hatch, L. E., Yokelson, R. J., Stockwell, C. E., Veres, P. R., Simpson, I. J., Blake, D. R., Orlando, J. J., & Barsanti, K. C. (2017). Multi-instrument comparison and compilation of non-methane organic gas emissions from biomass burning and implications for smoke-derived secondary organic aerosol precursors. Atmospheric Chemistry and Physics, 17, 1471–1489. https://doi.org/10.5194/acp-17-1471-2017

    Article  CAS  Google Scholar 

  • Herrmann, H., Schaefer, T., Tilgner, A., Styler, S. A., Weller, C., Teich, M., & Otto, T. (2015). Tropospheric aqueous-phase chemistry: Kinetics, mechanisms, and its coupling to a changing gas phase. Chemical Reviews, 115, 4259–4334. https://doi.org/10.1021/cr500447k

    Article  CAS  Google Scholar 

  • Herut, B., Krom, M. D., Pan, G., & Mortimer, R. (1999). Atmospheric input of nitrogen and phosphorus to the Southeast Mediterranean: Sources, fluxes, and possible impact. Limnology and Oceanography, 44, 1683–1692. https://doi.org/10.4319/lo.1999.44.7.1683

    Article  CAS  Google Scholar 

  • Huneeus, N., Schulz, M., Balkanski, Y., Griesfeller, J., Prospero, J., Kinne, S., Bauer, S., Boucher, O., Chin, M., Dentener, F., Diehl, T., Easter, R., Fillmore, D., Ghan, S., Ginoux, P., Grini, A., Horowitz, L., Koch, D., Krol, M. C., … Zender, C. S. (2011). Global dust model intercomparison in AeroCom phase I. Atmospheric Chemistry and Physics, 11, 7781–7816. https://doi.org/10.5194/acp-11-7781-2011

    Article  CAS  Google Scholar 

  • Ingall, E. D., Feng, Y., Longo, A. F., Lai, B., Shelley, R. U., Landing, W. M., Morton, P. L., Nenes, A., Mihalopoulos, N., Violaki, K., Gao, Y., Sahai, S., & Castorina, E. (2018). Enhanced iron solubility at low pH in global aerosols. Atmosphere, 9, 201. https://doi.org/10.3390/atmos9050201

    Article  CAS  Google Scholar 

  • Ito, T., Nenes, A., Johnson, M. S., Meskhidze, N., & Deutsch, C. (2016). Acceleration of oxygen decline in the tropical Pacific over the past decades by aerosol pollutants. Nature Geoscience, 9, 443–447. https://doi.org/10.1038/NGEO2717

    Article  CAS  Google Scholar 

  • Ito, A., Myriokefalitakis, S., Kanakidou, M., Mahowald, N. M., Scanza, R. A., Hamilton, D. S., Baker, A. R., Jickells, T., Sarin, M., Bikkina, S., Gao, Y., Shelley, R. U., Buck, C. S., Landing, W. M., Bowie, A. R., Perron, M. M. G., Guieu, C., Meskhidze, N., Johnson, M. S., … Duce, R. A. (2019). Pyrogenic iron: The missing link to high iron solubility in aerosols. Science Advances, 5, eaau7671. https://doi.org/10.1126/sciadv.aau7671

    Article  CAS  Google Scholar 

  • Jacob, D. J. (2000). Heterogeneous chemistry and tropospheric ozone. Atmospheric Environment, 34, 2131–2159. https://doi.org/10.1016/S1352-2310(99)00462-8

    Article  CAS  Google Scholar 

  • James, A. D., Moon, D. R., Feng, W., Lakey, P. S. J., Frankland, V. L., Heard, D. E., & Plane, J. M. C. (2017). The uptake of HO2 on meteoric smoke analogues. Journal of Geophysical Research – Atmospheres, 122, 554–565. https://doi.org/10.1002/2016JD02588

    Article  CAS  Google Scholar 

  • Jiang, H., Frie, A. L., Lavi, A., Chen, J. Y., Zhang, H., Bahreini, R., & Lin, Y.-H. (2019). Brown carbon formation from nighttime chemistry of unsaturated heterocyclic volatile organic compounds. Environmental Science & Technology Letters, 6, 184–190. https://doi.org/10.1021/acs.estlett.9b00017.s001

    Article  CAS  Google Scholar 

  • Kakavas, S., Patoulias, D., Zakoura, M., Nenes, A., & Pandis, S. N. (2021). Size-resolved aerosol pH over Europe during summer, Atmospheric Chemistry and Physics, 21, 799–811. https://doi.org/10.5194/acp-21-799-2021

  • Kalivitis, N., Papatheodorou, S., Maesano, C. N., & Annesi-Maesano, I. (2022). Air quality and health impacts. In F. Dulac, S. Sauvage, & E. Hamonou (Eds.), Atmospheric chemistry in the Mediterranean Region (Vol. 2, From air pollutant sources to impacts). Springer, this volume. https://doi.org/10.1007/978-3-030-82385-6_22

  • Kanakidou, M., Mihalopoulos, N., Kindap, T., Im, U., Vrekoussis, M., Gerasopoulos, E., Dermitzaki, E., Unal, A., Kocak, M., Markakis, K., Melas, D., Kouvarakis, G., Youssef, A. F., Richter, A., Hatzianastassiou, N., Hilboll, A., Ebojie, F., Wittrock, F., von Savigny, C., & Burrows, J. P. (2011). Megacities as hot spots of air pollution in the East Mediterranean. Atmospheric Environment, 45, 1223–1235. https://doi.org/10.1016/j.atmosenv.2010.11.048

    Article  CAS  Google Scholar 

  • Kanakidou, M., Myriokefalitakis, S., & Tsigaridis, K. (2018). Aerosols in atmospheric chemistry and biogeochemical cycles of nutrients. Environmental Research Letters, 13, 063004. https://doi.org/10.1088/1748-9326/aabcdb

    Article  CAS  Google Scholar 

  • Kanakidou, M., Myriokefalitakis, S., & Tsagkaraki, M. (2020). Atmospheric inputs of nutrients to the Mediterranean Sea. Deep-Sea Research Part II, 171, 104606. https://doi.org/10.1016/j.dsr2.2019.06.014

    Article  CAS  Google Scholar 

  • Kanakidou, M., Sfakianaki, M., & Probst, A. (2022). Impact of air pollution on terrestrial ecosystems. In F. Dulac, S. Sauvage, & E. Hamonou (Eds.), Atmospheric chemistry in the Mediterranean Region (Vol. 2, From air pollutant sources to impacts). Springer, this volume. https://doi.org/10.1007/978-3-030-82385-6_24

  • Karagulian, F., & Rossi, M. J. (2005). The heterogeneous chemical kinetics of NO3 on atmospheric mineral dust surrogates. Physical Chemistry Chemical Physics, 7, 3150–3162. https://doi.org/10.1039/B506750M

    Article  CAS  Google Scholar 

  • Karydis, V. A., Tsimpidi, A. P., Pozzer, A., Astitha, M., & Lelieveld, J. (2016). Effects of mineral dust on global atmospheric nitrate concentrations. Atmospheric Chemistry and Physics, 16, 1491–1509. https://doi.org/10.5194/acp-16-1491-2016

    Article  CAS  Google Scholar 

  • Kaskaoutis, D., Liakakou, E., Grivas, G., Gerasopoulos, E., Mihalopoulos, N., Alastuey, A., Dulac, F., Pandolfi, M., Sciare, J., & Titos, G. (2023). Chemical composition and levels of concentrations of aerosols in the Mediterranean. In F. Dulac, S. Sauvage, & E. Hamonou (Eds.), Atmospheric chemistry in the Mediterranean Region (Vol. 1, Background information and pollutants distribution). Springer.

    Google Scholar 

  • Kok, J. F., Ridley, D. A., Zhou, Q., Zhao, C., Miller, R. L., Heald, C. L., Ward, D. S., Albani, S., & Haustein, K. (2017). Smaller desert dust cooling effect estimated from analysis of desert dust size and abundance. Nature Geoscience, 10, 274–278. https://doi.org/10.1038/NGEO2912

    Article  CAS  Google Scholar 

  • Kolb, C. E., Worsnop, D. R., Zahniser, M. S., Davidovits, P., Keyser, L. F., Leu, M.-T., Molina, M. J., Hanson, D. R., Ravishankara, A. R., Williams, L. R., & Tolbert, M. A. (1995) Laboratory studies of atmospheric heterogeneous chemistry. In Progress and problems in atmospheric chemistry, J. R. Barker (Ed.), Advanced Series in Physical Chemistry, 3, 771-875, World Science, River Edge, NJ, https://doi.org/10.1142/9789812831712_0018

  • Kouvarakis, G., Doukelis, Y., Mihalopoulos, N., Rapsomanikis, S., Sciare, J., & Blumthaler, M. (2002). Chemical, physical, and optical characterization of aerosols during PAUR II experiment. Journal of Geophysical Research, 107, 8141. https://doi.org/10.1029/2000JD000291

    Article  CAS  Google Scholar 

  • Landgraf, J., & Crutzen, P. J. (1998). An efficient method for online calculations of photolysis and heating rates, Journal of the Atmospheric Sciences, 55863–55878, https://doi.org/10.1175/1520-0469(1998)055<0863:AEMFOC>2.0.CO;2

  • Liao, H., & Seinfeld, J. H. (2005). Global impacts of gas-phase chemistry-aerosol interactions on direct radiative forcing by anthropogenic aerosols and ozone. Journal of Geophysical Research, 110, D18208. https://doi.org/10.1029/2005JD005907

    Article  CAS  Google Scholar 

  • Liao, H., Adams, P. J., Chung, S. H., Seinfeld, J. H., Mickley, L. J., & Jacob, D. J. (2003). Interactions between tropospheric chemistry and aerosols in a unified general circulation model. Journal of Geophysical Research, 108, 4001. https://doi.org/10.1029/2001JD001260

    Article  CAS  Google Scholar 

  • Lim, Y. B., Tan, Y., Perri, M. J., Seitzinger, S. P., & Turpin, B. J. (2010). Aqueous chemistry and its role in secondary organic aerosol (SOA) formation. Atmospheric Chemistry and Physics, 10, 10521–10539. https://doi.org/10.5194/acp-10-10521-2010

    Article  CAS  Google Scholar 

  • Liu, X., Huey, L. G., Yokelson, R. J., Selimovic, V., Simpson, I. J., Müller, M., Jimenez, J. L., Campuzano-Jost, P., Beyersdorf, A. J., Blake, D. R., Butterfield, Z., Choi, Y., Crounse, J. D., Day, D. A., Diskin, G. S., Dubey, M. K., Fortner, E., Hanisco, T. F., Hu, W., … Wolfe, G. M. (2017). Airborne measurements of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications. Journal of Geophysical Research – Atmospheres, 122, 6108–6129. https://doi.org/10.1002/2016JD026315

    Article  CAS  Google Scholar 

  • Mailler, S., Menut, L., di Sarra, A. G., Becagli, S., Di Iorio, T., Bessagnet, B., Briant, R., Formenti, P., Doussin, J.-F., Gómez-Amo, J. L., Mallet, M., Rea, G., Siour, G., Sferlazzo, D. M., Traversi, R., Udisti, R., & Turquety, S. (2016). On the radiative impact of aerosols on photolysis rates: Comparison of simulations and observations in the Lampedusa island during the ChArMEx/ADRIMED campaign. Atmospheric Chemistry and Physics, 16, 1219–1244. https://doi.org/10.5194/acp-16-1219-2016

    Article  CAS  Google Scholar 

  • Majdi, M., Sartelet, K., Lanzafame, G. M., Couvidat, F., Kim, Y., Chrit, M., & Turquety, S. (2019). Precursors and formation of secondary organic aerosols from wildfires in the Euro-Mediterranean region. Atmospheric Chemistry and Physics, 19, 5543–5569. https://doi.org/10.5194/acp-19-5543-2019

    Article  CAS  Google Scholar 

  • Mallet, M., di Sarra, A., Nabat, P., Solmon, F., Gutierrez, C., Mailler, S., Menut, L., Kaskaoutis, D., Rowlinson, M., & Rap, A. (2022). Aerosol and ozone direct radiative impact. In F. Dulac, S. Sauvage, & E. Hamonou (Eds.), Atmospheric chemistry in the Mediterranean Region (Vol. 2, From air pollutant sources to impacts). Springer, this volume. https://doi.org/10.1007/978-3-030-82385-6_19

  • Mao, J., Fan, S., Jacob, D. J., & Travis, K. R. (2013). Radical loss in the atmosphere from Cu-Fe redox coupling in aerosols. Atmospheric Chemistry and Physics, 13, 509–519. https://doi.org/10.5194/acp-13-509-2013

    Article  CAS  Google Scholar 

  • Markaki, Z., Oikonomou, K., Kocak, M., Kouvarakis, G., Chaniotaki, A., Kubilay, N., & Mihalopoulos, N. (2003). Atmospheric deposition of inorganic phosphorus in the Levantine Basin, eastern Mediterranean: Spatial and temporal variability and its role in seawater productivity. Limnology and Oceanography, 48, 1557–1568. https://doi.org/10.4319/lo.2003.48.4.1557

    Article  CAS  Google Scholar 

  • Markaki, Z., Loÿe-Pilot, M. D., Violaki, K., Benyahya, L., & Mihalopoulos, N. (2010). Variability of atmospheric deposition of dissolved nitrogen and phosphorus in the Mediterranean and possible link to the anomalous seawater N/P ratio. Marine Chemistry, 120, 187–194. https://doi.org/10.1016/j.marchem.2008.10.005

    Article  CAS  Google Scholar 

  • Masiol, M., Squizzato, S., Formenton, G., Md Badiuzzaman, K., Hopke, P. K., Nenes, A., Pandis, S. N., Tositti, L., Benetello, F., Visin, F., & Pavoni, B. (2020). Hybrid multiple-site mass closure and source apportionment of PM2.5 and aerosol acidity at major cities in the Po Valley. The Science of the Total Environment, 704, 135287. https://doi.org/10.1016/j.scitotenv.2019.135287

    Article  CAS  Google Scholar 

  • Meskhidze, N., Chameides, W. L., Nenes, A., & Chen, G. (2003). Iron mobilization in mineral dust: Can anthropogenic SO2 emissions affect ocean productivity? Geophysical Research Letters, 30, 2085. https://doi.org/10.1029/2003GL018035

    Article  CAS  Google Scholar 

  • Morgan, W. T., Ouyang, B., Allan, J. D., Aruffo, E., Di Carlo, P., Kennedy, O. J., Lowe, D., Flynn, M. J., Rosenberg, P. D., Williams, P. I., Jones, R., McFiggans, G. B., & Coe, H. (2015). Influence of aerosol chemical composition on N2O5 uptake: Airborne regional measurements in northwestern Europe. Atmospheric Chemistry and Physics, 15, 973–990. https://doi.org/10.5194/acp-15-973-2015

    Article  CAS  Google Scholar 

  • Myriokefalitakis, S., Tsigaridis, K., Mihalopoulos, N., Sciare, J., Nenes, A., Kawamura, K., Segers, A., & Kanakidou, M. (2011). Incloud oxalate formation in the global troposphere: A 3-D modeling study. Atmospheric Chemistry and Physics, 11, 5761–5782. https://doi.org/10.5194/acp-11-5761-2011

    Article  CAS  Google Scholar 

  • Myriokefalitakis, S., Daskalakis, N., Mihalopoulos, N., Baker, A. R., Nenes, A., & Kanakidou, M. (2015). Changes in dissolved iron deposition to the oceans driven by human activity: A 3-D global modelling study. Biogeosciences, 12, 3973–3992. https://doi.org/10.5194/bg-12-3973-2015

    Article  Google Scholar 

  • Myriokefalitakis, S., Nenes, A., Baker, A. R., Mihalopoulos, N., & Kanakidou, M. (2016). Bioavailable atmospheric phosphorous supply to the global ocean: A 3-D global modeling study. Biogeosciences, 13, 6519–6543. https://doi.org/10.5194/bg-13-6519-2016

    Article  CAS  Google Scholar 

  • Myriokefalitakis, S., Ito, A., Kanakidou, M., Nenes, A., Krol, M. C., Mahowald, N. M., Scanza, R. A., Hamilton, D. S., Johnson, M. S., Meskhidze, N., Kok, J. F., Guieu, C., Baker, A. R., Jickells, T. D., Sarin, M. M., Bikkina, S., Shelley, R., Bowie, A., Perron, M. M. G., & Duce, R. A. (2018). Reviews and syntheses: The GESAMP atmospheric iron deposition model intercomparison study. Biogeosciences, 15, 6659–6684. https://doi.org/10.5194/bg-15-6659-2018

    Article  CAS  Google Scholar 

  • Nenes, A., Krom, M. D., Mihalopoulos, N., Van Cappellen, P., Shi, Z., Bougiatioti, A., Zarmpas, P., & Herut, B. (2011). Atmospheric acidification of mineral aerosols: A source of bioavailable phosphorus for the oceans. Atmospheric Chemistry and Physics, 11, 6265–6272. https://doi.org/10.5194/acp-11-6265-2011

    Article  CAS  Google Scholar 

  • Nenes, A., Pandis, S. N., Weber, R. J., & Russell, A. (2020). Aerosol pH and liquid water content determine when particulate matter is sensitive to ammonia and nitrate availability. Atmospheric Chemistry and Physics, 20, 3249–3258. https://doi.org/10.5194/acp-20-3249-2020

    Article  CAS  Google Scholar 

  • Nenes, A., Pandis, S. N., Kanakidou, M., Russell, A., Song, S., Vasilakos, P., & Weber, R. J. (2021) Aerosol acidity and liquid water content regulate the dry deposition of inorganic reactive nitrogen, Atmospheric Chemistry and Physics, 21, 799–811, https://doi.org/10.5194/acp-21-799-2021

  • Nienow, A. M., & Roberts, J. T. (2006). Heterogeneous chemistry of carbon aerosols. Annual Review of Physical Chemistry, 57, 105–128. https://doi.org/10.1146/annurev.physchem.57.032905.104525

    Article  CAS  Google Scholar 

  • Pace, G., Meloni, D., & di Sarra, A. (2005). Forest fire aerosol over the Mediterranean basin during summer 2003. Journal of Geophysical Research, 110, D21202. https://doi.org/10.1029/2005JD005986

    Article  Google Scholar 

  • Paris, R., & Desboeufs, K. V. (2013). Effect of atmospheric organic complexation on iron-bearing dust solubility. Atmospheric Chemistry and Physics, 13, 4895–4905. https://doi.org/10.5194/acp-13-4895-2013

    Article  CAS  Google Scholar 

  • Paris, R., Desboeufs, K., & Journet, E. (2011). Variability of dust iron solubility in atmospheric waters: Investigation of the role of oxalate organic complexation. Atmospheric Environment, 45, 6510–6517. https://doi.org/10.1016/j.atmosenv.2011.08.068

    Article  CAS  Google Scholar 

  • Pechtl, S., & von Glasow, R. (2007). Reactive chlorine in the marine boundary layer in the outflow of polluted continental air: A model study. Geophysical Research Letters, 34, L11813. https://doi.org/10.1029/2007GL029761

    Article  CAS  Google Scholar 

  • Phillips, G. J., Tang, M. J., Thieser, J., Brickwedde, B., Schuster, G., Bohn, B., Lelieveld, J., & Crowley, J. N. (2012). Significant concentrations of nitryl chloride observed in rural continental Europe associated with the influence of sea salt chloride and anthropogenic emissions. Geophysical Research Letters, 39, L10811. https://doi.org/10.1029/2012GL051912

    Article  CAS  Google Scholar 

  • Phillips, G. J., Thieser, J., Tang, M., Sobanski, N., Schuster, G., Fachinger, J., Drewnick, F., Borrmann, S., Bingemer, H., Lelieveld, J., & Crowley, J. N. (2016). Estimating N2O5 uptake coefficients using ambient measurements of NO3, N2O5, ClNO2 and particle-phase nitrate. Atmospheric Chemistry and Physics, 16, 13231–13249. https://doi.org/10.5194/acp-16-13231-2016

    Article  CAS  Google Scholar 

  • Pradhan, M., Kalberer, M., Griffiths, P. T., Braban, C. F., Pope, F. D., Cox, R. A., & Lambert, R. M. (2010a). Uptake of gaseous hydrogen peroxide by submicrometer titanium dioxide aerosol as a function of relative humidity. Environmental Science & Technology, 44, 1360–1365. https://doi.org/10.1021/es902916f

    Article  CAS  Google Scholar 

  • Pradhan, M., Kyriakou, G., Archibald, A. T., Papageorgiou, A. C., Kalberer, M., & Lambert, R. M. (2010b). Heterogeneous uptake of gaseous hydrogen peroxide by Gobi and Saharan dust aerosols: A potential missing sink for H2O2 in the troposphere. Atmospheric Chemistry and Physics, 10, 7127–7136. https://doi.org/10.5194/acp-10-7127-2010

    Article  CAS  Google Scholar 

  • Pye, H. O. T., Nenes, A., Alexander, B., Ault, A. P., Barth, M. C., Clegg, S. L., Collett, J. L., Jr., Fahey, K. M., Hennigan, C. J., Herrmann, H., Kanakidou, M., Kelly, J. T., Ku, I.-T., McNeill, V. F., Riemer, N., Schaefer, T., Shi, G., Tilgner, A., Walker, J. T., … Zuend, A. (2020). The acidity of atmospheric particles and clouds. Atmospheric Chemistry and Physics, 20, 4809–4888. https://doi.org/10.5194/acp-20-4809-2020

    Article  CAS  Google Scholar 

  • Ragosti, N., & Sarin, M. M. (2005). Long-term characterization of ionic species in aerosols from urban and high-altitude sites in western India: Role of mineral dust and anthropogenic sources. Atmospheric Environment, 39, 5541–5554. https://doi.org/10.1016/j.atmosenv.2005.06.011

    Article  CAS  Google Scholar 

  • Renard, J.-B., Dulac, F., Durand, P., Bourgeois, Q., Denjean, C., Vignelles, D., Couté, B., Jeannot, M., Verdier, N., & Mallet, M. (2018). In situ measurements of desert dust particles above the western Mediterranean Sea with the balloon-borne Light Optical Aerosol Counter/sizer (LOAC) during the ChArMEx campaign of summer 2013. Atmos. Chem. Phys., 18, 3677–3699. https://doi.org/10.5194/acp-18-3677-2018

  • Romanias, M. N., El Zein, A., & Bedjanian, Y. (2012a). Heterogeneous interaction of H2O2 with TiO2 surface under dark and UV light irradiation conditions. The Journal of Physical Chemistry. A, 116, 8191–8200. https://doi.org/10.1021/jp305366v

    Article  CAS  Google Scholar 

  • Romanias, M. N., El Zein, A., & Bedjanian, Y. (2012b). Reactive uptake of HONO on aluminium oxide surface. Journal of Photochemistry and Photobiology A-Chemistry, 250, 50–57. https://doi.org/10.1016/j.jphotochem.2012.09.018

    Article  CAS  Google Scholar 

  • Rossi, M. (2003). Heterogeneous reactions on salts. Chemical Reviews, 103, 4823–4882. https://doi.org/10.1021/cr020507n

    Article  CAS  Google Scholar 

  • Samburova, V., Connolly, J., Gyawali, M., Yatavelli, R. L. N., Watts, A. C., Chakrabarty, R. K., Zielinska, B., Moosmüller, H., & Khlystov, A. (2016). Polycyclic aromatic hydrocarbons in biomass-burning emissions and their contribution to light absorption and aerosol toxicity, Science of the Total Environment, 391–401, https://doi.org/10.1016/j.scitotenv.2016.06.026

  • Saydam, A. C., & Senyuva, H. Z. (2002). Deserts: Can they be the potential suppliers of bioavailable iron? Geophys. Res. Lett., 29, 1524. https://doi.org/10.1029/2001GL013562

  • Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics: From air pollution to climate change (3rd ed., 1152 pp.). Wiley. ISBN 978-1-118-94740-1.

    Google Scholar 

  • Seisel, S., Börensen, C., Vogt, R., & Zellner, R. (2005). Kinetics and mechanism of the uptake of N2O5 on mineral dust at 298 K. Atmospheric Chemistry and Physics, 5, 3423–3432. https://doi.org/10.5194/acp-5-3423-2005

    Article  CAS  Google Scholar 

  • Shen, X., Zhao, Y., Chen, Z., & Huang, D. (2013). Heterogeneous reactions of volatile organic compounds in the atmosphere. Atmospheric Environment, 68, 297–314. https://doi.org/10.1016/j.atmosenv.2012.11.027

    Article  CAS  Google Scholar 

  • Shi, Z., Bonneville, S., Krom, M. D., Carslaw, K. S., Jickells, T. D., Baker, A. R., & Benning, L. G. (2011). Iron dissolution kinetics of mineral dust at low pH during simulated atmospheric processing. Atmospheric Chemistry and Physics, 11, 995–1007. https://doi.org/10.5194/acp-11-995-2011

    Article  CAS  Google Scholar 

  • Shi, Z., Krom, M. D., Jickells, T. D., Bonneville, S., Carslaw, K. S., Mihalopoulos, N., Baker, A. R., & Benning, L. G. (2012). Impacts on iron solubility in the mineral dust by processes in the source region and the atmosphere: A review. Aeolian Research, 5, 21–42. https://doi.org/10.1016/j.aeolia.2012.03.001

    Article  Google Scholar 

  • Shrivastava, M., Cappa, C. D., Fan, J., Goldstein, A. H., Guenther, A. B., Jimenez, J. L., Kuang, C., Laskin, A., Martin, S. T., Ng, N. L., Petaja, T., Pierce, J. R., Rasch, P. J., Roldin, P., Seinfeld, J. H., Shilling, J., Smith, J. N., Thornton, J. A., Volkamer, R., … Zhang, Q. (2017). Recent advances in understanding secondary organic aerosol: Implications for global climate forcing. Reviews of Geophysics, 55, 509–559. https://doi.org/10.1002/2016RG000540

    Article  Google Scholar 

  • Squizzato, S., Masiol, M., Brunelli, A., Pistollato, S., Tarabotti, E., Rampazzo, G., & Pavoni, B. (2013). Factors determining the formation of secondary inorganic aerosol: A case study in the Po Valley (Italy). Atmospheric Chemistry and Physics, 13, 1927–1939. https://doi.org/10.5194/acp-13-1927-2013

    Article  CAS  Google Scholar 

  • Stadtler, S., Simpson, D., Schröder, S., Taraborrelli, D., Bott, A., & Schultz, M. (2018). Ozone impacts of gas–aerosol uptake in global chemistry transport models. Atmospheric Chemistry and Physics, 18, 3147–3171. https://doi.org/10.5194/acp-18-3147-2018

    Article  CAS  Google Scholar 

  • Stockdale, A., Krom, M. D., Mortimer, R. J. G., Benning, L. G., Carslaw, K. S., Herbert, R. J., Shi, Z., Myriokefalitakis, S., Kanakidou, M., & Nenes, A. (2016). Understanding the nature of atmospheric acid processing of mineral dusts in supplying bioavailable phosphorus to the oceans. Proceedings of the National Academy of Sciences USA, 113, 14639–14644. https://doi.org/10.1073/pnas.1608136113

    Article  CAS  Google Scholar 

  • Tang, Y., Carmichael, G. R., Kurata, G., Uno, I., Weber, R. J., Song, C. H., Guttikunda, S. K., Woo, J. H., Streets, D. G., Wei, C., Clarke, A. D., Huebert, B., & Anderson, T. L. (2004). Impacts of dust on regional tropospheric chemistry during the ACE-Asia Experiment: A model study with observations. Journal of Geophysical Research, 109, D19S21. https://doi.org/10.1029/2003jd003806

    Article  Google Scholar 

  • Tang, M., Huang, X., Lu, K., Ge, M., Li, Y., Cheng, P., Zhu, T., Ding, A., Zhang, Y., Gligorovski, S., Song, W., Ding, X., Bi, X., & Wang, X. (2017). Heterogeneous reactions of mineral dust aerosol: Implications for tropospheric oxidation capacity. Atmospheric Chemistry and Physics, 17, 11727–11777. https://doi.org/10.5194/acp-17-11727-2017

    Article  CAS  Google Scholar 

  • Theodosi, C., Markaki, Z., & Mihalopoulos, N. (2010). Iron speciation, solubility and temporal variability in wet and dry deposition in the Eastern Mediterranean. Marine Chemistry, 120, 100–107. https://doi.org/10.1016/j.marchem.2008.05.004

    Article  CAS  Google Scholar 

  • Thornton, J. A., Kercher, J. P., Riedel, T. P., Wagner, N. L., Cozic, J., Holloway, J. S., Dube, W. P., Wolfe, G. M., Quinn, P. K., Middlebrook, A. M., Alexander, B., & Brown, S. S. (2010). A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry. Nature, 464, 271–274. https://doi.org/10.1038/nature08905

    Article  CAS  Google Scholar 

  • Usher, C. R., Michel, A. E., & Grassian, V. H. (2003). Reactions on mineral dust. Chemical Reviews, 103, 4883–4940. https://doi.org/10.1021/cr020657y

    Article  CAS  Google Scholar 

  • van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., & Rose, S. K. (2011). The representative concentration pathways: An overview. Climatic Change, 109, 5–31. https://doi.org/10.1007/s10584-011-0148-z

    Article  Google Scholar 

  • Vasilakos, P., Russell, A., Weber, R., & Nenes, A. (2018). Understanding nitrate formation in a world with less sulfate. Atmospheric Chemistry and Physics, 18, 12765–12775. https://doi.org/10.5194/acp-18-12765-2018

    Article  CAS  Google Scholar 

  • von Glasow, R. (2008). Pollution meets sea salt. Nature Geoscience, 1, 292–293. https://doi.org/10.1038/ngeo192

    Article  CAS  Google Scholar 

  • Vrekoussis, M., Liakakou, H., Mihalopoulos, N., Kanakidou, M., Crutzen, P. J., & Lelieveld, J. (2006). Formation of HNO3 and NO3 in the anthropogenically-influenced eastern Mediterranean marine boundary layer. Geophysical Research Letters, 33, L05811. https://doi.org/10.1029/2005GL025069

    Article  CAS  Google Scholar 

  • Vrekoussis, M., Mihalopoulos, N., Gerasopoulos, E., Kanakidou, M., Crutzen, P. J., & Lelieveld, J. (2007). Two-years of NO3 radical observations in the boundary layer over the Eastern Mediterranean. Atmospheric Chemistry and Physics, 7, 315–327. https://doi.org/10.5194/acp-7-315-2007

    Article  CAS  Google Scholar 

  • Wang, T., Tham, Y. J., Xue, L., Li, Q., Zha, Q., Wang, Z., Poon, S. C. N., Dubé, W. P., Blake, D. R., Louie, P. K. K., Luk, C. W. Y., Tsui, W., & Brown, S. S. (2016). Observations of nitryl chloride and modeling its source and effect on ozone in the planetary boundary layer of southern China. Journal of Geophysical Research – Atmospheres, 121, 2476–2489. https://doi.org/10.1002/2015JD024556

    Article  CAS  Google Scholar 

  • Wang, W., Li, X., Shao, M., Hu, M., Zeng, L., Wu, Y., & Tan, T. (2019). The impact of aerosols on photolysis frequencies and ozone production in Beijing during the 4-year period 2012–2015. Atmospheric Chemistry and Physics, 19, 9413–9429. https://doi.org/10.5194/acp-19-9413-2019

    Article  CAS  Google Scholar 

  • Weber, R. J., Guo, H., Russell, A. G., & Nenes, A. (2016). High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years. Nature Geoscience, 9, 282–285. https://doi.org/10.1038/ngeo2665

    Article  CAS  Google Scholar 

  • Wong, J. P. S., Tsagkaraki, M., Tsiodra, I., Mihalopoulos, N., Violaki, K., Kanakidou, M., Sciare, J., Nenes, A., & Weber, R. J. (2019). Atmospheric evolution of molecular-weight-separated brown carbon from biomass burning. Atmospheric Chemistry and Physics, 19, 7319–7334. https://doi.org/10.5194/acp-19-7319-2019

    Article  CAS  Google Scholar 

  • Xu, L., Guo, H., Boyd, C., Bougiatioti, A., Cerully, K., Hite, J., Isaacman, G., Olson, K., Goldstein, A., Kosse, A., Gouw, J. D., Baumann, K., Knote, C., Lee, S., Weber, R., Nenes, A., & Ng, N. L. (2015). Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the Southeastern United States: Insights from SOAS and beyond. Proceedings of the National Academy of Sciences of the United States of America, 112, 37–42. https://doi.org/10.1073/pnas.1417609112

    Article  CAS  Google Scholar 

  • Xu, L., Middlebrook, A. M., Liao, J., deGouw, J., Guo, H., Weber, R. J., Nenes, A., Lee, B. H., Thornton, J. A., Brock, C., Trainer, M. K., Neuman, J. A., Nowak, J. B., Pollack, I. B., Ryerson, T. B., Hanisco, T. F., Wennberg, P. O., Schwarz, J. P., Welti, A., … Ng, N. L. (2016). Enhanced formation of isoprene-derived organic aerosol in power plant plumes during Southeast Nexus (SENEX). Journal of Geophysical Research-Atmospheres, 121, 11137–11153. https://doi.org/10.1002/2016JD025156

    Article  CAS  Google Scholar 

  • Zakoura, M., Kakavas, S., Nenes, A., & Pandis, S. N. (2020) Size-resolved aerosol pH over Europe during summer, Atmospheric Chemistry and Physics Discussions, https://doi.org/10.5194/acp-2019-1146, accepted.

  • Zender, C. S., Bian, H., & Newman, D. (2003). Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology. Journal of Geophysical Research, 108, 4416. https://doi.org/10.1029/2002JD002775

    Article  CAS  Google Scholar 

  • Zhao, Y., Chen, Z., Shen, X., & Huang, D. (2013). Heterogeneous reactions of gaseous hydrogen peroxide on pristine and acidic gas-processed calcium carbonate particles: Effects of relative humidity and surface coverage of coating. Atmospheric Environment, 67, 63–72. https://doi.org/10.1016/j.atmosenv.2012.10.055

    Article  CAS  Google Scholar 

  • Zhu, S., Butler, T., Sander, R., Ma, J., & Lawrence, M. G. (2010). Impact of dust on tropospheric chemistry over polluted regions: A case study of the Beijing megacity. Atmospheric Chemistry and Physics, 10, 3855–3873. https://doi.org/10.5194/acp-10-3855-2010

    Article  CAS  Google Scholar 

  • Zhu, T., Shang, J., & Zhao, D. F. (2011). The roles of heterogeneous chemical processes in the formation of an air pollution complex and gray haze. Science China. Chemistry, 54, 145–153. https://doi.org/10.1007/s11426-010-4181-y

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge support of this work by the project “PANhellenic infrastructure for Atmospheric Composition and climatE change” (MIS 5021516), which is implemented under the action “Reinforcement of the Research and Innovation Infrastructure” funded by the operational program “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014-2020) and cofinanced by Greece and the European Union (European Regional Development Fund). We also acknowledge support by the project PyroTRACH (ERC-2016-COG) funded by H2020-EU.1.1. – Excellent Science – European Research Council (ERC), project ID 726165 and from the European Union Horizon 2020 project FORCeS under grant agreement No 821205.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Kanakidou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kanakidou, M., Myriokefalitakis, S., Papadimitriou, V.C., Nenes, A. (2022). Aerosol Impacts on Atmospheric and Precipitation Chemistry. In: Dulac, F., Sauvage, S., Hamonou, E. (eds) Atmospheric Chemistry in the Mediterranean Region. Springer, Cham. https://doi.org/10.1007/978-3-030-82385-6_21

Download citation

Publish with us

Policies and ethics