Skip to main content

Bacillus subtilis: A Multifarious Plant Growth Promoter, Biocontrol Agent, and Bioalleviator of Abiotic Stress

  • Chapter
  • First Online:
Bacilli in Agrobiotechnology

Abstract

Increased agricultural production is the global requirement to nourish the rising people with limited cultivable agricultural land. To achieve this goal, fertilizers and pesticides have been gratuitously used, which has caused environmental impairment. Replacing chemicals with biocontrol agents is an environment-friendly alternative. Microorganisms are useful to plants and carry out the same role as chemical fertilizers and pesticides, performing as a biofertilizer and biopesticide. This chapter discusses the multifarious potential of plant growth-promoting Bacillus subtilis in plant growth promotion in different cereals, vegetables, and other plants. Inoculation with B. subtilis resulted in healthier seed germination, seedling vigor, and improved growth via both direct and indirect mechanisms. B. subtilis forms a thin biofilm on the roots for long-term colonization of the rhizosphere. Since various strains of B. subtilis possess several traits that can positively influence plants, they can be utilized in the advancement of innovative, protected, and resourceful seed treatments for the sustainable and environment-friendly strategy to cope with the adverse effects of abiotic and biotic stresses on plants. This is one of the best bacterial champions in implied enzyme manufacturer, and it can be used on a commercialized scale by biotechnology companies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi PA, Weselowski B (2015) Efficacy of Bacillus subtilis QST 713 formulations, copper hydroxide, and their tank mixes on bacterial spot of tomato. Crop Prot 74:70–76

    Article  CAS  Google Scholar 

  • Abd Allah EF, Alqarawia AA, Hashem A, Radhakrishnand R, Al-Huqailb AA, FONA O, Malika JA, Alharbib RI, Egamberdieva D (2017) Endophytic bacterium Bacillus subtilis (BERA 71) improves salt tolerance in chickpea plants by regulating the plant defense mechanisms. J Plant Interact 13(1):37–44. https://doi.org/10.1080/17429145.2017.1414321

    Article  CAS  Google Scholar 

  • Adam M, Heuer H, Hallmann J (2014) Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants. PLoS One 9:e90402. https://doi.org/10.1371/journalpone0090402

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad Z, Wu J, Chen L, Dong W (2017) Isolated Bacillus subtilis strain 330-2 and its antagonistic genes identified by the removing PCR. Sci Rep 7:1777. https://doi.org/10.1038/s41598-017-01940-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad AGM, Attia AG, Mohamed MS, Abd Allah HE (2019) Fermentation, formulation and evaluation of PGPR Bacillus subtilis isolate as a bioagent for reducing occurrence of peanut soil-borne diseases. J Integr Agric 18(9):2080–2092

    Article  CAS  Google Scholar 

  • Akinrinlola RJ, Yuen GY, Drijber RA, Adesemoye AO (2018) Evaluation of Bacillus strains for plant growth-promotion and predictability of efficacy by in vitro physiological traits. Intl J Microbiol., 5686874, 11 pages. https://doi.org/10.1155/2018/5686874

  • Akram W, Anjum T, Ali B (2014) Searching ISR determinants from Bacillus subtilis IAGS174 against Fusarium wilt of tomato. Biocontrol 60:271–280

    Article  Google Scholar 

  • Akram W, Anjum T, Ali B (2016) Phenylacetic acid is ISR determinant produced by Bacillusfortis IAGS162, which involves extensive re-modulation in metabolomics of tomato to protect against Fusarium wilt. Front Plant Sci 7:498. https://doi.org/10.3389/fpls201600498

    Article  PubMed  PubMed Central  Google Scholar 

  • AllardMassicotte L, Tessier F, Lecuyer V, Lakshmanan JF, Lucier D, Garneau L, Caudwell H, Vlamakis HP, Bais P, Beauregard (2016) Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors. M Bio 7(6)

    Google Scholar 

  • Almoneafy AA, Ojaghian MR, Seng-fu X, Ibrahim M, Xie GL, Shi Y, Tian WX, Li B (2013) Synergistic effect of acetyl salicylic acid and DL-Beta-aminobutyric acid on biocontrol efficacy of Bacillus strains against tomato bacterial wilt. Trop Plant Pathol 38(2):102–113. https://doi.org/10.1590/s1982-56762013000200003

    Article  Google Scholar 

  • Arifa MS, Sher TY, Shahzad M, Riaza M, Shahid MR, Muntaha I, AsifaM H (2019) Soli mandeShafaqatAlia Lead toxicity induced phytotoxic effects on mung bean can be relegated by lead tolerant Bacillus subtilis (PbRB3). Chemosphere 243:70–80

    Article  Google Scholar 

  • Ashraf A, Bano A, Ali SA (2019) Characterization of plant growth-promoting rhizobacteria from rhizosphere soil of heat-stressed and unstressed wheat and their use as bio-inoculant. Plant Biol 21:762–769

    Article  CAS  PubMed  Google Scholar 

  • Assie LK, Deleu M, Arnaud L, Paquot M, Thonart P, Gaspar CH, Haubruge E (2002) Insecticide activity of surfactins and iturins from a biopesticide Bacillus subtilis Cohn (S499 strain). Meded Rijksuniv Gent Fak Land bouwkd Toeg ep Biol Wet 67(3):647–655

    CAS  Google Scholar 

  • Bahramisharif A, Rose LE (2019) Efficacy of biological agents and compost on growth and resistance of tomatoes to late blight. Planta 249(3):799–813

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134(1):307–319. https://doi.org/10.1104/pp.103.028712

  • Baris O, Sahin F, Turan M, Orhan F, Gulluce M (2014) Use of Plant-growth-promoting rhizobacteria (PGPR) seed inoculation as alternative fertilizer inputs in wheat and barley production. Commun Soil Sci Plan 45:18

    Article  Google Scholar 

  • Barnawal D, Bharti D, Pandey SS, Pandey A, Chanotiya CS, Kalra A (2017) Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiol Plant 161:502–514

    Article  CAS  PubMed  Google Scholar 

  • Basaid K, Chebli B, Mayad EH, Furze JN, Bouharroud R, Krier F, Paulitz T (2020) Biological activities of essential oils and lipopeptides applied to control plant pests and diseases: a review. Interna J Pest Manag:1–23. https://doi.org/10.1080/09670874.2019.1707327

  • Beauregard PB, Chai Y, Vlamakis H, Losick R, Kolter R (2013) Bacillus subtilis biofilm induction by plant polysaccharides. Proc Natl Acad Sci U S A 110, E1621–E1630. https://doi.org/10.1073/pnas.1218984110

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandrasekaran M, Chun SC, Oh JW, Paramasivan M, Saini RK, Sahayarayan JJ (2019) Bacillus subtilis CBR05 for tomato (Solanum lycopersicum) fruits in South Korea as a novel plant probiotic bacterium (PPB): implications from total phenolics, flavonoids, and carotenoids content for fruit quality. Agro 9(12):838. https://doi.org/10.3390/agronomy9120838

    Article  CAS  Google Scholar 

  • Chowdappa P, Kumar SPM, Lakshmi MJ, Upreti KK (2013) Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biol Control 65:109–117. https://doi.org/10.1016/jbiocontrol201211009

    Article  Google Scholar 

  • De Faria AF, Teodoro-Martinez DS, de Oliveira Barbosa GN, Gontijo Vaz B, Serrano Silva Í, Garcia JS, Tótolac MR, Eberlinb MN, Grossmand M, Alves OL, Regina Durrant L (2011) Production and structural characterization of surfactin (C14/Leu7) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from the biodiesel industry. Process Biochem 46(10):1951–1957. https://doi.org/10.1016/j.procbio.2011.07.001

    Article  CAS  Google Scholar 

  • de Lima BC, Moro AL, Santos ACP, Bonifacio A, Araujo ASF, de Araujo FF (2019) Bacillus subtilis ameliorates water stress tolerance in maize and common bean. J Plant Interact 14(1):432–439. https://doi.org/10.1080/17429145.2019.1645896

  • Davey ME, Caiazza NC, O’Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185(3):1027–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degrassi G, Devescovi G, Solis R, Steindler L, Venturi V (2007) Oryza sativa rice plants contain molecules that activate different quorum-sensing N-acyl homoserine lactone biosensors and are sensitive to the specific AiiA lactonase. FEMS Microbiol, 269(2), 213–220. https://doi.org/10.1111/j.1574-6968.2006.00624.x

  • Ding Y, Wang J, Liu Y, Chen S (2005) Isolation and identification of nitrogen-fixing bacilli from plant rhizospheres in Beijing region. J Appl Microbiol 99:1271–1281

    Article  CAS  PubMed  Google Scholar 

  • Dinh ТL, Akhmetova GR, Martykanova DS, Rudakova NL, Sharipova МR (2019) Influence of divalent metal ions on biofilm formation by Bacillus subtilis. Bio Nano Science 9:521–527

    Google Scholar 

  • Dotaniya MV, Meena B, Basak RS, Meena (2016) Potassium uptake by crops as well as microorganisms Potassium solubilizing microorganisms for sustainable agriculture. Springer, pp 267–280

    Book  Google Scholar 

  • Dragos A, Nivedha Lakshmanan N, Marivic Martin M, Horvath B, Gergely Maroti G, Garcıa CF, Lieleg O, Kovacs AT (2018) Evolution of exploitative interactions during diversification in Bacillus subtilis biofilms, FEMS. Microb Ecol 94:fix155

    Google Scholar 

  • Dunlap CA, Schisler DA, Bowman MJ, Rooney AP (2015) Genomic analysis of Bacillus subtilis OH 1311 and co-culturing with Cryptococcus flavescens for control of Fusarium head blight Plant. Gene 2:1–9

    Google Scholar 

  • Egamberdieva D, Wirth S, Jabborova D, Räsänen LA, Liao H (2017a) Coordination between Bradyrhizobium and Pseudomonas alleviates salt stress in soybean through altering root system architecture. J Plant Inter 12(1):100–107

    Google Scholar 

  • Egamberdieva D, Wirth S, Shurigin V, Hashem A, Abd Allah EF (2017b) Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L) and induce suppression of root rot caused by Fusarium solani under salt stress. Front Microbiol 8:75. https://doi.org/10.3389/fmicb201701887

  • Elshakh ASA, Anjum SI, Qiu W, Almoneafy AA, Li W, Yang Z, Cui ZQ, Li B, Chang G, Xie SGL (2016) Controlling and defense-related mechanisms of Bacillus strains against bacterial leaf blight of rice. J Phytopathol 164:534–546. https://doi.org/10.1111/jph12479

    Article  CAS  Google Scholar 

  • Elyousr KAMA, Alamri SAM, Hussein MMA, Hassan MAH, El-Fatah BESA, Hashem M (2020) Molecular disparities among Botrytis species involved in onion umbel blight disease and its management using Bacillus subtilis PHYS7. Egyptian J Biol Pest Cont 30:1

    Article  Google Scholar 

  • Falcäo LL, Silva-Werneck JO, Vilarinho BR, da Silva JP, Pomella AWV, Marcellino LH (2014) Antimicrobial and plant growth-promoting properties of the cacao endophyte Bacillus subtilis ALB629. J Appl Microbiol 116(6):1584–1592

    Article  PubMed  Google Scholar 

  • Fousia S, Paplomatas EJ, Tjamos SE (2016) Bacillus subtilis QST 713 confers protection to tomato plants against Pseudomonas syringae pv tomato and induces plant defense-related genes. J Phytopathol, 164, 264–270 https://doi.org/10.1111/jph12455

  • Gagné-Bourque F, Bertrand A, Claessens A, Aliferis KA, Jabaji S (2016) Alleviation of drought stress and metabolic changes in timothy (Phleum pratense L) colonized with Bacillus subtilis B26. Front Plant Sci 7:584

    Article  PubMed  PubMed Central  Google Scholar 

  • García CF, KretschmerM L-ACN, Schönleitner M, DragoŝA KAT, Lieleg O (2020) Metal ions weaken the hydrophobicity and antibiotic resistance of Bacillus subtilis NCIB 3610 biofilms. npj Biofilms and Microbiomes 6:1. https://doi.org/10.1038/s41522-019-0111-8

    Article  CAS  Google Scholar 

  • Garcia-Fraile P, Menendez E, Rivas R (2015) Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng 2:183–205. https://doi.org/10.3934/bioeng20153183

    Article  CAS  Google Scholar 

  • García-Gutiérrez L, Zeriouh H, Romero D, Cubero J, Vicente AD, Pérez-García A (2013) The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate-and salicylic acid-dependent defence responses. Microbiol Biotechnol 6:264–274

    Article  Google Scholar 

  • Ghribi D, Mesrati LA, Mnif I, Kammoun R, Ayadi I, Saadaoui I, Maktouf S, Ellouze SC (2012) Investigation of antimicrobial activity and statistical optimization of Bacillus subtilis SPB1 biosurfactant production in solid-state fermentation. Biomed Res Int:ID 373682. https://doi.org/10.1155/2012/373682

  • Gingichashvili S, Duanis-Assaf D, Shemesh M, Featherstone JDB, Feuerstein O, Steinberg D (2017) Bacillus subtilis biofilm development—a computerized study of morphology and kinetics. Front Microbiol, 8: 2072

    Google Scholar 

  • Gingichashvili S, Duanis-Assaf D, Shemesh M, Featherstone JDB, Feuerstein O, Steinberg D (2020) The adaptive morphology of Bacillus subtilis biofilms: A defense mechanism against bacterial starvation. Microorganisms 8:62. https://doi.org/10.3390/microorganisms8010062

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39. https://doi.org/10.1016/jmicres201309009

    Article  CAS  PubMed  Google Scholar 

  • Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth-promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2:1–19

    Google Scholar 

  • Gutierrez-Monsalve JA, Mosquera S, González-Jaramillo LM, Mira JJ, Villegas-Escobar V (2015a) Effective control of black Sigatoka disease using a microbial fungicide based on Bacillus subtilis EA-CB0015 culture. Biol Contr 87:39–46. https://doi.org/10.1016/jbiocontrol201504012

    Article  Google Scholar 

  • Gutierrez-Monsalve JA, Mosquera S, González-Jaramillo LM, Mira JJ, Villegas-Escobar V (2015b) Effective control of black Sigatoka disease using a microbial fungicide based on Bacillus subtilis EA-CB0015 culture. Biol Cont 87:39–46. https://doi.org/10.1016/j.biocontrol.2015.04.012

    Article  Google Scholar 

  • Han QQ, Lu XP, Bai JP, Qiao Y, Pare PW, Wang SM, Zhang JL, Wu YN, Pang XP, Xu WB, Wang ZL (2014) Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of white clover. Front Plant Sci 5:525. https://doi.org/10.3389/fpls201400525

    Article  PubMed  PubMed Central  Google Scholar 

  • Han Y, Zhang B, Shen Q, You C, Yu Y, Li P, Shang Q (2015) Purification and identification of two antifungal cyclic peptides produced by Bacillus amyloliquefaciens L-H15. Appl Biochem Biotechnol 176:2202–2212. https://doi.org/10.1007/s12010-015-1708-x

    Article  CAS  PubMed  Google Scholar 

  • Hashem A, Abd Allah EF, Alqarawi AA, AL-Huqail AA, Alshalawi SRM, Wirth S, Egamberdieva D (2015a) Impact of plant growth promoting Bacillus subtilis on growth and physiological parameters of Bassia indica (Indian bassia) grown under salt stress. Pak J Bot 47:1735–1741

    Google Scholar 

  • Hashem A, Abd Allah EF, Alqarawi AA, Mona S, Whibi Al Alenazi MM, Egamberdieva D, Ahmad P (2015b) Arbuscular mycorrhizal fungi mitigates NaCl adverse effects on Solanum lycopersicum L. Pak J Bot 47(1):327–340

    Google Scholar 

  • Hashem A, Abd Allah EF, Alqarawi AA, Al-Huqail AA, Wirth S, Egamberdieva D (2016a) The Interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Front Microbiol 7:1089. https://doi.org/10.3389/fmicb201601089

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashem A, Abd Allah EF, Alqarawi AA, AL-Huqail AA, Shah MA (2016b) Induction of osmoregulation and modulation of salt stress in Acacia gerrardii Benth by arbuscular mycorrhizal fungi and Bacillus subtilis (BERA 71). Biomed Res 6294098:11. https://doi.org/10.1155/2016/6294098

  • Hashem A, Abd Allah EF, Alqarawi AA, Radhakrishnan R, Kumar A (2017) Plant defense approach of Bacillus subtilis (BERA 71) against Macrophomina phaseolina (Tassi) Goid in mungbean. Plant-Micro Interact 12(1):390–401

    Article  CAS  Google Scholar 

  • Hashem A, Tabassum B, Abd-Allah EF (2019) Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci 26: 1291–1297

    Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Hu QP, Liu RX, Liu JX (2019) Effects of Bacillus subtilis QM3 on germination and antioxidant enzymes activities of wheat seeds under salt stress. Open Access Library Journal 6:e5218. https://doi.org/10.4236/oalib.1105218

    Article  Google Scholar 

  • Jha Y, Subramanian RB (2015) Reduced cell death and improved cell membrane integrity in rice under salinity by root-associated bacteria. Theor Exp Plant Physiol 27:227–235. https://doi.org/10.1007/s40626-015-0047-1

    Article  Google Scholar 

  • Ju R, Zhao Y, Li J, Jiang H, Liu P, Yang T, BaoZ Z, Zhou B, Liu XZX (2014) Identification and evaluation of a potential biocontrol agent, Bacillus subtilis, against Fusarium sp in apple seedlings. Annals of Microbio 64:377–383

    Article  Google Scholar 

  • Kakar KU, Ren XL, Nawaz Z, Cui ZQ, Li B, Xie GL, Sun GC (2016) A consortium of rhizobacterial strains and biochemical growth elicitors improve cold and drought stress tolerance in rice (Oryza sativa L). Plant Biol 18:471–483. https://doi.org/10.1111/plb12427

    Article  CAS  PubMed  Google Scholar 

  • Kang SM, Radhakrishnan R, You YH, Joo GJ, Lee IJ, Lee KE, Kim JH (2014a) Phosphate solubilizing Bacillus megaterium mj1212 regulates endogenous plant carbohydrates and amino acids contents to promote mustard plant growth. Indian J Microbiol 54:427–433. https://doi.org/10.1007/s12088-014-0476-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang SM, Radhakrishnan R, Khan AL, Kim MJ, Park JM, Kim BR, Lee IJ (2014b) Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem 84:115–124. https://doi.org/10.1016/jplaphy.2014.09001

    Article  CAS  PubMed  Google Scholar 

  • Kang SM, Radhakrishnan R, Lee KE, You YH, Ko JH, Kim JH, Lee IJ (2015a) Mechanism of plant growth promotion elicited by Bacillus sp LKE15 in oriental melon. Acta Agric Scand Sect B Soil Plant Sci 65:637–647. https://doi.org/10.1080/09064710.2015.1040830

    Article  CAS  Google Scholar 

  • Kang SM, Radhakrishnan R, Lee I J (2015b) Bacillus amyloliquefaciens sub sp plantarum GR53, a potent biocontrol agent resists Rhizoctonia disease on Chinese cabbage through hormonal and antioxidants regulation. World J Microbiol Biotechnol 31: 1517–1527. https://doi.org/10.1007/s11274-015-1896-0

  • Khan N, Bano A, Rahman MR, Guo J, Kang Z, Babar M (2019) Comparative physiological, and metabolic analysis reveals a complex mechanism involved in drought tolerance in chickpea (Cicer arietinum L) induced by PGPR, and PGRs. Sci Rep 9:2097. https://doi.org/10.1038/s41598-019-38702-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuan KB, Othman R, Rahim KA, Shamsuddin ZH (2016) Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilization of maize under greenhouse conditions. PLoS One 11:e0152478. https://doi.org/10.1371/journalpone0152478

    Article  PubMed  PubMed Central  Google Scholar 

  • Lastochkina O, Pusenkova L, Yuldashev R, Babaev M, Garipova S, Blangova D, Khairullin R, Aliniaeifard S (2017) Effects of Bacillus subtilis on some physiological and biochemical parameters of Triticum aestivum L (wheat) under salinity Plant. Physiol Biochem 212:80–88

    Google Scholar 

  • Lastochkina O, Seifikalhor M, Aliniaeifard S, Baymiev A, Pusenkova L, Garipova S, Kulabuhova D, Maksimov I (2019) Bacillus sp: efficient biotic strategy to control postharvest diseases of fruits and vegetables. Plants, 8(4): 97. https://doi.org/10.3390/plants8040097

  • Lee SW, Lee SH, Balaraju K, Park KS, Nam KW, Park JW, Park K (2014) Growth promotion and induced disease suppression of four vegetable crops by a selected plant growth-promoting rhizobacteria (PGPR) strain Bacillus subtilis 21-1 under two different soil conditions. Acta Physiol Plant 36:1353–1362. https://doi.org/10.1007/s11738-014-1514-z

    Article  CAS  Google Scholar 

  • Lee BH, Lai YS, Wu SC (2015) Antioxidation, angiotensin converting enzyme inhibition activity, nattokinase, and antihypertension of Bacillus subtilis (natto)-fermented pigeon pea. J Food Drug Anal 23:750–757. https://doi.org/10.1016/jjfda201506008

    Article  CAS  PubMed  Google Scholar 

  • Li S, Zhang N, Zhang Z, Luo J, Shen B, Zhang R, Shen Q (2013) Antagonist Bacillus subtilis HJ5 controls Verticillium wilt of cotton by root colonization and biofilm formation. Biol Fertil Soils 49:295–303. https://doi.org/10.1007/s00374-012-0718-x

    Article  Google Scholar 

  • Li C, Sun B, Li Y, Liu C, Wu X, Zhang D, Shi Y, Song Y, Buckler ES, Zhangs Z, Wang T, Li Y (2016a) Numerous genetic loci identified for drought tolerance in the maize nested association mapping populations. BMC Genomics 17:894. https://doi.org/10.1186/s12864-016-3170-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Xu S, Gao J, Pan S, Wang G (2016b) Bacillus subtilis regulation of stomatal movement and instantaneous water use efficiency in Vicia faba. Plant Growth Regul 78:43–55

    Google Scholar 

  • Lyu D, Backer R, Robinson WG, Smith DL (2019) Plant growth-promoting rhizobacteria for cannabis production: yield, cannabinoid profile and disease resistance. Front Microbiol 10:1761. https://doi.org/10.3389/fmicb201901761

    Article  PubMed  PubMed Central  Google Scholar 

  • Malfanova N, Franzil L, Lugtenberg B, Chebotar V, Ongena M (2012) Cyclic lipopeptide profile of the plant-beneficial endophytic bacterium Bacillus subtilis HC8. Arch Microbiol 194(11):893–899. https://doi.org/10.1007/s00203-012-0823-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McSpadden Gardener BB, Driks A (2004) Overview of the nature and application of biocontrol microbes: Bacillus spp. Phytopathol 94(11):1244

    Google Scholar 

  • Misra S, Chauhan PS (2020) ACC deaminase-producing rhizosphere competent Bacillus spp. mitigate salt stress and promote Zea mays growth by modulating ethylene metabolism. Biotech 3, 10(3). https://doi.org/10.1007/s13205-020-2104-y

  • Mnif I, Ghribi D (2015) Potential of bacterial derived biopesticides in pest management. Crop Prot 77:52–64. https://doi.org/10.1016/jcropro201507017

    Article  Google Scholar 

  • Mnif I, Hammami I, Triki MA, Azabou MC, Ellouze-Chaabouni S, Ghribi D (2015) Antifungal efficiency of a lipopeptide biosurfactant derived from Bacillus subtilis SPB1 versus the phytopathogenic fungus, Fusarium solani Environ. Sci Pollut Res 22:18137–18147

    Article  CAS  Google Scholar 

  • Mnif I, Grau-Campistany A, Coronel-León J, Hammami I, Triki MA, Manresa A, Ghribi D (2016) Purification and identification of Bacillus subtilis SPB1 lipopeptide biosurfactant exhibiting antifungal activity against Rhizoctonia bataticola and Rhizoctonia solani. Environ Sci Pollut Res Int 23(7):6690–6699. https://doi.org/10.1007/s11356-015-5826-3

    Article  CAS  PubMed  Google Scholar 

  • Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress Plant. Physiol Biochem 66:1–9. https://doi.org/10.1016/jplaphy201301020

    Article  CAS  Google Scholar 

  • Ojuederie OB, Olanrewaju OS, Babalola OO (2019) Plant growth promoting rhizobacterial mitigation of drought stress in crop plants: implications for sustainable agriculture. Agronomy 9:712. https://doi.org/10.3390/agronomy9110712

    Article  CAS  Google Scholar 

  • Patil S, Bheemaraddi CM, Shivannavar TC, Gaddad MS (2014) Biocontrol activity of siderophore producing Bacillus subtilis CTS-G24 against wilt and dry root rot causing fungi in chickpea. IOSR J Agric Vet Sci 7(9):63–68

    Article  Google Scholar 

  • Pérez-Montaño F, AlíasVillegas C, Bellogín RA, DelCerro P, Espuny MR, Jiménez GI, López-Baena FJ, Ollero FJ, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169:325–336

    Article  PubMed  Google Scholar 

  • Pourbabaee AA, Bahmani E, Alikhani HA, Emami S (2016) Promotion of wheat growth under salt stress by halotolerant bacteria containing ACC deaminase. J Agric Sci Technol 18:855–864

    Google Scholar 

  • Qiao J, Wu H, Huo R, Geo XW, Borriss R (2014) Stimulation of plant growth and biocontrol by Bacillus amyloliquefaciens sub sp. plantarum FZB42 engineered for improved action. Chem Biol Technol Agric 1:12. https://doi.org/10.1186/s40538-014-0012-2

    Article  CAS  Google Scholar 

  • Qiao J, Yu X, Liang X, Liu Y, Borriss R, Liu Y (2017) Addition of plant-growth-promoting Bacillus subtilis PTS-394 on tomato rhizosphere has no durable impact on composition of root microbiome. BMC Microbiol 17:131. https://doi.org/10.1186/s12866-017-1039-x(2017)

    Article  PubMed  PubMed Central  Google Scholar 

  • Qurashi AW, Sabri AN (2013) Osmolyte accumulation in moderately halophilic bacteria improves salt tolerance of chickpea. Pakt J Bot 45:1011–1016

    CAS  Google Scholar 

  • Radhakrishnan R, Lee IJ (2013) Regulation of salicylic acid, jasmonic acid and fatty acids in cucumber (Cucumis sativus L) by spermidine promotes plant growth against salt-stress. Acta Physiol Plant 35:3315–3322. https://doi.org/10.1007/s11738-013-1364-0

    Article  CAS  Google Scholar 

  • Radhakrishnan R, Lee IJ (2014) Effect of low dose of spermidine on physiological changes in salt stressed cucumber plants. Russ J Plant Physiol 61:90–96. https://doi.org/10.1134/S1021443714010129

    Article  CAS  Google Scholar 

  • Radhakrishnan R, Lee IJ (2016) Gibberellins producing Bacillus methylotrophicus KE2 supports plant growth and enhances nutritional metabolites and food values of lettuce. Plant Physiol Biochem 109:181–189. https://doi.org/10.1016/jplaphy201609018

    Article  CAS  PubMed  Google Scholar 

  • Rai A, Nabti E (2017) Plant growth-promoting bacteria: importance in vegetable production. In: Zaidi A, Khan MS (eds) Microbial strategies for vegetable production. Springer International Publishing AG 2017 23. https://doi.org/10.1007/978-3-319-54401-4_2

    Chapter  Google Scholar 

  • Rao MS, Kamalnath M, Umamaheswari R, Rajinikanth R, Prabu P, Priti K, Grace GN, Chaya MK, Gopalakrishnan C (2017) Bacillus subtilis IIHR BS-2 enriched vermicompost controls root-knot nematode and soft rot disease complex in carrot. Sci Hortic, 218:56–62. https://doi.org/10.1016/j.scienta.2017.01.051

  • Reiss A, Jørgensen LN (2017) Biological control of yellow rust of wheat (Puccinia striiformis) with Serenader ASO (Bacillus subtilis strain QST713) / Reiss, Antje; Jørgensen, Lise Nistrup I: Crop Protection, Bind 93: 032017, s 1–8

    Google Scholar 

  • Romero D, Pérez-García A, Rivera M, Cazorla F, De Vicente A (2004) Isolation and evaluation of antagonistic bacteria towards the cucurbit powdery mildew fungus Podosphaera fusca. Appl Microbiol Biotechnol 64(2):263–269

    Article  CAS  PubMed  Google Scholar 

  • Sagar A (2017) Evaluation of performance of plant growth promoting bacteria (PGPB) containing 1-aminocyclopropane- 1-carboxylate deaminase (ACCD) in improving growth and yield of cereal crops under salinity stress. Sam Higginbottom University of Agriculture, Technology Sciences, Allahabad

    Google Scholar 

  • Samaniego-Gámez BY, Garruña R, Tun-Suárez JM, Kantun-Can J, Reyes-Ramírez A, Cervantes-Díaz L (2016) Bacillus sp inoculation improves photosystem II efficiency and enhances photosynthesis in pepper plants. Chilean J Agric Res, 76:409–416

    Google Scholar 

  • Senol M, Nadaroglu H, Dikbas N, Kotan R (2014) Purification of Chitinase enzymes from Bacillus subtilis bacteria TV-125, investigation of kinetic properties and antifungal activity against Fusarium culmorum. Ann Clin Microbiol Antimicrob 13:1–7

    Article  Google Scholar 

  • Shao JH, Li SQ, Zhang N, Cui XS, Zhou X, Zhang G, Shen Q, Zhang R (2015) Analysis and cloning of the synthetic pathway of the phytohormone indole-3-acetic acid in the plant-beneficial Bacillus amyloliquefaciens SQR9. Microb Cell Fact 14:130. https://doi.org/10.1186/s12934-015-0323-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Z, Mustaph A, Lin M, Zheng G (2017) Biocontrol of the internalization of Salmonella enterica and Enterohaemorrhagic Escherichia coli in mung bean sprouts with an endophytic Bacillus subtilis. Int J Food Microbiol 250:37–44

    Article  PubMed  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth-promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22(2):123–131. https://doi.org/10.1016/jsjbs201412001

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Raina S, Singh D, Ghosh M, Heflish A (2017) Exploitation of promising native strains of Bacillus subtilis with antagonistic properties against fungal pathogens and their pgpr characteristics. J Plant Pathol 99(1):27–35

    Google Scholar 

  • Sivasakthi S, Kanchana D, Usharani G, Saranraj P (2013) Production of plant growth-promoting substance by Pseudomonas fluorescens and Bacillus subtilis isolated from paddy rhizosphere soil of Cuddalore district, Tamil Nadu, India. Int J Microbiol Res 4(3):227–233

    CAS  Google Scholar 

  • Tang Q, Bie X, Lu Z, Lv F, Yang T, Qu X (2014) Effects of Fengycin from Bacillus subtilis fmbJ on apoptosis and necrosis in Rhizopus stolonifer. J Microbiol 52:675–680

    Article  CAS  PubMed  Google Scholar 

  • Tiwari G, Duraivadivel P, Sharma S, Hariprasad P (2018) 1-aminocyclopropane-1-carboxylic acid deaminase producing beneficial rhizobacteria ameliorate the biomass characters of Panicum maximum Jacq. by mitigating drought and salt stress. Sci Rep 8:17513. https://doi.org/10.1038/s41598-018-35565-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkateshwaran M, Volkening JD, Sussman MR, Ané JM (2013) Symbiosis and the social network of higher plants. Curr Opin Plant Biol 16:118–127

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Liang Y, Wu M, Chen Z, Lin J, Yang L (2015) Natural products from Bacillus subtilis with antimicrobial properties. Chin J Chem Eng 23(4):744–754

    Article  CAS  Google Scholar 

  • Wang X, Zhao D, Shen L, Jing C, Zhang C (2018) Application and mechanisms of Bacillus subtilis in biological control of plant disease. Role of rhizospheric microbes in soil. Springer, pp 225–250

    Book  Google Scholar 

  • Woo OG, Kim H, Kim JS, Keum HL, Lee K, Sul WJ, Lee JH (2020) Bacillus subtilis strain GOT9 confers enhanced tolerance to drought and salt stresses in Arabidopsis thaliana and Brassica campestris. Plant Physiol Biochem. https://doi.org/10.1016/j.plaphy.2020.01.032

  • Xie S, Wu HJ, Zang H, Wu L, Zhu Q, Gao X (2014) Plant growth promotion by spermidine-producing Bacillus subtilis OKB105. Mol Plant Microbe Interact 27:655–663. https://doi.org/10.1094/MPMI-01-14-0010-R

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Sheng J, Chen L, Men Y, Gan L, Guo S, Shen L (2014) Bacterial community compositions of tomato (Lycopersicum esculentum Mill) seeds and plant growth-promoting activity of ACC deaminase producing Bacillus subtilis (HYT-12-1) on tomato seedlings. World J Microbiol Biotechnol 30:835–845. https://doi.org/10.1007/s11274-013-1486-y

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Héloir M-C, Zhang X, Geissler M, Trouvelot S, Jacquens L, Henkel M, Su X, Fang X, Wang Q, Adrian M (2019) Surfactin and fengycin contribute to the protection of a Bacillus subtilis strain against grape downy mildew by both direct effect and defense stimulation. Mol Plant Pathol 20(8):1037–1050. https://doi.org/10.1111/mpp.12809.1037

    Article  Google Scholar 

  • Yang LR, Quan X, Xue BG, Goodwin PH, Lu SB, Wang JH et al (2015) Isolation and identification of Bacillus subtilis strain YB-05 and its antifungal substances showing antagonism against Gaeumannomyces graminis var. tritici. Biol Control 85:52–58

    Article  CAS  Google Scholar 

  • Yang A, Akhtar SS, Iqbal S, Amjad M, Naveed M, Zahir ZA, Jacobsen SE (2016a) Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation. Funct Plant Biol 43:632–642. https://doi.org/10.1071/FP15265

    Article  CAS  PubMed  Google Scholar 

  • Yang SY, Lim DJ, Noh MY, Kim JC, Kim YC, Kim IS (2016b) Characterization of biosurfactants as insecticidal metabolites produced by Bacillus subtilis Y9. Entomol Res 47(1):55–59. https://doi.org/10.1111/1748-5967.12200

    Article  CAS  Google Scholar 

  • You C, Zhang C, Kong F, Feng C, Wang J (2016) Comparison of the effects of biocontrol agent Bacillus subtilis and fungicide metalaxyl–mancozeb on bacterial communities in tobacco rhizospheric. Soil Ecol Eng 91:119–125

    Article  Google Scholar 

  • Yuan J, Chaparro JM, Manter DK, Zhang R, Vivanco JM, Shen Q (2015) Roots from distinct plant developmental stages are capable of rapidly selecting their own microbiome without the influence of environmental and soil edaphic factors. Soil Biol Biochem 89:206–209

    Article  CAS  Google Scholar 

  • Zhang L-N, Wang D-C, Hu Q, Dai X-Q, Xie Y-S, Li Q, Liu H-M, Guo J-H (2019) Consortium of plant growth-promoting rhizobacteria strains suppresses sweet pepper disease by altering the rhizosphere microbiota. Front Microbiol 10:1668. https://doi.org/10.3389/fmicb.2019.01668

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sagar, A., Yadav, S.S., Sayyed, R.Z., Sharma, S., Ramteke, P.W. (2022). Bacillus subtilis: A Multifarious Plant Growth Promoter, Biocontrol Agent, and Bioalleviator of Abiotic Stress. In: Islam, M.T., Rahman, M., Pandey, P. (eds) Bacilli in Agrobiotechnology. Bacilli in Climate Resilient Agriculture and Bioprospecting. Springer, Cham. https://doi.org/10.1007/978-3-030-85465-2_24

Download citation

Publish with us

Policies and ethics