Skip to main content

Domains in Artificial Magneto-Toroidal Crystals

  • Chapter
  • First Online:
Toroidal Order in Magnetic Metamaterials

Part of the book series: Springer Theses ((Springer Theses))

  • 324 Accesses

Abstract

One of the two key requirements of n-dimensional ferroic systems is the spontaneous formation of homogeneously ordered areas, called domains, separated one from another by distinct (\(n-1\))-dimensional entities, called domain walls, see Sect. 2.1.4 on page 16. These walls constitute natural interfaces within the system between two or more energetically degenerate realisations of a particular order. For the artificial nanomagnetic arrays investigated throughout this work, the spontaneous formation of long-range order connected to an order parameter is a hallmark for their classification as primary ferroic order [1]. Suitable symmetry groups allowing for toroidal order have already been identified a few decades ago and are listed in Sect. 2.1.6 on page 19. The nanomagnetic arrays that have been investigated here, see Fig. 4.1 on page 83, fall in one of these groups, setting the basis for their further scrutiny not only on the macroscopic but also on the microscopic scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Defects that are located close to the edges of some arrays prevented a comparative analysis of whole arrays.

  2. 2.

    Remember that this asymmetric exchange interaction necessitates a non-centrosymmetric material, whereas the particular symmetry violation predetermines the sign of this energy spitting.

References

  1. Wadhawan VK (2000) Introduction to Ferroic materials, 1st edn. CRC Press. http://dx.doi.org/10.1201/9781482283051

  2. Spaldin NA, Fiebig M, Mostovoy M (2008) The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J Phys Condens Matter 20(43). https://doi.org/10.1103/PhysRevB.88.094429

  3. Lee C et al (2014) Analysis of the difference between the pyroxenes LiFeSi\(_2\)O\(_6\) and LiFeGe\(_2\)O\(_6\) in their spin order, spin orientation, and Ferrotoroidal order. Chem Mater 26(4):1745–1750. https://doi.org/10.1021/cm5001413

  4. Gnewuch S, Rodriguez EE (2019) The fourth ferroic order: current status on Ferrotoroidic materials. J Solid State Chem 271:175–190. https://doi.org/10.1016/j.jssc.2018.12.035

    Article  ADS  Google Scholar 

  5. Harris AB (2010) A system exhibiting toroidal order. Phys Rev B 82(18). https://doi.org/10.1103/PhysRevB.82.184401

  6. Lehmann et al J (2020) Relation between microscopic interactions and macroscopic properties in ferroics. Nat Nanotechnol 15(11):896–900. https://www.nature.com/articles/s41565-020-0763-9

  7. Lehmann J et al (2019) Poling of an artificial magneto-toroidal crystal. Nat Nanotechnol 14(2):141–144. https://doi.org/10.1038/s41565-020-0763-9

    Article  ADS  Google Scholar 

  8. Mengotti E et al (2008) Building blocks of an artificial Kagome spin ice: Photoemission electron microscopy of arrays of ferromagnetic islands. Phys Rev B 78(14). https://doi.org/10.1103/PhysRevB.78.144402

  9. Nisoli C et al (2010) Effective temperature in an interacting vertex system: theory and experiment on artificial spin ice. Phys Rev Lett 105(4):047205

    Google Scholar 

  10. Kittel C (1949) Physical theory of ferromagnetic domains. Rev Modern Phys 21(4):541–583. https://doi.org/10.1103/RevModPhys.21.541

    Article  ADS  Google Scholar 

  11. Hubert A, Schaefer R (2009) Magnetic domains: the analysis of magnetic microstructures. Springer

    Google Scholar 

  12. McCord J (2015) Progress in magnetic domain observation by advanced magneto-optical microscopy. J Phys D Appl Phys 48(33). https://doi.org/10.1088/0022-3727/48/33/333001

  13. Sander D et al (2017) The 2017 magnetism roadmap. J Phys D Appl Phys 50(36). https://doi.org/10.1088/1361-6463/aa81a1

  14. Gomonay EV, Loktev VM (2014) Spintronics of antiferromagnetic systems (Review Article). Low Temp Phys 40(1):17–35. http://aip.scitation.org/doi/10.1063/1.4862467

  15. Wadley P et al (2016) Electrical switching of an antiferromagnet. Science 351(6273):587–590. https://doi.org/10.1126/science.aab1031

    Article  ADS  Google Scholar 

  16. Jungwirth T et al (2016) Antiferromagnetic spintronics. Nat Nanotechnol 11(3):231–241. https://doi.org/10.1038/nnano.2016.18

    Article  ADS  Google Scholar 

  17. Jungwirth T et al (2018) The multiple directions of antiferromagnetic spintronics. Nat Phys 14(3):200–203. https://doi.org/10.1038/s41567-018-0063-6

    Article  Google Scholar 

  18. Baltz V et al (2018) Antiferromagnetic spintronics. Rev Mod Phys 90(1). https://doi.org/10.1103/RevModPhys.90.015005

  19. Zelezny J et al (2014) Relativistic Néel-order fields induced by electrical current in antiferromagnets. Phys Rev Lett 113(15). https://doi.org/10.1103/PhysRevLett.113.157201

  20. Zelezny J et al (2017) Spin-orbit torques in locally and globally noncentrosymmetric crystals: Antiferromagnets and ferromagnets. Phys Rev B 95(1). https://doi.org/10.1103/PhysRevB.95.014403

  21. Gomonay HV, Loktev VM (2007) Shape-induced phenomena in finite-size antiferromagnets. Phys Rev B 75(17). https://doi.org/10.1103/PhysRevB.75.174439

  22. Gomonay O, Kondovych S, Loktev V (2014) Shape-induced anisotropy in antiferromagnetic nanoparticles. J Magnetism Magnetic Mater 354:125–135. https://doi.org/10.1016/j.jmmm.2013.11.003

    Article  ADS  Google Scholar 

  23. Hewitt IJ et al (2010) Coupling Dy3 triangles enhances their slow magnetic relaxation. Angewandte Chemie Int Edn 49(36):6352–6356. https://doi.org/10.1002/anie.201002691

    Article  Google Scholar 

  24. Nisoli C (2012) On thermalization of magnetic nano-arrays at fabrication. New J Phys 14(3). https://doi.org/10.1088/1367-2630/14/3/035017

  25. Khodenkov GE (2006) Bloch lines in domain walls of antiferromagnets. Tech Phys 51(7):949–951. https://doi.org/10.1134/S1063784206070243

    Article  Google Scholar 

  26. Castelnovo C, Moessner R, Sondhi SL (2008) Magnetic monopoles in spin ice. Nature 451(7174):42–45. https://doi.org/10.1038/nature06433

    Article  ADS  Google Scholar 

  27. Mol LA et al (2009) Magnetic monopole and string excitations in two-dimensional spin ice. J Appl Phys 106(6). https://doi.org/10.1063/1.3224870

  28. Ladak S et al (2010) Direct observation of magnetic monopole defects in an artificial spin-ice system. Nat Phys 6(5):359–363. https://doi.org/10.1038/nphys1628

    Article  Google Scholar 

  29. Loreto RP et al (2015) Emergence and mobility of monopoles in a unidirectional arrangement of magnetic nanoislands. Nanotechnology 26(29). https://doi.org/10.1088/0957-4484/26/29/295303

  30. Yakata S et al (2010) Control of vortex chirality in regular polygonal nanomagnets using in-plane magnetic field. Appl Phys Lett 97(22):222503. http://aip.scitation.org/doi/10.1063/1.3521407

  31. Cowburn RP et al (1999) Single-domain circular nanomagnets. Phys Rev Lett 83(5):1042–1045

    Article  ADS  Google Scholar 

  32. Jubert P-O, Allenspach R (2004) Analytical approach to the single-domain-to-vortex transition in small magnetic disks. Phys Rev B 70(14). https://doi.org/10.1103/PhysRevB.70.144402

  33. Guslienko KY et al (2001) Magnetization reversal due to vortex nucleation, displacement, and annihilation in submicron ferromagnetic dot arrays. Phys Rev B 65(2). https://doi.org/10.1063/1.1450816

  34. Tagantsev AK, Cross LE, Fousek J (2010) Domains in Ferroic crystals and thin films. Springer, New York. http://dx.doi.org/10.1007/978-1-4419-1417-0

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jannis Lehmann .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lehmann, J. (2022). Domains in Artificial Magneto-Toroidal Crystals. In: Toroidal Order in Magnetic Metamaterials. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-85495-9_5

Download citation

Publish with us

Policies and ethics