Skip to main content

Poling of Artificial Magneto-Toroidal Crystals

  • Chapter
  • First Online:
Toroidal Order in Magnetic Metamaterials

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The basis for key applications of ferroic materials is the ability to reverse the orientation of the order parameter and, accompanied by that, the sign or direction of a physical vectorial or tensorial quantity [1, 2]. This characteristic allows one to distinguish otherwise symmetry-equivalent material classes such as pyroelectric materials (polar but not switchable) from ferroelectric materials (polar and switchable). The feature to experimentally manipulate—to “write”—a material property that is connected to the order parameter extends the applicability of ferroic materials from merely passive devices like sensors to new fields such as actuators, memory cells or logic gates. While some of the established ferroic materials, in particular ferromagnets and ferroelectrics, are widely used in scientific and technological applications, ferrotoroidic materials are far from being technologically applicable. This is especially because the generation of an actual conjugate field seems elusive so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Further, the authors mention that “tip fields are sharply localised, and their effect cannot be guessed from that of an equivalent uniform field”.

  2. 2.

    Using a model system of anisotropic (Ising-like) point-dipoles arranged on a square lattice, Dr. Peter Derlet from the Condensed Matter Theory Group at Paul Scherrer Institute examined the existence of a perturbation-regime where the strength of the tip field only destabilises the orientation of individual nanomagnets. Therefore it only catalyses reorientation processes and does not contribute to the switching of single nanomagnets as such [23].

References

  1. Wadhawan VK (200) Introduction to ferroic materials, 1st edn. CRC Press. http://dx.doi.org/10.1201/9781482283051

  2. Tagantsev AK, Cross LE, Fousek J (2010) Domains in ferroic crystals and thin films. Springer, New York. http://dx.doi.org/10.1007/978-1-4419-1417-0

  3. Lehmann J et al (2019) Poling of an artificial magneto-toroidal crystal. Nature Nanotechnol 14(2):141–144. https://doi.org/10.1107/S1600576719001948

    Article  ADS  Google Scholar 

  4. Dubovik V, Tugushev V (1990) Toroid moments in electrodynamics and solid-state physics. Phys Rep 187(4):145–202. https://doi.org/10.1016/0370-1573(90)90042-Z

    Article  ADS  Google Scholar 

  5. Gorbatsevich AA, Kopaev YV (1994) Toroidal order in crystals. Ferroelectrics 161(1):321–334. https://doi.org/10.1080/00150199408213381

    Article  Google Scholar 

  6. Dubovik V, Martsenuyk M, Martsenuyk N (1995) Reversal of magnetization of aggregates of magnetic particles by a vorticity field and use of toroidness for recording information. J Magn Mag Mater 145(1–2):211–230. https://doi.org/10.1016/0304-8853(94)01594-5

    Article  ADS  Google Scholar 

  7. Schmid H (2001) On ferrotoroidics and electrotoroidic, magnetotoroidic and piezotoroidic effects. Ferroelectrics 252(1):41–50. https://doi.org/10.1088/0953-8984/20/43/434201

    Article  Google Scholar 

  8. Spaldin NA, Fiebig M, Mostovoy M (2008) The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J Phys Condens Matter 20(43). https://doi.org/10.1103/PhysRevB.88.094429

  9. Artamonov YA, Gorbatsevich AA, Kopaev YV (1984) Magnetoferroelectric and toroidal ordering. J Exp Theor Phys 40(7):290–293

    Google Scholar 

  10. Wadley P et al (2016) Electrical switching of an antiferromagnet. Science 351(6273):587–590. https://doi.org/10.1126/science.aab1031

    Article  ADS  Google Scholar 

  11. Baltz V et al (2018) Antiferromagnetic spintronics. Rev Mod Phys 90(1). https://doi.org/10.1103/RevModPhys.90.015005

  12. Watanabe H, Yanase Y (2018) Symmetry analysis of current-induced switching of antiferromagnets. Phys Rev B 98(22). https://doi.org/10.1103/PhysRevB.98.220412

  13. Thöle F, Keliri A, Spaldin NA (2020) Concepts from the linear magnetoelectric effect that might be useful for antiferromagnetic spintronics. J Appl Phys 127(21). https://doi.org/10.1063/5.0006071

  14. Schmid H (2008) Some symmetry aspects of ferroics and single phase multiferroics. J Phys Condens Matter 20(43). https://doi.org/10.1088/0953-8984/20/43/434201

  15. Zimmermann AS, Meier D, Fiebig M (2014) Ferroic nature of magnetic toroidal order. Nat Commun 5(1):4796. https://doi.org/10.1038/ncomms5796

    Article  ADS  Google Scholar 

  16. Litvin DB (2008) Ferroic classifications extended to ferrotoroidic crystals. Acta Crystallogr Sect A Found Crystallogr 64(2):316–320. https://doi.org/10.1107/S0108767307068262

    Article  ADS  Google Scholar 

  17. Kleiber M et al (1998) Magnetization switching of submicrometer Co dots induced by a magnetic force microscope tip. Physical Review B 58(9):5563–5567. https://doi.org/10.1103/PhysRevB.58.5563

    Article  ADS  Google Scholar 

  18. Hopster H et al (eds) (2005) Magnetic microscopy of nanostructures. Springer, Berlin

    Google Scholar 

  19. Mironov V et al (2007) MFM probe control of magnetic vortex chirality in elliptical Co nanoparticles. J Magn Magn Mater 312(1):153–157. https://doi.org/10.1016/j.jmmm.2006.09.032

    Article  ADS  Google Scholar 

  20. Garcia R, Knoll AW, Riedo E (2014) Advanced scanning probe lithography. Nat Nanotechnol 9(8):577–587. https://doi.org/10.1038/nnano.2014.157

    Article  ADS  Google Scholar 

  21. Kazakova O et al (2019) Frontiers of magnetic force microscopy. J Appl Phys 125(6). https://doi.org/10.1063/1.5050712

  22. Wang Y-L et al (2016) Rewritable artificial magnetic charge ice. Science 352(6288):962–966. https://doi.org/10.1126/science.aad8037

    Article  ADS  Google Scholar 

  23. Derlet PM. Private communication. (unpublished data available)

    Google Scholar 

  24. https://scicomp.stackexchange.com/questions/21915/discrete-definitionsof-curl-nabla-times-f. (Online content, Accessed on 15 Jan 2020)

  25. Afsar MN, Chi H (1994) Millimeter wave complex refractive index, complex dielectric permittivity and loss tangent of extra high purity and compensated silicon. Int J Infrared Millimeter Waves 15(7):1181–1188. https://doi.org/10.1007/BF02096073

    Article  ADS  Google Scholar 

  26. Jiles D (2015) Introduction to magnetism and magnetic materials, 3rd edn. CRC Press. https://doi.org/10.1201/b18948

  27. Gomonay EV, Loktev VM (2014) Spintronics of antiferromagnetic systems (Review Article). Low Temp Phys 40(1):17–35. http://aip.scitation.org/doi/10.1063/1.4862467

  28. Sander D et al (2017) The 2017 magnetism roadmap. J Phys D Appl Phys 50(36). https://doi.org/10.1088/1361-6463/aa81a1

  29. Bang W et al (2019) Ferromagnetic resonance spectra of permalloy nano-ellipses as building blocks for complex magnonic lattices. J Appl Phys 126(20):203902. http://aip.scitation.org/doi/10.1063/1.5126679

  30. Lendinez S, Jungfleisch MB (2020) Magnetization dynamics in artificial spin ice. J Phys Condens Matter 32(1). https://doi.org/10.1088/1361-648X/ab3e78

  31. Landau L, Lifshitz E (1935) On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Physikalische Zeitschrift der Sowjetunion, pp. 153–169. http://dx.doi.org/10.1016/B978-0-08-036364-6.50008-9

  32. Brown WF (1959) Micromagnetics, domains, and resonance. J Appl Phys 30(4):S62–S69. https://doi.org/10.1063/1.2185970

    Article  ADS  Google Scholar 

  33. Baum M et al (2013) Controlling toroidal moments by crossed electric and magnetic fields. Phys Rev B 88(2). https://doi.org/10.1103/PhysRevB.88.024414

  34. Jaafar M et al (2008) Field induced vortex dynamics in magnetic Ni nanotriangles. Nanotechnology 19(28). https://doi.org/10.1088/0957-4484/19/28/285717

  35. Jaafar M et al (2010) Control of the chirality and polarity of magnetic vortices in triangular nanodots. Phys Rev B 81(5). https://doi.org/10.1103/PhysRevB.81.054439

  36. Yakata S et al (2010) Control of vortex chirality in regular polygonal nanomagnets using in-plane magnetic field. Appl Phys Lett 97(22):222503. http://aip.scitation.org/doi/10.1063/1.3521407

  37. Vogel A et al (2012) Vortex dynamics in triangular-shaped confining potentials. J Appl Phys 112(6):063916

    Google Scholar 

  38. Krutyanskiy VL et al (2013) Second harmonic generation in magnetic nanoparticles with vortex magnetic state. Phys Rev B 88(9):094424. http://aip.scitation.org/doi/10.1063/1.4754418

  39. Kida N et al (2005) Optical magnetoelectric effect in a submicron patterned magnet. Phys Rev Lett 94(7). https://doi.org/10.1103/PhysRevLett.99.197404

  40. Agyei AK, Birman JL (1990) On the linear magnetoelectric effect. J Phys Condens Matter 2(13):3007–3020. https://doi.org/10.1088/0953-8984/2/13/010

    Article  ADS  Google Scholar 

  41. Gartside JC et al (2016) A novel method for the injection and manipulation of magnetic charge states in nanostructures. Sci Rep 6(1):32864. https://doi.org/10.1038/srep32864

    Article  ADS  MathSciNet  Google Scholar 

  42. Jungwirth T et al (2018) The multiple directions of antiferromagnetic spintronics. Nat Phys 14(3):200–203. https://www.nature.com/articles/s41567-018-0063-6

  43. Arregi JA et al (2018) Magnetization reversal and confinement effects across the metamagnetic phase transition in mesoscale FeRh structures. J Phys D Appl Phys 51(10). https://doi.org/10.1088/1361-6463/aaaa5a

  44. Nisoli C (2018) Topology by design in magnetic nano-materials: artificial spin ice. In: Gupta S, Saxena A (eds) The role of topology in materials, vol 189. Springer, pp 85–112

    MATH  Google Scholar 

  45. Gartside JC et al (2018) Realization of ground state in artificial kagome spin ice via topological defect-driven magnetic writing. Nat Nanotechnol 13(1):53–58

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jannis Lehmann .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lehmann, J. (2022). Poling of Artificial Magneto-Toroidal Crystals. In: Toroidal Order in Magnetic Metamaterials. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-85495-9_6

Download citation

Publish with us

Policies and ethics