Skip to main content

Optical Effects in Artificial Magneto-Toroidal Crystals

  • Chapter
  • First Online:
Toroidal Order in Magnetic Metamaterials

Part of the book series: Springer Theses ((Springer Theses))

  • 319 Accesses

Abstract

Both, linear magneto-optical effects [1,2,3], as introduced in Section 3.2.2, and the anomalous Hall effect [4] are based on the violation of time-reversal symmetry that manifests in a coupling to electromagnetic fields by energy-state shifts due to spin-orbit interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Measurements of a single diffraction spot are discussed in Appendix C.6.

  2. 2.

    Linear-optical spectroscopy has been performed from the ultraviolet to the near infrared spectral region using a JASCO MSV-370 microspectrometer in our laboratories. Furthermore, the spectral region from the mid infrared to the far infrared has been probed using a Bruker 80V FTIR in the laboratories of Prof. Dr. Leonardo Degiorgi at ETH Zurich.

References

  1. Zvezdin AK, Kotov VA (1997) Modern magnetooptics and magnetooptical materials. Institute of Physics Publication

    Google Scholar 

  2. Kronmueller H, Parkin S (eds) (2007) Handbook of magnetism and advanced magnetic materials, 1st edn. Wiley. http://dx.doi.org/10.1002/9780470022184

  3. Hubert A, Schaefer R (2009) Magnetic domains: the analysis of magnetic microstructures. Springer

    Google Scholar 

  4. Nagaosa N et al (2010) Anomalous Hall effect. Rev Mod Phys 82(2):1539–1592. https://doi.org/10.1103/RevModPhys.82.1539

    Article  ADS  Google Scholar 

  5. Saito M et al (2008) Magnetically controllable CuB2O4 phase retarder. Appl Phys Exp 1. https://doi.org/10.1143/APEX.1.121302

  6. Baranova NB, Bogdanov YV, Zel’dovich BY (1977) New electro-optical and magneto-optical effects in liquids. Soviet Phys Uspekhi 20(10):870–877. https://mr.crossref.org/iPage?doi=10.10702FPU1977v020n10ABEH005470

  7. Arima T (2008) Magneto-electric optics in non-centrosymmetric ferromagnets. J Phys Condens Matter 20(43):434211. https://doi.org/10.1103/PhysRevB.70.064426

  8. Szaller D, Bordacs S, Kezsmarki I (2013) Symmetry conditions for nonreciprocal light propagation in magnetic crystals. Phys Rev B 87(1):014421. https://doi.org/10.1103/PhysRevB.87.014421

  9. Tomita S et al (2018) Metamaterials with magnetism and chirality. J Phys D Appl Phys 51(8):083001. https://doi.org/10.1088/1361-6463/aa9ecb

  10. Cheong S-W et al (2018) Broken symmetries, non-reciprocity, and multiferroicity. Npj Quant Mater 3(1):19. http://dx.doi.org/10.1038/nmat1804

  11. Tokura Y, Nagaosa N (2018) Nonreciprocal responses from non-centrosymmetric quantum materials. Nat Commun 9(1):3740. https://doi.org/10.1088/0034-4885/77/7/076501

  12. Toyoda S et al (2015) One-way transparency of light in multiferroic CuB\(_2\)O\(_4\). Phys Rev Lett 115(26):267207. https://doi.org/10.1103/PhysRevLett.115.267207

  13. Saito M, Taniguchi K, Arima T-H (2008) Gigantic optical magnetoelectric effect in CuB\(_2\)O\(_4\). J Phys Soc Jpn 77(1):013705

    Google Scholar 

  14. Saito M et al (2008) Magnetic control of crystal chirality and the existence of a large magneto-optical dichroism effect in CuB\(_2\)O\(_4\). Phys Rev Lett 101(11). https://doi.org/10.1143/JPSJ.77.013705

  15. Toyoda S, Abe N, Arima T (2016) Gigantic directional asymmetry of luminescence in multiferroic CuB\(_2\)O\(_4\). Phys Rev B 93(20):201109. https://doi.org/10.1103/PhysRevB.93.201109

  16. Toyoda S, Abe N, Arima T (2019) Nonreciprocal refraction of light in a magnetoelectric material. Phys Rev Lett 123(7):077401. https://doi.org/10.1103/PhysRevLett.123.077401

  17. Toyoda S et al (2020) Nonreciprocal second harmonic generation in a magnetoelectric material. arXiv 2006.01728. http://dx.doi.org/10.1103/PhysRevLett.115.267207

  18. Kocsis V et al (2018) Identification of antiferromagnetic domains via the optical magnetoelectric effect. Phys Rev Lett 121(5):057601. https://doi.org/10.1103/PhysRevLett.121.057601

  19. Kibayashi S et al (2014) Magnetochiral dichroism resonant with electromagnons in a helimagnet. Nat Commun 5(1):4583. https://doi.org/10.1038/ncomms5583

  20. Jung JH et al (2004) Optical magnetoelectric effect in the polar GaFeO\(_3\) ferrimagnet. Phys Rev Lett 93(3):037403. https://doi.org/10.1103/PhysRevLett.93.037403

  21. Igarashi J-I, Nagao T (2009) Analysis of optical magnetoelectric effect in GaFeO\(_3\). Phys Rev B 80(5):054418. https://doi.org/10.1103/PhysRevB.80.054418

  22. Pisarev RV, Krichevtsov BB, Pavlov VV (1991) Optical study of the antiferromagneticparamagnetic phase transition in chromium oxide Cr\(_2\)O\(_3\). Phase Trans 37(1):63–72. https://www.tandfonline.com/doi/abs/10.1080/01411599108203448

  23. Krichevtsov BB et al (1993) Spontaneous non-reciprocal reflection of light from antiferromagnetic Cr\(_2\)O\(_3\). J Phys Condens Matter 5(44):8233–8244. https://iopscience.iop.org/article/10.1088/0953-8984/5/44/014

  24. Goulon J et al (2002) X-Ray magnetochiral dichroism: a new spectroscopic probe of parity nonconserving magnetic solids. Phys Rev Lett 88(23):237401. https://doi.org/10.1103/PhysRevLett.88.237401

  25. Yokosuk MO et al (2020) Nonreciprocal directional dichroism of a chiral magnet in the visible range. npj Quan Mater 5(1):20. http://dx.doi.org/10.1038/s41535-020-0224-6

  26. Kimura S, Matsumoto M, Tanaka H (2020) Electrical switching of the nonreciprocal directional microwave response in a triplon bose-Einstein condensate. Phys Rev Lett 124(21):217401. https://doi.org/10.1103/PhysRevLett.124.217401

  27. Narita H et al (2016) Observation of nonreciprocal directional dichroism via electromagnon resonance in a chiral-lattice helimagnet Ba\(_3\)NbFe\(_3\)Si\(_2\)O\(_{14}\). Physical Review B 94(9):094433. https://doi.org/10.1103/PhysRevB.94.094433

  28. Kezsmarki I et al (2011) Enhanced directional dichroism of Terahertz light in resonance with magnetic excitations of the multiferroic Ba\(_2\)CoGe\(_2\)O\(_7\) oxide compound. Phys Rev Lett 106(5):057403. https://doi.org/10.1103/PhysRevLett.106.057403

  29. Bordacs S et al (2012) Chirality of matter shows up via spin excitations. Nat Phys 8(10):734–738. https://www.nature.com/articles/nphys2387

  30. Kezsmarki I et al (2014) One-way transparency of four-coloured spin-wave excitations in multiferroic materials. Nat Commun 5(1):3203. https://www.nature.com/articles/nphys2387

  31. Viirok J et al (2019) Directional dichroism in the paramagnetic state of multiferroics: a case study of infrared light absorption in Sr\(_2\)CoSi\(_2\)O\(_7\) at high temperatures. Phys Rev B 99(1):014410. https://doi.org/10.1103/PhysRevB.99.014410

  32. Kida N et al (2005) Optical magnetoelectric effect in a submicron patterned magnet. Phys Rev Lett 94(7):077205. https://doi.org/10.1103/PhysRevLett.94.077205

  33. Kida N et al (2006) Enhanced optical magnetoelectric effect in a patterned polar ferrimagnet. Phys Rev Lett 96(16):167202. https://doi.org/10.1103/PhysRevLett.96.167202

  34. Kida N et al (2007) Optical magnetoelectric effect of patterned oxide superlattices with ferromagnetic interfaces. Phys Rev Lett 99(19):197404. https://doi.org/10.1103/PhysRevLett.99.197404

  35. Levy M, Jalali AA, Huang X (2009) Magnetophotonic crystals: nonreciprocity, birefringence and confinement. J Mater Sci Mater Electron 20(S1):43–47

    Article  Google Scholar 

  36. Udalov OG et al (2012) Nonreciprocal light diffraction by a lattice of magnetic vortices. Phys Rev B 86(9):094416. https://doi.org/10.1103/PhysRevB.86.094416

  37. Figotin A, Vitebsky I (2001) Nonreciprocal magnetic photonic crystals. Phys Rev E 63(6):066609. https://doi.org/10.1103/PhysRevE.63.066609

  38. Figotin A, Vitebskiy I (2003) Electromagnetic unidirectionality in magnetic photonic crystals. Phys Rev B 67(16):165210. https://doi.org/10.1103/PhysRevB.67.165210

  39. Figotin A, Vitebskiy I (2006) Electromagnetic unidirectionality and frozen modes in magnetic photonic crystals. J Magn Magn Mater 300(1):117–121. https://doi.org/10.1016/j.jmmm.2005.10.046

    Article  ADS  MATH  Google Scholar 

  40. Eslami S et al (2014) Chiral nanomagnets. ACS Photon 1(11):1231–1236. https://doi.org/10.1021/ph500305z

    Article  Google Scholar 

  41. Jaafar M et al (2008) Field induced vortex dynamics in magnetic Ni nanotriangles. Nanotechnology 19(28). https://doi.org/10.1088/0957-4484/19/28/285717

  42. Friedel G (1913) Sur les symétries cristallines que peut révéler la diffraction des rayons Röntgen. Comptes Rendus 157:1533–1536

    Google Scholar 

  43. Bijvoet JM, Peerdeman AF, van Bommel AJ (1951) Determination of the absolute configuration of optically active compounds by means of X-rays. Nature 168(4268):271–272. https://doi.org/10.1038/168271a0

    Article  ADS  Google Scholar 

  44. http://skuld.bmsc.washington.edu/scatter/AS_Friedel.html. (Online content, Accessed on 13 Mar 2020)

  45. Gorfman S et al (2016) Simultaneous resonant x-ray diffraction measurement of polarization inversion and lattice strain in polycrystalline ferroelectrics. Sci Rep 6(1):20829. https://doi.org/10.1038/srep20829

  46. Shaltout AM, Shalaev VM, Brongersma ML (2019) Spatiotemporal light control with active metasurfaces. Science 364(6441):1. https://doi.org/10.1126/science.aat3100

  47. Linden S et al (2006) Photonic metamaterials: magnetism at optical frequencies. IEEE J Select Top Quant Electron 12(6):1097–1105. https://doi.org/10.1109/JSTQE.2006.880600

    Article  ADS  Google Scholar 

  48. Liu N, Giessen H (2010) Coupling effects in optical metamaterials. Angewandte Chem Int Edn 49(51):9838–9852. https://doi.org/10.1002/anie.200906211

    Article  Google Scholar 

  49. Gentile M et al (2011) Investigation of the nonlinear optical properties of metamaterials by second harmonic generation. Appl Phys B 105(1):149–162. https://doi.org/10.1007/s00340-011-4766-y

    Article  ADS  Google Scholar 

  50. Cortie MB, Arnold MD, Keast VJ (2020) The quest for zero loss: unconventional materials for plasmonics. Adv Mater 32(18):1904532. https://onlinelibrary.wiley.com/doi/10.1002/adma.201904532

  51. Blaber MG, Arnold MD, Ford MJ (2010) A review of the optical properties of alloys and intermetallics for plasmonics. J Phys Condense Matter 22(14):143201. https://doi.org/10.1088/0953-8984/22/14/143201

  52. Rycenga M et al (2011) Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111(6):3669–3712. https://doi.org/10.1021/cr100275d

    Article  Google Scholar 

  53. Auguie B et al (2010) Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate. Phys Rev B 82(15). https://doi.org/10.1103/PhysRevB.82.155447

  54. Sadri-Moshkenani P et al (2020) Effect of magnesium oxide adhesion layer on resonance behavior of plasmonic nanostructures. Appl Phys Lett 116(24):241601. http://aip.scitation.org/doi/10.1063/5.0008665

  55. Hornreich RM (1968) Gyrotropic birefringence-phenomenological theory. J Appl Phys 39(2):432–434. http://aip.scitation.org/doi/10.1063/1.2163466

  56. Hornreich RM, Shtrikman S, Theory of gyrotropic birefringence. Phys Rev 171(3):1065–1074. https://journals.aps.org/pr/abstract/10.1103/PhysRev.171.1065

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jannis Lehmann .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lehmann, J. (2022). Optical Effects in Artificial Magneto-Toroidal Crystals. In: Toroidal Order in Magnetic Metamaterials. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-85495-9_7

Download citation

Publish with us

Policies and ethics