Skip to main content

Electrode Materials for Pharmaceuticals Determination

  • Chapter
  • First Online:
Modified Nanomaterials for Environmental Applications

Abstract

The presence of pharmaceuticals in surface waters called for urgent concern in recent years due to their prospective environmental effects. Various analytical methods including chemiluminescence, high-performance liquid chromatography, capillary electrophoresis-mass spectrometry, spectrophotometry and liquid chromatography have been employed for the determination of various pharmaceuticals. However, all these techniques are time-consuming, complicated and require expensive equipment. On the contrary, the electrochemical technique resolved these problems owing to its low cost, fast response, simplicity and ease of on-site application. Considering this, various electrodes have played significant roles in the determination of different drugs in biological, urine and pharmaceuticals formulations. Various electrodes are modified with various nanomaterials to improve the sluggish electron migration and electrode fouling, which reduces their selectivity and sensitivity. Considering this, the present chapter discusses the applications of various electrodes for different electrochemical analyses.

Graphical Abstract

Highlights

  1. 1.

    The application of various electrodes for electrochemical analysis.

  2. 2.

    The surface of boron-doped diamond electrodes can be cathodically and anodically pretreated.

  3. 3.

    Various nanomaterials are networked on the electrode surface to promote electron communication and migration.

  4. 4.

    Co-detection of various pharmaceuticals in various matrices.

  5. 5.

    Different binders are used to prevent the leaching of nanomaterials on the electrode surface.

Synopsis

Several analytical techniques are used in the detection of pharmaceuticals owing to their presence in various water bodies. Electrochemical methods have been the technique of choice owing to their analytical merits including simplicity, portability and low cost. In electrochemistry, different working electrodes play pivotal roles in performing an electrochemical experiment. Although they have several limitations such as sluggish electron transfer, high background current and electron fouling. These limitations can be overcome using smart and intelligent nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Balakrishna, A. Rath, Y. Praveenkumarreddy, K. Siri, A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies. Ecotoxicol. Environ. Saf. 137, 113–120 (2017). https://doi.org/10.1016/j.ecoenv.2016.11.014

    Article  CAS  Google Scholar 

  2. S. Mangala, S. Norashikin, M. Shaifuddin, S. Sukiman, F. Adzima, M. Nasir, Z. Hana, N. Kamarudin, T. Hanidza, T. Ismail, A. Zaharin, Pharmaceuticals residues in selected tropical surface water bodies from Selangor ( Malaysia ): occurrence and potential risk assessments. Sci. Total Environ. 642, 230–240 (2018). https://doi.org/10.1016/j.scitotenv.2018.06.058

    Article  CAS  Google Scholar 

  3. S. Fekadu, E. Alemayehu, R. Dewil, B. Van Der Bruggen, Pharmaceuticals in freshwater aquatic environments: a comparison of the African and European challenge. Sci. Total Environ. 654, 324–337 (2019). https://doi.org/10.1016/j.scitotenv.2018.11.072

    Article  CAS  Google Scholar 

  4. J. Jose, J.S. Pinto, B. Kotian, A.M. Thomas, R.N. Charyulu, Comparison of the regulatory outline of ecopharmacovigilance of pharmaceuticals in Europe, USA, Japan and Australia, Sci. Total Environ. 709, 134815 (2020). https://doi.org/10.1016/j.scitotenv.2019.134815

  5. P.K. Thai, L. Xuan, V. Ngan, P. Hong, P. Thi, N. Quang, N.T.T. Dang, N. Kieu, B. Tam, N. Thi, K. Anh, Occurrence of antibiotic residues and antibiotic-resistant bacteria in effluents of pharmaceutical manufacturers and other sources around. Sci. Total Environ. 645, 393–400 (2018). https://doi.org/10.1016/j.scitotenv.2018.07.126

    Article  CAS  Google Scholar 

  6. E.T. Furlong, A.L. Batt, S.T. Glassmeyer, M.C. Noriega, D.W. Kolpin, H. Mash, K.M. Schenck, Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States: pharmaceuticals. Sci. Total Environ. 579, 1629–1642 (2017). https://doi.org/10.1016/j.scitotenv.2016.03.128

    Article  CAS  Google Scholar 

  7. B. Hong, S. Yu, Y. Niu, J. Ding, Q. Lin, X. Lin, W. Hu, Spectrum and environmental risks of residual pharmaceuticals in stream water with emphasis on its relation to epidemic infectious disease and anthropogenic activity in watershed. J. Hazard. Mater. 385, 121594 (2020). https://doi.org/10.1016/j.jhazmat.2019.121594

  8. J. Chul, D. Yoon, E. Byeon, J. Soo, U. Hwang, J. Han, J. Lee, Adverse effects of two pharmaceuticals acetaminophen and oxytetracycline on life cycle parameters, oxidative stress, and defensome system in the marine rotifer Brachionus rotundiformis. Aquat. Toxicol. 204, 70–79 (2018). https://doi.org/10.1016/j.aquatox.2018.08.018

    Article  CAS  Google Scholar 

  9. B. Doğan, A. Elik, N. Altunay, Determination of paracetamol in synthetic urea and pharmaceutical samples by shaker-assisted deep eutectic solvent microextraction and spectrophotometry, Microchem. J. 154, 104645 (2020). https://doi.org/10.1016/j.microc.2020.104645

  10. K. Basavaiah, P. Nagegowda, Determination of ranitidine hydrochloride in pharmaceutical preparations by titrimetry and visible spectrophotometry using bromate and acid dyes. Farmaco 59, 147–153 (2004). https://doi.org/10.1016/j.farmac.2003.11.012

    Article  CAS  Google Scholar 

  11. Y. Zhang, R. Zhang, X. Yang, H. Qi, C. Zhang, Recent advances in electrogenerated chemiluminescence biosensing methods for pharmaceuticals. J. Pharm. Anal. 9, 9–19 (2019). https://doi.org/10.1016/j.jpha.2018.11.004

    Article  CAS  Google Scholar 

  12. C. Miossec, T. Mille, L. Lanceleur, M. Monperrus, Simultaneous determination of 42 pharmaceuticals in seafood samples by solvent extraction coupled to liquid chromatography—tandem mass spectrometry. Food Chem. 322, 126765 (2020). https://doi.org/10.1016/j.foodchem.2020.126765

  13. S.A. Ozkan, B. Uslu, From mercury to nanosensors: past, present and the future perspective of electrochemistry in pharmaceutical and biomedical analysis. J. Pharm. Biomed. Anal. 130, 126–140 (2016). https://doi.org/10.1016/j.jpba.2016.05.006

    Article  CAS  Google Scholar 

  14. A.O. Idris, J.P. Mafa, N. Mabuba, O.A. Arotiba, Nanogold modified glassy carbon electrode for the electrochemical detection of arsenic in water. Russ. J. Electrochem. 53, 190–197 (2017). https://doi.org/10.1134/S1023193517020082

    Article  CAS  Google Scholar 

  15. A.O. Idris, J.P. Mafa, N. Mabuba, O.A. Arotiba, Dealing with interference challenge in the electrochemical detection of As(III) —A complexometric masking approach. Electrochem. Commun. 64, 18–20 (2016). https://doi.org/10.1016/j.elecom.2016.01.003

    Article  CAS  Google Scholar 

  16. M.M. Ghoneim, H.S. El-desoky, M.M. Abdel-galeil, Electrochemistry of the antibacterial and antifungal drug nitroxoline and its determination in bulk form, pharmaceutical formulation and human blood. Bioelectrochemistry 80, 162–168 (2011). https://doi.org/10.1016/j.bioelechem.2010.08.003

    Article  CAS  Google Scholar 

  17. T. Ha, T. Nguyen, J. Lee, H. Kim, K. Min, B. Kim, Current research on single-entity electrochemistry for soft nanoparticle detection : introduction to detection methods and applications, Biosens. Bioelectron. 151, 111999 (2020). https://doi.org/10.1016/j.bios.2019.111999

  18. N. Karimian, P. Hashemi, A. Afkhami, H. Bagheri, The principles of bipolar electrochemistry and its electroanalysis applications. Curr. Opin. Electrochem. 17, 30–37 (2019). https://doi.org/10.1016/j.coelec.2019.04.015

    Article  CAS  Google Scholar 

  19. T.G. Rygar, F.M. Arken, U.S. Chröder, F.S. Cholz, Electrochemical analysis of solids. A review. Chem. Comm. 67, 163–203 (2002). https://doi.org/10.1135/cccc20020163

    Article  CAS  Google Scholar 

  20. A. Pardakhty, S. Ahmadzadeh, S. Avazpour, V. Kumar, Highly sensitive and efficient voltammetric determination of ascorbic acid in food and pharmaceutical samples from aqueous solutions based on nanostructure carbon paste electrode as a sensor. J. Mol. Liq. 216, 387–391 (2016). https://doi.org/10.1016/j.molliq.2016.01.010

    Article  CAS  Google Scholar 

  21. S.A. Atty, G.A. Sedik, F.A. Morsy, D.M. Naguib, H.E. Zaazaa, A novel sensor aluminum silicate modified carbon paste electrode for determination of anti-depressant dothiepin HCl in pharmaceutical formulation and biological fluids. Microchem. J. 148, 725–734 (2019). https://doi.org/10.1016/j.microc.2019.05.007

    Article  CAS  Google Scholar 

  22. A. Motaharian, K. Naseri, O. Mehrpour, S. Shoeibi, Electrochemical determination of atypical antipsychotic drug quetiapine using nano-molecularly imprinted polymer modified carbon paste electrode. Anal. Chim. Acta. 1097, 214–221 (2020). https://doi.org/10.1016/j.aca.2019.11.020

    Article  CAS  Google Scholar 

  23. M.M. Khalil, G.M.A. El-aziz, Multiwall carbon nanotubes chemically modified carbon paste electrodes for determination of gentamicin sulfate in pharmaceutical preparations and biological fl uids. Mater. Sci. Eng. C. 59, 838–846 (2016). https://doi.org/10.1016/j.msec.2015.10.095

    Article  CAS  Google Scholar 

  24. M. Keyvanfard, K. Alizad, Determination of isoproterenol in pharmaceutical and biological samples using a pyrogallol red multiwalled carbon nanotube paste electrode as a sensor. Chin. J. Catal. 37, 579–583 (2016). https://doi.org/10.1016/S1872-2067(15)61036-1

    Article  CAS  Google Scholar 

  25. M. Ibrahim, H. Ibrahim, N. Almandil, A. Kawde, Gold nanoparticles/f-MWCNT nanocomposites modified glassy carbon paste electrode as a novel voltammetric sensor for the determination of cyproterone acetate in pharmaceutical and human body fluids. Sens. Actuators B. Chem. 274, 123–132 (2018). https://doi.org/10.1016/j.snb.2018.07.105

    Article  CAS  Google Scholar 

  26. Š Sanja, V. Guzsvány, J. Anoj, T. Heged, M. Mikov, K. Kalcher, Imidazolium-based ionic liquids as modifiers of carbon paste electrodes for trace-level voltammetric determination of dopamine in pharmaceutical preparations. J. Mol. Liq. 306, 1–8 (2020). https://doi.org/10.1016/j.molliq.2020.112900

    Article  CAS  Google Scholar 

  27. Z. Rezayati, S. Saeed, H. Davarani, A. Taheri, Y. Bide, A yolk shell Fe3O4@PA-Ni @ Pd/Chitosan nanocomposite -modified carbon ionic liquid electrode as a new sensor for the sensitive determination of fl uconazole in pharmaceutical preparations and biological fl uids. J. Mol. Liq. 253, 233–240 (2018). https://doi.org/10.1016/j.molliq.2018.01.019

    Article  CAS  Google Scholar 

  28. M. Afzali, A. Mostafavi, T. Shamspur, Square wave voltammetric determination of anticancer drug flutamide using carbon paste electrode modified by CuO/GO/ PANI nanocomposite. Arab. J. Chem. 13, 3255–3265 (2020). https://doi.org/10.1016/j.arabjc.2018.11.001

    Article  CAS  Google Scholar 

  29. N.P. Shetti, M.M. Shanbhag, S.J. Malode, R.K. Srivastava, Amberlite XAD-4 modified electrodes for highly sensitive electrochemical determination of nimesulide in human urine. Microchem. J. 153, 1–9 (2020). https://doi.org/10.1016/j.microc.2019.104389

    Article  CAS  Google Scholar 

  30. P.P. Talay, Y. Yard, Z. Şentürk, Electrochemical oxidation of ranitidine at poly (dopamine ) modified carbon paste electrode : its voltammetric determination in pharmaceutical and biological samples based on the enhancement effect of anionic surfactant. Sens. Actuators B Chem. 273, 1463–1473 (2018). https://doi.org/10.1016/j.snb.2018.07.068.

  31. C. Stefanov, C.C. Negut, L. Alexandra, D. Gugoasa, J. Koos, F. Van Staden, Sensitive voltammetric determination of riboflavin in pharmaceutical and biological samples using FSN-Zonyl-Nafion modified carbon paste electrode. Microchem. J. 155, 1–9 (2020). https://doi.org/10.1016/j.microc.2020.104729

    Article  CAS  Google Scholar 

  32. N. Setoudeh, S. Jahani, M. Kazemipour, Zeolitic imidazolate frameworks and cobalt-tannic acid nanocomposite modified carbon paste electrode for simultaneous determination of dopamine, uric acid, acetaminophen and tryptophan: investigation of kinetic parameters of surface electrode and its a. J. Electroanal. Chem. 863, 1–14 (2020). https://doi.org/10.1016/j.jelechem.2020.114045

    Article  CAS  Google Scholar 

  33. D. Shi, N. Huang, L. Liu, B. Yang, Z. Zhai, Y. Wang, Nanostructured boron-doped diamond electrode for seawater salinity detection. Appl. Surf. Sci. 512, 1–8 (2020). https://doi.org/10.1016/j.apsusc.2020.145652

    Article  CAS  Google Scholar 

  34. V. Rehacek, I. Hotovy, M. Marton, M. Mikolasek, P. Michniak, A. Vincze, A. Kromka, M. Vojs, Voltammetric characterization of boron-doped diamond electrodes for electroanalytical applications. J. Electroanal. Chem. 862, 1–9 (2020). https://doi.org/10.1016/j.jelechem.2020.114020

    Article  CAS  Google Scholar 

  35. J. Sochr, M. Rievaj, Rapid and sensitive electrochemical determination of codeine in pharmaceutical formulations and human urine using a boron-doped diamond film electrode. Electrochim. Acta. 87, 503–510 (2013). https://doi.org/10.1016/j.electacta.2012.09.111

    Article  CAS  Google Scholar 

  36. Š Renáta, B. Kränková, Š Michaela, P. Martinková, L. Janíková, J. Chýlková, M. Vojs, Influence of boron content on electrochemical properties of boron-doped diamond electrodes and their utilization for leucovorin determination. J. Electroanal. Chem. 821, 2–9 (2018). https://doi.org/10.1016/j.jelechem.2018.02.007

    Article  CAS  Google Scholar 

  37. R. Bogdanowicz, M. Ficek, N. Malinowska, S. Gupta, R. Meek, Electrochemical performance of thin free-standing boron-doped diamond nanosheet electrodes. J. Electroanal. Chem. 862, 1–7 (2020). https://doi.org/10.1016/j.jelechem.2020.114016

    Article  CAS  Google Scholar 

  38. H. Dejmkov, V. Ostatn, K. Schwarzov, Recent progress in the applications of boron doped diamond electrodes in electroanalysis of organic compounds and biomolecules e a review a, Ale Simona Baluchov a. Anal. Chim. Acta. 1077, 30–66 (2019). https://doi.org/10.1016/j.aca.2019.05.041

    Article  CAS  Google Scholar 

  39. D. Kuzmanovi, M. Khan, E. Mehmeti, R. Nazir, N. Ramdan, R. Amaizah, D.M. Stankovi, Determination of pyridoxine (vitamin B6) in pharmaceuticals and urine samples using unmodified boron-doped diamond electrode. Diam. Relat. Mater. 64, 184–189 (2016). https://doi.org/10.1016/j.diamond.2016.02.018

    Article  CAS  Google Scholar 

  40. Ľ. Švorc, I. Strežova, K. Kiani, D.M. Stankovi, P. Ot, An advanced approach for electrochemical sensing of ibuprofen in pharmaceuticals and human urine samples using a bare boron-doped diamond electrode. J. Electroanal. Chem. 822, 144–152 (2018). https://doi.org/10.1016/j.jelechem.2018.05.026

  41. S. Pysarevska, L. Dubenska, S. Plotycya, A state-of-the-art approach for facile and reliable determination of benzocaine in pharmaceuticals and biological samples based on the use of miniaturized boron-doped diamond electrochemical sensor. Sens. Actuators B Chem. 270, 9–17 (2018). https://doi.org/10.1016/j.snb.2018.05.012

    Article  CAS  Google Scholar 

  42. L. Švorc, K. Cinková, J. Sochr, M. Vojs, P. Michniak, M. Marton, Sensitive electrochemical determination of amlodipine in pharmaceutical tablets and human urine using a boron-doped diamond electrode. J. Electroanal. Chem. 728, 86–93 (2014). https://doi.org/10.1016/j.jelechem.2014.06.038

    Article  CAS  Google Scholar 

  43. J. Armando, E. Rom, O. Fatibello-filho, Square-wave voltammetric determination of bezafibrate in pharmaceutical formulations using a cathodically pretreated boron-doped diamond electrode. Talanta 103, 201–206 (2013). https://doi.org/10.1016/j.talanta.2012.10.033

    Article  CAS  Google Scholar 

  44. Š Renáta, F. Hlobe, J. Skopalová, P. Canka, L. Janíková, J. Chýlková, Electrochemical oxidation of anti-inflammatory drug meloxicam and its determination using boron doped diamond electrode. J. Electroanal. Chem. 858, 1–10 (2020). https://doi.org/10.1016/j.jelechem.2019.113758

    Article  CAS  Google Scholar 

  45. B. Uslu, B.D. Topal, S.A. Ozkan, Electroanalytical investigation and determination of pefloxacin in pharmaceuticals and serum at boron-doped diamond and glassy carbon electrodes. Talanta 74, 1191–1200 (2008). https://doi.org/10.1016/j.talanta.2007.08.023

    Article  CAS  Google Scholar 

  46. P. Talay, Y. Yardım, Z. Şentürk, Individual and simultaneous electroanalytical sensing of epinephrine and lidocaine using an anodically pretreated boron-doped diamond electrode by square-wave voltammetry. Diam. Relat. Mater. 101, 1–10 (2020). https://doi.org/10.1016/j.diamond.2019.107649

    Article  CAS  Google Scholar 

  47. A.M. Santos, F.C. Vicentini, L.C.S. Figueiredo-filho, P.B. Deroco, O. Fatibello-filho, Flow injection simultaneous determination of acetaminophen and tramadol in pharmaceutical and biological samples using multiple pulse amperometric detection with a boron-doped diamond electrode. Diam. Relat. Mater. 60, 1–8 (2015). https://doi.org/10.1016/j.diamond.2015.10.005

    Article  CAS  Google Scholar 

  48. M. Cristina, G. Santos, C. Ricardo, T. Tarley, L. Henrique, D. Antonia, E. Romão, Evaluation of boron-doped diamond electrode for simultaneous voltammetric determination of hydrochlorothiazide and losartan in pharmaceutical formulations. Sens. Actuators B. Chem. 188, 263–270 (2013). https://doi.org/10.1016/j.snb.2013.07.025

    Article  CAS  Google Scholar 

  49. L. Coustan, B. Daniel, Electrochemical activity of platinum, gold and glassy carbon electrodes in water-in-salt electrolyte. J. Electroanal. Chem. 854, 1–8 (2019). https://doi.org/10.1016/j.jelechem.2019.113538

    Article  CAS  Google Scholar 

  50. T.S.S.K. Naik, B.E.K. Swamy, Pre-treated glassy carbon electrode sensor for catechol: a voltammetric study. J. Electroanal. Chem. 826, 23–28 (2018). https://doi.org/10.1016/j.jelechem.2018.08.022

    Article  CAS  Google Scholar 

  51. T.S.S.K. Naik, S. Saravanan, K.N.S. Saravana, U. Pratiush, P.C. Ramamurthy, A non-enzymatic urea sensor based on the nickel sulfide/graphene oxide modified glassy carbon electrode. Mater. Chem. Phys. 245, 1–7 (2020). https://doi.org/10.1016/j.matchemphys.2020.122798

    Article  CAS  Google Scholar 

  52. B. Sanna, C.D. Mruthyunjayachari, P. Malathesh, Electrochemical sensing based MWCNT-Cobalt tetra substituted sorbaamide phthalocyanine onto the glassy carbon electrode towards the determination of 2-Amino phenol: a voltammetric study. Sens. Actuators B Chem. 301, 1–8 (2019). https://doi.org/10.1016/j.snb.2019.127078

    Article  CAS  Google Scholar 

  53. Y. Xu, K. Huang, Z. Zhu, T. Xia, Effect of glassy carbon, gold, and nickel electrodes on nickel electrocrystallization in an industrial electrolyte. Surf. Coat. Technol. 370, 1–10 (2019). https://doi.org/10.1016/j.surfcoat.2019.04.072

    Article  CAS  Google Scholar 

  54. A. Bagheri, H. Hosseini, Electrochemistry of raloxifene on glassy carbon electrode and its determination in pharmaceutical formulations and human plasma. Bioelectrochemistry 88, 164–170 (2012). https://doi.org/10.1016/j.bioelechem.2012.03.007

    Article  CAS  Google Scholar 

  55. E. Sohouli, A. Homayoun, F. Shahdost-fard, E. Naghian, A glassy carbon electrode modified with carbon nanoonions for electrochemical determination of fentanyl. Mater. Sci. Eng. C. 110, 1–10 (2020). https://doi.org/10.1016/j.msec.2020.110684

    Article  CAS  Google Scholar 

  56. R. Jain, Voltammetric determination of cefpirome at multiwalled carbon nanotube modified glassy carbon sensor based electrode in bulk form and pharmaceutical formulation. Colloids Surf. B Biointerfaces 87, 423–426 (2011). https://doi.org/10.1016/j.colsurfb.2011.06.001

    Article  CAS  Google Scholar 

  57. B. Rezaei, N. Askarpour, A.A. Ensafi, Adsorptive stripping voltammetry determination of methyldopa on the surface of a carboxylated multiwall carbon nanotubes modified glassy carbon electrode in biological and pharmaceutical samples. Colloids Surf. B Biointerfaces. 109, 253–258 (2013). https://doi.org/10.1016/j.colsurfb.2013.04.004

    Article  CAS  Google Scholar 

  58. Y. Wei, C. Shao, J. Liu, Voltammetric determination of ethamsylate in bulk solution and pharmaceutical tablet by nano-material composite-film coated electrode. Mater. Sci. Eng. C. 29, 2442–2447 (2009). https://doi.org/10.1016/j.msec.2009.07.007

    Article  CAS  Google Scholar 

  59. K.K. Reddy, M. Satyanarayana, K.Y. Goud, K.V. Gobi, H. Kim, Carbon nanotube ensembled hybrid nanocomposite electrode for direct electrochemical detection of epinephrine in pharmaceutical tablets and urine. Mater. Sci. Eng. C. 79, 93–99 (2017). https://doi.org/10.1016/j.msec.2017.05.012

    Article  CAS  Google Scholar 

  60. A.K. Baytak, T. Teker, S. Duzmen, M. Aslanoglu, A sensitive determination of terbutaline in pharmaceuticals and urine samples using a composite electrode based on zirconium oxide nanoparticles. Mater. Sci. Eng. C. 67, 125–131 (2016). https://doi.org/10.1016/j.msec.2016.05.008

    Article  CAS  Google Scholar 

  61. K. Tyszczuk-rotko, New voltammetric procedure for determination of thiamine in commercially available juices and pharmaceutical formulation using a lead film electrode. Food Chem. 134, 1239–1243 (2012). https://doi.org/10.1016/j.foodchem.2012.03.017

    Article  CAS  Google Scholar 

  62. K. Tyszczuk-rotko, I. Be, Nafion covered lead film electrode for the voltammetric determination of caffeine in beverage samples and pharmaceutical formulations. Food Chem. 172, 24–29 (2015). https://doi.org/10.1016/j.foodchem.2014.09.056

    Article  CAS  Google Scholar 

  63. E. Tammari, A. Nezhadali, S. Lotfi, H. Veisi, Fabrication of an electrochemical sensor based on magnetic nanocomposite Fe 3O4/B-alanine/Pd modified glassy carbon electrode for determination of nanomolar level of clozapine in biological model and pharmaceutical samples. Sens. Actuators B. Chem. 241, 879–886 (2017). https://doi.org/10.1016/j.snb.2016.11.014

    Article  CAS  Google Scholar 

  64. N.C. Honakeri, S.J. Malode, R.M. Kulkarni, N.P. Shetti, Electrochemical behavior of diclofenac sodium at coreshell nanostructure modified electrode and its analysis in human urine and pharmaceutical samples. Sens. Int. 1, 1–8 (2020). https://doi.org/10.1016/j.sintl.2020.100002

    Article  Google Scholar 

  65. N. Kumar, A. Singh, B. Mizaikoff, S. Singh, C. Kranz, Electrochemical detection and photocatalytic performance of MoS2/TiO2 nanocomposite against pharmaceutical contaminant: paracetamol. Sens. Bio-Sens. Res. 24, 2–10 (2019). https://doi.org/10.1016/j.sbsr.2019.100288

    Article  Google Scholar 

  66. J. Fischer, J. González-martín, H. Dejmková, Voltammetric study of triazole antifungal agent terconazole on sp3 and sp2 carbon-based electrode materials. J. Electroanal. Chem. 863, 1–10 (2020). https://doi.org/10.1016/j.jelechem.2020.114054

    Article  CAS  Google Scholar 

  67. Á. Torrinha, C.G. Amorim, M.C.B.S.M. Montenegro, A.N. Araújo, Biosensing based on pencil graphite electrodes. Talanta. 190, 235–247 (2018). https://doi.org/10.1016/j.talanta.2018.07.086

  68. N. Jadon, R. Jain, A. Pandey, Electrochemical analysis of amlodipine in some pharmaceutical formulations and biological fluid using disposable pencil graphite electrode. J. Electroanal. Chem. 788, 7–13 (2017). https://doi.org/10.1016/j.jelechem.2017.01.055

    Article  CAS  Google Scholar 

  69. D. Giray, S. Karakaya, Differential pulse voltammetric determination of acyclovir in pharmaceutical preparations using a pencil graphite electrode. Mater. Sci. Eng. C. 63, 570–576 (2016). https://doi.org/10.1016/j.msec.2016.02.079

    Article  CAS  Google Scholar 

  70. J.K. Shashikumara, B.E.K. Swamy, A simple sensing approach for the determination of dopamine by poly (Yellow PX4R) pencil graphite electrode. Chem. Data Collect. 1, 1–10 (2020). https://doi.org/10.1016/j.cdc.2020.100366

    Article  CAS  Google Scholar 

  71. A.H. Oghli, A. Soleymanpour, Polyoxometalate/reduced graphene oxide modified pencil graphite sensor for the electrochemical trace determination of paroxetine in biological and pharmaceutical media. Mater. Sci. Eng. C. 108, 1–10 (2020). https://doi.org/10.1016/j.msec.2019.110407

    Article  CAS  Google Scholar 

  72. P. Manjunatha, Y.A. Nayaka, B.K. Chethana, C.C. Vidyasagar, R.O. Yathisha, Development of multi-walled carbon nanotubes modified pencil graphite electrode for the electrochemical investigation of aceclofenac present in pharmaceutical and biological samples. Sens. Bio-Sens. Res. 17, 7–17 (2018). https://doi.org/10.1016/j.sbsr.2017.12.001

    Article  Google Scholar 

  73. D.E. Bayraktepe, Z. Yazan, M. Önal, Sensitive and cost effective disposable composite electrode based on graphite, nano-smectite and multiwall carbon nanotubes for the simultaneous trace level detection of ascorbic acid and acetylsalicylic acid in pharmaceuticals. Talanta 203, 131–139 (2019). https://doi.org/10.1016/j.talanta.2019.05.063

    Article  CAS  Google Scholar 

  74. A. Smart, A. Crew, R. Pemberton, G. Hughes, O. Doran, J.P. Hart, Screen-printed carbon based biosensors and their applications in agri-food safety. Trends Anal. Chem. 127, 1–16 (2020). https://doi.org/10.1016/j.trac.2020.115898

    Article  CAS  Google Scholar 

  75. R. Adriano, D. De Faria, L. Guilherme, D. Heneine, Application of screen-printed carbon electrode as an electrochemical transducer in biosensors. Int. J. Biosens. Bioelectron. Mini. 5, 9–10 (2019). https://doi.org/10.15406/ijbsbe.2019.05.00143

    Article  Google Scholar 

  76. S. Eissa, A comparison of the performance of voltammetric aptasensors for glycated haemoglobin on different carbon nanomaterials-modified screen printed electrodes. Mater. Sci. Eng. C. 101, 423–430 (2019). https://doi.org/10.1016/j.msec.2019.04.001

    Article  CAS  Google Scholar 

  77. A. Smart, A. Crew, R. Pemberton, G. Hughes, O. Doran, J.P. Hart, Screen-printed carbon based biosensors and their applications in agri- food safety. Trends Anal. Chem. 127, 1–16 (2020). https://doi.org/10.1016/j.trac.2020.115898

    Article  CAS  Google Scholar 

  78. A. Sasal, K. Tyszczuk-rotko, Screen-printed sensor for determination of sildenafil citrate in pharmaceutical preparations and biological samples, Microchem. J. 149, 104065 (2019).https://doi.org/10.1016/j.microc.2019.104065

  79. A.A. Khorshed, M. Khairy, C.E. Banks, Voltammetric determination of meclizine antihistamine drug utilizing graphite screen-printed electrodes in physiological medium. J. Electroanal. Chem. 824, 39–44 (2018). https://doi.org/10.1016/j.jelechem.2018.07.029

    Article  CAS  Google Scholar 

  80. J. José, M. Gómez, J. Valenzuela, A. Vera, V. Arancibia, Determination of a natural (17 β-estradiol) and a synthetic (17α-ethinylestradiol) hormones in pharmaceutical formulations and urine by adsorptive stripping voltammetry. Sens. Actuators B. Chem. 297, 1–10 (2019). https://doi.org/10.1016/j.snb.2019.126728

    Article  CAS  Google Scholar 

  81. T. Chen, U. Rajaji, S. Chen, S. Chinnapaiyan, R.J. Ramalingam, Ultrasonics—Sonochemistry facile synthesis of mesoporous WS2 nanorods decorated N-doped RGO network modified electrode as portable electrochemical sensing platform for sensitive detection of toxic antibiotic in biological and pharmaceutical samples. Ultrason. Sonochem. 56, 430–436 (2019). https://doi.org/10.1016/j.ultsonch.2019.04.008

    Article  CAS  Google Scholar 

  82. M. Khairy, A.A. Khorshed, F.A. Rashwan, G.A. Salah, H.M. Abdel-wadood, C.E. Banks, Simultaneous voltammetric determination of antihypertensive drugs nifedipine and atenolol utilizing MgO nanoplatelet modified screen-printed electrodes in pharmaceuticals and human fluids. Sens. Actuators B. Chem. 252, 1045–1054 (2017). https://doi.org/10.1016/j.snb.2017.06.105

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Idris, A.O. et al. (2022). Electrode Materials for Pharmaceuticals Determination. In: Ama, O.M., Sinha Ray, S., Ogbemudia Osifo, P. (eds) Modified Nanomaterials for Environmental Applications. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-85555-0_8

Download citation

Publish with us

Policies and ethics