Skip to main content

Nutrition and Metabolism: Foundations for Animal Growth, Development, Reproduction, and Health

  • Chapter
  • First Online:
Recent Advances in Animal Nutrition and Metabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1354))

Abstract

Consumption of high-quality animal protein plays an important role in improving human nutrition, growth, development, and health. With an exponential growth of the global population, demands for animal-sourced protein are expected to increase by 60% between 2021 and 2050. In addition to the production of food protein and fiber (wool), animals are useful models for biomedical research to prevent and treat human diseases and serve as bioreactors to produce therapeutic proteins. For a high efficiency to transform low-quality feedstuffs and forages into high-quality protein and highly bioavailable essential minerals in diets of humans, farm animals have dietary requirements for energy, amino acids, lipids, carbohydrates, minerals, vitamins, and water in their life cycles. All nutrients interact with each other to influence the growth, development, and health of mammals, birds, fish, and crustaceans, and adequate nutrition is crucial for preventing and treating their metabolic disorders (including metabolic diseases) and infectious diseases. At the organ level, the small intestine is not only the terminal site for nutrient digestion and absorption, but also intimately interacts with a diverse community of intestinal antigens and bacteria to influence gut and whole-body health. Understanding the species and metabolism of intestinal microbes, as well as their interactions with the intestinal immune systems and the host intestinal epithelium can help to mitigate antimicrobial resistance and develop prebiotic and probiotic alternatives to in-feed antibiotics in animal production. As abundant sources of amino acids, bioactive peptides, energy, and highly bioavailable minerals and vitamins, animal by-product feedstuffs are effective for improving the growth, development, health, feed efficiency, and survival of livestock and poultry, as well as companion and aquatic animals. The new knowledge covered in this and related volumes of Adv Exp Med Biol is essential to ensure sufficient provision of animal protein for humans, while helping reduce greenhouse gas emissions, minimize the urinary and fecal excretion of nitrogenous and other wastes to the environment, and sustain animal agriculture (including aquaculture).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAs:

Amino acids

AEMB:

Adv Exp Med Biol

IUGR:

Intrauterine growth restriction

NRC:

National Research Council

SDEP:

Spray-dried egg product

References

  • Ashworth CJ (1991) Effect of pre-mating nutritional status and post-mating progesterone supplementation on embryo survival and conceptus growth in gilts. Anim Reprod Sci 26:311–321

    Article  CAS  Google Scholar 

  • Baker DH (2008) Animal models in nutrition research. J Nutr 138:391–396

    Article  PubMed  CAS  Google Scholar 

  • Baldwin RL (1995) Modeling digestion and metabolism. Chapman & Hall, London, UK

    Google Scholar 

  • Ballantyne JS (2001) Amino acid metabolism. Fish Physiol 20:77–107

    Article  CAS  Google Scholar 

  • Bauman DE, Harvatine KJ, Lock AL (2011) Nutrigenomics, rumen-derived bioactive fatty acids, and the regulation of milk fat synthesis. Annu Rev Nutr 31:299–319

    Article  PubMed  CAS  Google Scholar 

  • Bazer FW, Wu G, Johnson GA, Kim JY, Song GW (2011) Uterine histotroph and conceptus development: select nutrients and secreted phosphoprotein 1 affect MTOR cell signaling in ewes. Biol Reprod 85:1094–1107

    Article  PubMed  CAS  Google Scholar 

  • Bazer FW, Johnson GA, Wu G (2015) Amino acids and conceptus development during the peri-implantation period of pregnancy. Adv Exp Med Biol 843:23–52

    Article  PubMed  CAS  Google Scholar 

  • Bazer FW, Burghardt RC, Johnson GA, Spencer TE, Wu G (2018) Mechanisms for the establishment and maintenance of pregnancy: synergies from scientific collaborations. Biol Reprod 99:225–241

    Article  PubMed  PubMed Central  Google Scholar 

  • Bazer FW, Lamb GC, Wu G (2020) Animal agriculture: challenges, innovations, and sustainability. Elsevier, New York, pp 1–541

    Google Scholar 

  • Bazer FW, Seo H, Johnson GA, Wu G (2021) One-carbon metabolism and development of the conceptus during pregnancy: lessons from studies with sheep and pigs. Adv Exp Med Biol 1285:1–15

    Article  PubMed  Google Scholar 

  • Beaumont M, Blachier F (2020) Amino acids in intestinal physiology and health. Adv Exp Med Biol 1265:1–20

    Article  PubMed  CAS  Google Scholar 

  • Beitz DC (1985) Physiological and metabolic systems important to animal growth: an overview. J Anim Sci 61(Suppl 2):1–20

    Article  Google Scholar 

  • Bergen WG (2007) Contribution of research with farm animals to protein metabolism concepts: a historical perspective. J Nutr 137:706–710

    Article  PubMed  CAS  Google Scholar 

  • Bergen WG (2008) Measuring in vivo intracellular protein degradation rates in animal systems. J Anim Sci 86(Suppl 14):E3–E12

    Article  PubMed  CAS  Google Scholar 

  • Bergen WG (2021) Amino acids in beef cattle nutrition and production. Adv Exp Med Biol 1285:29–42

    Article  PubMed  Google Scholar 

  • Bergen WG (2022) Pigs (Sus Scrofa) in biomedical research. Adv Exp Med Biol 1354:335–343

    Google Scholar 

  • Blachier F, Yin YL, Wu G, Andriamihaja M (2013) Terminal digestion of polypeptides and amino acid absorption by the pig intestine epithelial cells during development. In: Wu G, Yin YL, Blachier F (eds) Nutritional and physiological functions of amino acids in pigs. Springer, New York, pp 51–57

    Chapter  Google Scholar 

  • Boyer PE, D’Costa S, Edwards LL, Milloway M, Susick E, Borst LB, Thakur S, Campbell JM, Crenshaw JD, Polo J, Moeser AJ (2015) Early-life dietary spray-dried plasma influences immunological and intestinal injury responses to later-life Salmonella typhimurium challenge. Br J Nutr 113:783–793

    Google Scholar 

  • Brunton JA, Bertolo RF, Pencharz PB, Ball RO (1999) Proline ameliorates arginine deficiency during enteral but not parenteral feeding in neonatal piglets. Am J Physiol 277:E223–E231

    PubMed  CAS  Google Scholar 

  • Buddington RK, Sangild PT, Hance B, Huang EY, Black DD (2012) Prenatal gastrointestinal development in the pig and responses after preterm birth. J Anim Sci 90(Suppl 4):290–298

    Article  PubMed  Google Scholar 

  • Burrin DG, Mersmann HJ (2005) Biology of metabolism of growing animals. Elsevier, New York

    Google Scholar 

  • Cao Y, Yao J, Sun X, Liu S, Martin GB (2021) Amino acids in the nutrition and production of sheep and goats. Adv Exp Med Biol 1285:63–79

    Article  PubMed  Google Scholar 

  • Cebulla CM, Zelinka CP, Scott MA, Lubow M, Bingham A, Rasiah S, Mahmoud AM, Fischer AJ (2012) A chick model of retinal detachment: cone rich and novel. PLoS One 7:e44257

    Google Scholar 

  • Chalvon-Demersay T, Luise D, Le Floc'h N, Tesseraud S, Lambert W, Bosi P, Trevisi P, Beaumont M, Corrent E (2021) Functional amino acids in pigs and chickens: implication for gut health. Front Vet Sci 8:663727

    Google Scholar 

  • Che DS, Nyingwa PS, Ralinala KM, Maswanganye GMT, Wu G (2021) Amino acids in the nutrition, metabolism, and health of domestic cats. Adv Exp Med Biol 1285:217–231

    Article  PubMed  Google Scholar 

  • Chen JQ, Jin Y, Yang Y, Wu ZL, Wu G (2020) Epithelial dysfunction in lung diseases: effects of amino acids and potential mechanisms. Adv Exp Med Biol 1265:57–70

    Article  PubMed  CAS  Google Scholar 

  • Dai ZL, Wu ZL, Zhu WY, Wu G (2022) Amino acids in microbial metabolism and function. Adv Exp Med Biol 1354:127–143

    Google Scholar 

  • Davis TA, Fiorotto ML, Burrin DG, Reeds PJ, Nguyen HV, P.R. Beckett PR, Vann RC, O’Connor PMJ (2002) Stimulation of protein synthesis by both insulin and amino acids is unique to skeletal muscle in neonatal pigs. Am J Physiol 282:E880-890

    Google Scholar 

  • Davis TA, Suryawan A, Orellana RA, Nguyen HV, Fiorotto ML (2008) Postnatal ontogeny of skeletal muscle protein synthesis in pigs. J Anim Sci 86(Suppl 14):E13-18

    Article  PubMed  CAS  Google Scholar 

  • Davis TA, Suryawan A, Orellana RA, Fiorotto ML, Burrin DG (2010) Amino acids and insulin are regulators of muscle protein synthesis in neonatal pigs. Animal 4:1790–1796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dekaney CM, Wu G, Jaeger LA (2001) Ornithine aminotransferase messenger RNA expression and enzymatic activity in fetal porcine intestine. Pediatr Res 50:104–109

    Article  PubMed  CAS  Google Scholar 

  • Del Curto H, Wu G, Satterfield MC (2013) Nutrition and reproduction: links to epigenetics and metabolic syndrome in offspring. Curr Opin Clin Nutr Metab Care 16:385–391

    Article  Google Scholar 

  • Durante W (2020) Amino acids in circulatory function and health. Adv Exp Med Biol 1265:39–56

    Article  PubMed  CAS  Google Scholar 

  • Ebeling JM, Timmons MB (2012) Recirculating aquaculture systems. In: Tidwell JH (ed) Aquaculture production systems. Wiley, Oxford, pp 245–277

    Google Scholar 

  • FAO (2018) Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture. www.fao.org/documents/card/en/c/19540EN. Accessed 01.11.2018

  • FAO (2020) The state of world fisheries and aquaculture 2020. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2021) Food and agriculture organization of the united nations. Livestock primary. http://www.fao.org/faostat/en/#data/QL/visualize. Accessed 05.31.2021

  • Firkins JL, Yu Z, Morrison M (2007) Ruminal nitrogen metabolism: perspectives for integration of microbiology and nutrition for dairy. J Dairy Sci 90 (E Suppl):E1–E16

    Google Scholar 

  • Flynn NE, Shaw MH, Becker JT (2020) Amino acids in health and endocrine function. Adv Exp Med Biol 1265:97–109

    Article  PubMed  CAS  Google Scholar 

  • Furukawa M, Ito S, Suzuki S, Fuchimoto D, Onishi A, Niimi K, Usami K, Wu G, Bazer FW, Ogasawara K, Watanabe K, Aso H, Nochi T (2020) Organogenesis of ileal Peyer’s patches is initiated prenatally and accelerated postnatally with comprehensive proliferation of B cells in pigs. Front Immunol 11:604674

    Google Scholar 

  • Gao H (2020) Amino acids in reproductive nutrition and health. Adv Exp Med Biol 1265:111–131

    Article  PubMed  CAS  Google Scholar 

  • Gatlin DM III, Barrows FT, Brown P, Dabrowski K, Gaylord TG, Hardy RW, Herman E, Hu G, Krogdahl Å, Nelson R, Overturf K, Rust M, Sealey W, Skonberg D, Souza EJ, Stone D, Wilson R, Wurtele E (2007) Expanding the utilization of sustainable plant products in aquafeeds—a review. Aquac Res 38:551–579

    Article  CAS  Google Scholar 

  • Gilbreath KR, Bazer FW, Satterfield MC, Wu G (2021) Amino acid nutrition and reproductive performance in ruminants. Adv Exp Med Biol 1285:43–61

    Article  PubMed  Google Scholar 

  • Gonzalez ML, Busse NI, Waits CM, Sally E Johnson SE (2020) Satellite cells and their regulation in livestock. J Anim Sci 98:skaa081

    Google Scholar 

  • Govoni KE, Reed SA, Zinn SA (2019) Poor maternal nutrition during gestation: effects on offspring whole-body and tissue-specific metabolism in livestock species. J Anim Sci 97:3142–3152

    Article  PubMed  PubMed Central  Google Scholar 

  • Greene LW (2016) Assessing the mineral supplementation needs in pasture-based beef operations in the Southeastern United States. J Anim Sci 94:5395–5400

    Article  PubMed  CAS  Google Scholar 

  • Grillenberger M, Neumann CG, Murphy SO, Bwibo NO, van't Veer P, Hautvast JG, West CE (2003) Food supplements have a positive impact on weight gain and the addition of animal source foods increases lean body mass of Kenyan schoolchildren. J Nutr 133:3957S–3964S

    Google Scholar 

  • Halloran KM, Stenhouse C, Wu G, Bazer FW (2021) Arginine, agmatine and polyamines: key regulators of conceptus development in mammals. Adv Exp Med Biol 1332:85–105

    Article  PubMed  Google Scholar 

  • Harper PAW, Healy PJ, Dennis JA, O’Brien JJ, Rayward DH (1986) Citrullinaemia as a cause of neurological disease in neonatal Friesian calves. Aust Vet J 63:378–379

    Article  PubMed  CAS  Google Scholar 

  • Hay AN, Farrell K, Leeth CM, Lee K (2022) Use of genome editing techniques to produce transgenic farm animals. Adv Exp Med Biol 1354:279–297

    Google Scholar 

  • He W, Wu G (2020) Metabolism of amino acids in the brain and their roles in regulating food intake. Adv Exp Med Biol 1265:167–185

    Article  PubMed  CAS  Google Scholar 

  • He WL, Li P, Wu G (2021a) Amino acid nutrition and metabolism in chickens. Adv Exp Med Biol 1285:109–131

    Article  PubMed  Google Scholar 

  • He WL, Furukawa K, Toyomizu M, Nochi T, Bailey CA, Wu G (2021b) Interorgan metabolism, nutritional impacts, and safety of dietary L-glutamate and L-glutamine in poultry. Adv Exp Med Biol 1332:107–128

    Article  PubMed  Google Scholar 

  • Herring CM, Bazer FW, Wu G (2021) Amino acid nutrition for optimum growth, development, reproduction, and health of zoo animals. Adv Exp Med Biol 1285:233–253

    Article  PubMed  Google Scholar 

  • Hou YQ, He WL, Hu SD, Wu G (2019) Composition of polyamines and amino acids in plant-source foods for human consumption. Amino Acids 51:1153–1165

    Article  PubMed  CAS  Google Scholar 

  • Hou YQ, Hu SD, Li XY, He WL, Wu G (2020) Amino acid metabolism in the liver: nutritional and physiological significance. Adv Exp Med Biol 1265:21–37

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Jia Y, Li Q, Burris WR, Bridges PJ, Matthews JC (2018) Hepatic glutamate transport and glutamine synthesis capacities are decreased in finished vs. growing beef steers, concomitant with increased GTRAP3-18 content. Amino Acids 50:513–525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hurley WL (2019) Mammary gland development in swine: embryo to early lactation. Animal 13:S11-19

    Article  PubMed  CAS  Google Scholar 

  • Ireland JJ, Roberts RM, Palmer GH, Bauman DE, Bazer FW (2008) A commentary on domestic animals as dual-purpose models that benefit agricultural and biomedical research. J Anim Sci 86:2797–2805

    Article  PubMed  CAS  Google Scholar 

  • Jamin A, D’Inca R, Le Floc’h N, Kuster A, Orsonneau J-L, Darmaun D, Boudry G, Le Huërou-Luron I, Sève B, Gras-Le Guen C (2010) Fatal effects of a neonatal high-protein diet in low-birth-weight piglets used as a model of intrauterine growth restriction. Neonatology 97:321–328

    Article  PubMed  CAS  Google Scholar 

  • Ji Y, Wu ZL, Dai ZL, Wang XL, Li J, Wang BG, Wu G (2017) Fetal and neonatal programming of postnatal growth and feed efficiency in swine. J Anim Sci Biotechnol 8:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia S, Li XY, He WL, Wu G (2021) Oxidation of energy substrates in tissues of fish: metabolic significance and implications for gene expression and carcinogenesis. Adv Exp Med Biol 1332:67–83

    Article  PubMed  Google Scholar 

  • Jia S, Li XY, He WL, Wu G (2022) Protein-sourced feedstuffs for aquatic animals in nutrition research and aquaculture. Adv Exp Med Biol 1354:237–261

    Google Scholar 

  • Johnson IR, Ball RO, Baracos VE, Field CJ (2006) Glutamine supplementation influences immune development in the newly weaned piglet. Dev Comp Immunol 30:1191–1202

    Article  PubMed  CAS  Google Scholar 

  • Kim SW, Hurley WL, Wu G, Ji F (2009) Ideal amino acid balance for sows during gestation and lactation. J Anim Sci 87:E123-132

    Article  PubMed  CAS  Google Scholar 

  • Koch BJ, Hungate BA, Price LB (2017) Food-animal production and the spread of antibiotic resistance: the role of ecology. Front Ecol Environ 15:309–318

    Article  Google Scholar 

  • Kwon H, Spencer TE, Bazer FW, Wu G (2003a) Developmental changes of amino acids in ovine fetal fluids. Biol Reprod 68:1813–1820

    Article  PubMed  CAS  Google Scholar 

  • Kwon H, Wu G, Bazer FW, Spencer TE (2003b) Developmental changes in polyamine levels and synthesis in the ovine conceptus. Biol Reprod 69:1626–1634

    Article  PubMed  CAS  Google Scholar 

  • Kwon H, Wu G, Meininger CJ, Bazer FW, Spencer TE (2004a) Developmental changes in nitric oxide synthesis in the ovine conceptus. Biol Reprod 70:679–686

    Article  PubMed  CAS  Google Scholar 

  • Kwon H, Ford SP, Bazer FW, Spencer TE, Nathanielsz PW, Nijland MJ, Hess BW, Wu G (2004b) Maternal undernutrition reduces concentrations of amino acids and polyamines in ovine maternal and fetal plasma and fetal fluids. Biol Reprod 71:901–908

    Article  PubMed  CAS  Google Scholar 

  • Larger E, Marre M, Corvol P, Gasc JM (2004) Hyperglycemia-induced defects in angiogenesis in the chicken chorioallantoic membrane model. Diabetes 53:752–761

    Article  PubMed  CAS  Google Scholar 

  • Lassala A, Bazer FW, Cudd TA, Li P, Li XL, Satterfield MC, Spencer TE, Wu G (2009) Intravenous administration of L-citrulline to pregnant ewes is more effective than L-arginine for increasing arginine availability in the fetus. J Nutr 139:660–665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lassala A, Bazer FW, Cudd TA, Datta S, Keisler DH, Satterfield MC, Spencer TE, Wu G (2010) Parenteral administration of L-arginine prevents fetal growth restriction in undernourished ewes. J Nutr 140:1242–1248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lassala A, Bazer FW, Cudd TA, Datta S, Keisler DH, Satterfield MC, Spencer TE, Wu G (2011) Parenteral administration of L-arginine enhances fetal survival and growth in sheep carrying multiple pregnancies. J Nutr 141:849–855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee B, Dennis JA, Healy PJ, Mull B, Pastore L, Yu H, Aguilar-Cordova E, O’Brien W, Reeds P, Beaudet AL (1999) Hepatocyte gene therapy in a large animal: a neonatal bovine model of citrullinemia. Proc Natl Acad Sci USA 96:3981–3986

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li P, Wu G (2020) Composition of amino acids and related nitrogenous nutrients in feedstuffs for animal diets. Amino Acids 52:523–542

    Article  PubMed  CAS  Google Scholar 

  • Li P, Wu G (2022) Functional molecules of intestinal mucosal products in animal nutrition and health. Adv Exp Med Biol 1354:263–277

    Google Scholar 

  • Li P, Yin YL, Li DF, Kim SW, Wu G (2007) Amino acids and immune function. Br J Nutr 98:237–252

    Article  PubMed  CAS  Google Scholar 

  • Li XY, Zheng SX, Wu G (2020a) Amino acid metabolism in the kidneys: nutritional and physiological significance. Adv Exp Med Biol 1265:71–95

    Article  PubMed  CAS  Google Scholar 

  • Li XY, Zheng SX, Ma XK, Cheng KM, Wu G (2020b) Effects of dietary starch and lipid levels on the protein retention and growth of largemouth bass (Micropterus salmoides). Amino Acids 52:999–1016

    Article  PubMed  CAS  Google Scholar 

  • Li XY, Zheng SX, Ma XK, Cheng KM, Wu G (2020c) Effects of dietary protein and lipid levels on growth performance, feed utilization, and liver histology of largemouth bass (Micropterus salmoides). Amino Acids 52:1043–1061

    Article  PubMed  CAS  Google Scholar 

  • Li XL, Zheng SX, Jia SC, Song F, Zhou CP, Wu G (2020d) Oxidation of energy substrates in tissues of largemouth bass (Micropterus salmoides). Amino Acids 52:1017–1032

    Article  PubMed  CAS  Google Scholar 

  • Li XY, Zheng SX, Han T, Song F, Wu G (2020e) Effects of dietary protein intake on the oxidation of glutamate, glutamine, glucose and palmitate in tissues of largemouth bass (Micropterus salmoides) Amino Acids 52:1491–1503

    Google Scholar 

  • Li XL, Zheng SX, Wu G (2020f) Nutrition and metabolism of glutamate and glutamine in fish. Amino Acids 52:671–691

    Article  PubMed  CAS  Google Scholar 

  • Li XY, Zheng SX, Wu G (2021a) Nutrition and functions of amino acids in fish. Adv Exp Med Biol 1285:133–168

    Article  PubMed  Google Scholar 

  • Li XY, Han T, Zheng SX, Wu G (2021b) Nutrition and functions of amino acids in aquatic crustaceans. Adv Exp Med Biol 1285:169–198

    Article  PubMed  Google Scholar 

  • Li XY, Zheng SX, Ma XK, Cheng KM, Wu G (2021c) Use of alternative protein sources for fishmeal replacement in the diet of largemouth bass (Micropterus salmoides). Part I: effects of poultry by-product meal and soybean meal on growth, feed utilization, and health. Amino Acids 53:33–47

    Article  PubMed  CAS  Google Scholar 

  • Li XY, Zheng SX, Cheng KM, Ma XK, Wu G (2021d) Use of alternative protein sources for fishmeal replacement in the diet of largemouth bass (Micropterus salmoides). Part II: effects of supplementation with methionine or taurine on growth, feed utilization, and health. Amino Acids 53:49–62

    Article  PubMed  CAS  Google Scholar 

  • Li P, He WL, Wu G (2021e) Composition of amino acids in foodstuffs for humans and animals. Adv Exp Med Biol 1332:189–209

    Article  PubMed  Google Scholar 

  • Li XY, Han T, Zheng SX, Wu G (2022) Hepatic glucose metabolism and its disorders in fish. Adv Exp Med Biol 1354:207–236

    Google Scholar 

  • Lim W, Kim HS, Jeong W, Ahn SE, Kim J, Kim YB, Kim MA, Kim MK, Chung HH, Song YS, Bazer FW, Han JY, Song G (2012) SERPINB3 in the chicken model of ovarian cancer: a prognostic factor for platinum resistance and survival in patients with epithelial ovarian cancer. PLoS One 7:e49869

    Google Scholar 

  • Matthews JC, Huang J, Rentfrow G (2016) High-affinity glutamate transporter and glutamine synthetase content in longissimus dorsi and adipose tissues of growing Angus steers differs among suckling, weanling, backgrounding, and finishing production stages. J Anim Sci 94:1267–1275

    Article  PubMed  CAS  Google Scholar 

  • McCoard S, Sales F, Wards N, Sciascia Q, Oliver M, Koolaard J, van der Linden D (2013) Parenteral administration of twin-bearing ewes with L-arginine enhances the birth weight and brown fat stores in sheep. Springerplus 2:684

    Article  PubMed  PubMed Central  Google Scholar 

  • McCoard AS, Wards N, Koolaard J, Salerno MS (2014) The effect of maternal arginine supplementation on the development of the thermogenic program in the ovine fetus. Anim Prod Sci 54:1843–1847

    Google Scholar 

  • McCoard SA, Sales FZ, Sciascia QL (2016) Amino acids in sheep production. Front Biosci E8:264–288

    Article  CAS  Google Scholar 

  • Monzani PS, Adona PR, Ohashi OM, Meirelles FV, Wheeler MB (2016) Transgenic bovine as bioreactors: challenges and perspectives. Bioengineered 7:123–131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Monzani PS, Adona PR, Long SA, Wheeler MB (2022) Cows as bioreactors for the production of nutritionally and biomedically significant proteins. Adv Exp Med Biol 1354:299–314

    Google Scholar 

  • Moses RM, Kramer AC, Seo H, Wu G, Johnson GA, Bazer FW (2022) A role for fructose metabolism in development of sheep and pig conceptuses. Adv Exp Med Biol 1354:49–62

    Google Scholar 

  • Moughan PJ (2003) Amino acid availability: aspects of chemical analysis and bioassay methodology. Nutr Res Rev 16:127–141

    Article  PubMed  CAS  Google Scholar 

  • Mu C, Pi Y, Zhang C, Zhu WY (2022) Microbiomes in the intestine of developing pigs: implications for nutrition and health. Adv Exp Med Biol 1354:161–176

    Google Scholar 

  • Murphy SP, Allen LH (2003) Nutritional importance of animal source foods. J Nutr 133:3932S-3935S

    Article  PubMed  CAS  Google Scholar 

  • Myers AJ, Goodband RD, Tokach MD, Dritz SS, DeRouchey JM, Nelssen JL (2014) The effects of porcine intestinal mucosa protein sources on nursery pig growth performance. J Anim Sci 92:783–792

    Google Scholar 

  • National Research Council (NRC, 2002) Scientific Advances in Animal Nutrition. National Academies Press, Washington, DC

    Google Scholar 

  • National Research Council NRC (2012) Nutrient Requirements of Swine. National Academies Press, Washington, DC

    Google Scholar 

  • Oberbauer AM, Larsen JA (2021) Amino acids in dog nutrition and health. Adv Exp Med Biol 1285:199–216

    Article  PubMed  Google Scholar 

  • Odle J, Jacobi SK, Boyd RD, Bauman DE, Anthony RV, Bazer FW, Lock AL, Serazin AC (2017) The potential impact of animal science research on global maternal and child nutrition and health: a landscape review. Adv Nutr 8:362–381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Quinn PR, Knabe DA, Wu G (2002) Arginine catabolism in lactating porcine mammary tissue. J Anim Sci 80:467–474

    Article  PubMed  CAS  Google Scholar 

  • Paudel S, Wu G, Wang XQ (2021) Amino acids in cell signaling: regulation and function. Adv Exp Med Biol 1332:17–33

    Article  PubMed  Google Scholar 

  • Pereira EPV, van Tilburg MF, Florean EOPT, Guedes MIF (2019) Egg yolk antibodies (IgY) and their applications in human and veterinary health: A review. Int Immunopharmacol 73:293–303

    Google Scholar 

  • Pond WG, Strachan DN, Sinha YN, Walker EF Jr, Dunn JA, Barnes RH (1969) Effect of protein deprivation of swine during all or part of gestation on birth weight, postnatal growth rate and nucleic acid content of brain and muscle of progeny. J Nutr 99:61–67

    Article  PubMed  CAS  Google Scholar 

  • Posey EA, Bazer FW, Wu G (2021) Amino acids and their metabolites for improving human exercising performance. Adv Exp Med Biol 1332:151–166

    Article  PubMed  Google Scholar 

  • Reeds PJ, Burrin DG, Jahoor F, Wykes L, Henry J, Frazer EM (1996) Enteral glutamate is almost completely metabolized in first pass by the gastrointestinal tract of infant pigs. Am J Physiol 270:E413–E418

    Google Scholar 

  • Reeds PJ, Burrin DG, Stoll B, Jahoor F, Wykes L, Henry J, Frazer ME (1997) Enteral glutamate is the preferential source for mucosal glutathione synthesis in fed piglets. Am J Physiol 273:E408–E415

    PubMed  CAS  Google Scholar 

  • Rehfeldt C, Nissen PM, Kuhn G, Vestergaard M, Ender K, Oksbjerg N (2004) Effects of maternal nutrition and porcine growth hormone (pGH) treatment during gestation on endocrine and metabolic factors in sows, fetuses and pigs, skeletal muscle development, and postnatal growth. Domest Anim Endocrinol 27:267–285

    Article  PubMed  CAS  Google Scholar 

  • Ren WK, Bin P, Yin YL, Wu G (2020) Impacts of amino acids on the intestinal defensive system. Adv Exp Med Biol 1265:133–151

    Article  PubMed  CAS  Google Scholar 

  • Reynolds LP, Borowicz PP, Caton JS, Crouse MS, Dahlen CR, Ward AK (2019) Developmental programming of fetal growth and development. Vet Clin North Am Food Anim Pract 35:229–247

    Article  PubMed  Google Scholar 

  • Reynolds LP, McLean KJ, Kacie L, McCarthy KL, Diniz WJS, Menezes ACB, Forcherio JC, Scott RR, Ward AK, Dahlen CR, Caton JS (2022) Nutritional regulation of embryonic survival, growth and development. Adv Exp Med Biol 1354:63–76

    Google Scholar 

  • Rhoads JM, Wu G (2009) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37:111–122

    Article  CAS  Google Scholar 

  • Rhoads JM, Plunkett E, Galanko J, Lichtman S, Taylor L, Maynor A, Weiner T, Freeman K, Guarisco JL, Wu G (2005) Serum citrulline correlates with enteral tolerance and bowel length in infants with short bowel syndrome. J Pediatr 146:542–547

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues LA, Wellington MO, González-Vega JC, Htoo JK, Van Kessel AG, Columbus DA (2021) Functional amino acid supplementation, regardless of dietary protein content, improves growth performance and immune status of weaned pigs challenged with Salmonella Typhimurium. J Anim Sci 99:skaa365

    Google Scholar 

  • Rossi W Jr, Allen KM, Habte-Tsion H-M, Meesala K-M (2021) Supplementation of glycine, prebiotic, and nucleotides in soybean meal-based diets for largemouth bass (Micropterus salmoides): effects on production performance, whole-body nutrient composition and retention, and intestinal histopathology. Aquaculture 532:736031

    Google Scholar 

  • Ryan P, Riechman SE, Fluckey JD, Wu G (2021) Interorgan metabolism of amino acids in health and disease. Adv Exp Med Biol 1332:129–149

    Article  Google Scholar 

  • Sah N, Wu G, Bazer FW (2021) Regulation of gene expression by amino acids in animal cells. Adv Exp Med Biol 1332:1–15

    Article  PubMed  Google Scholar 

  • Sales F, Sciascia Q, van der Linden DS, Wards NJ, Oliver MH, McCoard SA (2016) Intravenous maternal arginine administration to twin-bearing ewes, during late pregnancy, is associated with increased fetal muscle mTOR abundance and postnatal growth in twin female lambs. J Anim Sci 94:2519–2531

    Article  PubMed  CAS  Google Scholar 

  • Sandoval C, Wu G, Smith SB, Dunlap KA, Satterfield MC (2020) Maternal nutrient restriction and skeletal muscle development: consequences for postnatal health. Adv Exp Med Biol 1265:153–165

    Article  PubMed  CAS  Google Scholar 

  • Sarkar TR, McNeal CJ, Meininger CJ, Niu YB, Mallick BK, Carroll RJ, Wu G (2021) Dietary intakes of amino acids and other nutrients by adult humans. Adv Exp Med Biol 1332:211–227

    Article  PubMed  Google Scholar 

  • Satterfield MC, Gao HJ, Li XL, Wu G, Johnson GA, Spencer TE, Bazer FW (2010) Select nutrients and their associated transporters are increased in the ovine uterus following early progesterone administration. Biol Reprod 82:224–231

    Article  PubMed  CAS  Google Scholar 

  • Satterfield MC, Dunlap KA, Keisler DH, Bazer FW, Wu G (2012) Arginine nutrition and fetal brown adipose tissue development in diet-induced obese sheep. Amino Acids 43:1593–1603

    Article  Google Scholar 

  • Satterfield MC, Dunlap KA, Keisler DH, Bazer FW, Wu G (2013) Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep. Amino Acids 45:489–499

    Article  PubMed  CAS  Google Scholar 

  • Seo H, Johnson GA, Bazer FW, Wu G, McLendon BA, Kramer AC (2021) Cell-specific expression of enzymes for serine biosynthesis and glutaminolysis in farm animals. Adv Exp Med Biol 1285:17–28

    Article  PubMed  Google Scholar 

  • Shen JZ, Wu G, Guo SD (2021) Amino acids in autophagy: regulation and function. Adv Exp Med Biol 1332:51–66

    Article  PubMed  Google Scholar 

  • Smith BI, Govoni KE (2022) Use of agriculturally important animals as models in biomedical research. Adv Exp Med Biol 1354:315–333

    Google Scholar 

  • Solano F (2020) Metabolism and functions of amino acids in the skin. Adv Exp Med Biol 1265:187–199

    Article  PubMed  CAS  Google Scholar 

  • Stenhouse C, Seo H, Wu G, Johnson GA, Bazer FW (2022a) Insights into the regulation of implantation and placentation in humans, rodents, sheep, and pigs. Adv Exp Med Biol 1354:25–48

    Google Scholar 

  • Stenhouse C, Suva LJ, Gaddy D, Wu G, Bazer FW (2022b) Phosphate, calcium, and vitamin D: key regulators of fetal and placental development in mammals. Adv Exp Med Biol 1354:77–107

    Google Scholar 

  • Swaggerty CL, Bortoluzzi C, Lee A, Eyng C, Pont GD, Kogut MH (2022) Potential replacements for antibiotic growth promoters in poultry: interactions at the gut level and their impact on host immunity. Adv Exp Med Biol 1354:145–159

    Google Scholar 

  • Tsang HG, Rashdan NA, Whitelaw CBA, Corcoran BM, Summers KM, MacRae VE (2016) Large animal models of cardiovascular disease. Cell Biochem Func 34:113–132

    Google Scholar 

  • Ulshafer RJ, Allen CB (1985) Hereditary retinal degeneration in the Rhode Island Red chicken: ultrastructural analysis. Exp Eye Res 40:865–877

    Article  PubMed  CAS  Google Scholar 

  • United Nations (2021) https://www.un.org/development. Accessed June 20, 2021

  • United Nations Food and Agriculture Organization (FAO 2017) The State of Food Security and Nutrition in the World. http://www.fao.org/3/a-I7695e.pdf. Accessed 01.11.2018

  • United Nations Food and Agriculture Organization (FAO 2020a) http://www.fao.org/faostat/en/#data/QA. Accessed May 31, 2021

  • UNICEF, World Health Organization (FAO), and The World Bank (2018) Levels and trends in child malnutrition. http://data.unicef.org/wp-content/uploads/2018/05/JME-2018-brochure.pdf. Accessed 01.11.2018

  • Vilches-Moure JG (2019) Embryonic chicken (Gallus gallus domesticus) as a model of cardiac biology and development. Comp Med 69:184–203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walters EM, Wells KD, Bryda EC, Schommer S, Prather RS (2017) Swine models, genomic tools and services to enhance our understanding of human health and diseases. Lab Anim 46:167–172

    Google Scholar 

  • Wang CY, Yeh HI, Chang TJ, Hsiao HJ, Tsai MS, Tsai SM, Liu PA (2011) Attenuation of nitric oxide bioavailability in porcine aortic endothelial cells by classical swine fever virus. Arch Virol 156:1151–1160

    Article  PubMed  CAS  Google Scholar 

  • Wang JJ, Wu ZL, Li DF, Li N, Dindot SV, Satterfield MC, Bazer FW, Wu G (2012) Nutrition, epigenetics, and metabolic syndrome. Antioxid Redox Signal 17:282–301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang WW, Dai ZL, Wu ZL, Lin G, Jia SC, Hu SD, Dahanayaka S, Wu G (2014) Glycine is a nutritionally essential amino acid for maximal growth of milk-fed young pigs. Amino Acids 46:2037–2045

    Article  PubMed  CAS  Google Scholar 

  • Wang XQ, Johnson GA, Burghardt RC, Wu G, Bazer FW (2015a) Uterine histotroph and conceptus development. I. Cooperative effects of arginine and secreted phosphoprotein 1 on proliferation of ovine trophectoderm cells via activation of the PDK1-Akt/PKB-TSC2-MTORC1 signaling cascade. Biol Reprod 92:51

    Google Scholar 

  • Wang XQ, Burghardt RC, Romero JJ, Hansen TR, Wu G, Bazer FW (2015b) Functional roles of arginine during the peri-implantation period of pregnancy. III. Arginine stimulates proliferation and interferon tau production by ovine trophectoderm cells via nitric oxide and polyamine-TSC2-MTOR signaling pathways. Biol Reprod 92:75

    Google Scholar 

  • Wang XQ, Johnson GA, Burghardt RC, Wu G, Bazer FW (2016) Uterine histotroph and conceptus development. II. Arginine and secreted phosphoprotein 1 cooperatively stimulate migration and adhesion of ovine trophectoderm cells via focal adhesion-MTORC2 mediated cytoskeleton reorganization. Biol Reprod 95:71

    Google Scholar 

  • Wang B, Sun SQ, Liu MY, Chen H, Liu N, Wu ZL, Wu G, Dai ZL (2020) Dietary L-tryptophan supplementation regulates colonic serotonin homeostasis and inhibits gut inflammation in mice with dextran sodium sulfate-induced colitis. J Nutr 150:1966–1976

    Article  PubMed  Google Scholar 

  • Webb KE Jr, Matthews JC, DiRienzo DB (1992) Peptide absorption: a review of current concepts and future perspectives. J Anim Sci 70:3248–3257

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson AD, Meeker DL (2021) How agricultural rendering supports sustainability and assists livestock’s ability to contribute more than just food. Anim Front 11:24–34

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson EO (1992) The Diversity of Life. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Wu G (1996) Effects of concanavalin A and phorbol myristate acetate on glutamine metabolism and proliferation of porcine intraepithelial lymphocytes. Comp Biochem Physiol A 114:363–368

    Article  CAS  Google Scholar 

  • Wu G (1997) Synthesis of citrulline and arginine from proline in enterocytes of postnatal pigs. Am J Physiol 272:G1382–G1390

    PubMed  CAS  Google Scholar 

  • Wu G (2010) Functional amino acids in growth, reproduction and health. Adv Nutr 1:31–37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu G (2018) Principles of Animal Nutrition. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Wu G (2020a) Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino Acids 52:329–360

    Google Scholar 

  • Wu G (2020b) Management of metabolic disorders (including metabolic diseases) in ruminant and nonruminant animals. In: Lamb GC, Wu G, Bazer FW (eds) Animal agriculture: challenges, innovations, and sustainability. Elsevier, New York, pp 471–492

    Chapter  Google Scholar 

  • Wu G (2020c) Metabolism and functions of amino acids in sense organs. Adv Exp Med Biol 1265:201–217

    Article  PubMed  CAS  Google Scholar 

  • Wu G (2021) Amino acids: biochemistry and nutrition, 2nd edn. CRC Press, Boca Raton, Florida

    Book  Google Scholar 

  • Wu G, Knabe DA (1994) Free and protein-bound amino acids in sow’s colostrum and milk. J Nutr 124:415–424

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu G, Bazer FW (2019) Application of new biotechnologies for improvements in swine nutrition and pork production. J Anim Sci Biotechnol 10:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu G, Knabe DA, Flynn NE (1994) Synthesis of citrulline from glutamine in pig enterocytes. Biochem J 299:115–121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu G, Bazer FW, Tuo W, Flynn SP (1996) Unusual abundance of arginine and ornithine in porcine allantoic fluid. Biol Reprod 54:1261–1265

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Ott TL, Knabe DA, Bazer FW (1999) Amino acid composition of the fetal pig. J Nutr 129:1031–1038

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Flynn NE, Knabe DA (2000) Enhanced intestinal synthesis of polyamines from proline in cortisol-treated piglets. Am J Physiol 279:E395–E402

    CAS  Google Scholar 

  • Wu G, Haynes TE, Yan W, Meininger CJ (2001) Presence of glutamine:fructose-6-phosphate amidotransferase for glucosamine-6-phosphate synthesis in endothelial cells: effects of hyperglycaemia and glutamine. Diabetologia 44:196–202

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Jaeger LA, Bazer FW, Rhoads JM (2004) Arginine deficiency in premature infants: biochemical mechanisms and nutritional implications. J Nutr Biochem 15:442–451

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Hu J, Johnson GA, Spencer TE (2005) Polyamine synthesis from proline in the developing porcine placenta. Biol Reprod 72:842–850

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Wallace JM, Spencer TE (2006) Intrauterine growth retardation: implications for the animal sciences. J Anim Sci 84:2316–2337

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Dai ZL, Li DF, Wang JJ, Wu ZL (2014a) Amino acid nutrition in animals: protein synthesis and beyond. Annu Rev Anim Biosci 2:387–417

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Fanzo J, Miller DD, Pingali P, Post M, Steiner JL, Thalacker-Mercer AE (2014b) Production and supply of high-quality food protein for human consumption: sustainability, challenges and innovations. Ann NY Acad Sci 1321:1–19

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Cross HR (2014c) Land-based production of animal protein: impacts, efficiency, and sustainability. Ann NY Acad Sci 1328:18–28

    Article  PubMed  Google Scholar 

  • Wu G, Meininger CJ, McNeal CJ, Bazer FW, Rhoads JM (2021) Role of L-arginine in nitric oxide synthesis and health in humans. Adv Exp Med Biol 1332:167–188

    Article  PubMed  Google Scholar 

  • Wu G, Bazer FW, Satterfield MC, Gilbreath KR, Erin A. Posey, and Sun YX (2022) L-Arginine nutrition and metabolism in ruminants. Adv Exp Med Biol 1354:177–206

    Google Scholar 

  • Yang Y, He Y, Jin Y, Wu G, Wu ZL (2021) Amino acids in endoplasmic reticulum stress and redox signaling. Adv Exp Med Biol 1332:35–49

    Article  PubMed  Google Scholar 

  • Zhang S, Wong EA, Gilbert ER (2015) Bioavailability of different dietary supplemental methionine sources in animals. Front Biosci E7:478–490

    CAS  Google Scholar 

  • Zhang Q, Hou YQ, Bazer FW, He WL, Posey EA, Wu G (2021) Amino acids in swine nutrition and production. Adv Exp Med Biol 1285:81–107

    Article  PubMed  Google Scholar 

  • Zhu C, Jiang ZY, Johnson GA, Bazer FW, Wu G (2022) Nutritional and physiological regulation of water transport in the conceptus. Adv Exp Med Biol 1354:109–125

    Google Scholar 

  • Ziche M, Morbidelli L, Masini E, Amerini S, Granger HJ, Maggi CA, Geppetti P, Ledda F (1994) Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J Clin Invest 94:2036–2044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Work in the author’s laboratory was supported by Agriculture and Food Research Initiative Competitive Grants (2014-67015-21770, 2015-67015-23276, 2016-67015-24958, 2018-505706-95720, and 2021-67015-34534) from the USDA National Institute of Food and Agriculture, and Texas A&M AgriLife Research (H-8200). The author thanks Dr. Fuller W. Bazer for helpful comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, G. (2022). Nutrition and Metabolism: Foundations for Animal Growth, Development, Reproduction, and Health. In: Wu, G. (eds) Recent Advances in Animal Nutrition and Metabolism. Advances in Experimental Medicine and Biology, vol 1354. Springer, Cham. https://doi.org/10.1007/978-3-030-85686-1_1

Download citation

Publish with us

Policies and ethics