Skip to main content

Protein-Sourced Feedstuffs for Aquatic Animals in Nutrition Research and Aquaculture

  • Chapter
  • First Online:
Recent Advances in Animal Nutrition and Metabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1354))

Abstract

Aquatic animals have particularly high requirements for dietary amino acids (AAs) for health, survival, growth, development, and reproduction. These nutrients are usually provided from ingested proteins and may also be derived from supplemental crystalline AA. AAs are the building blocks of protein (a major component of tissue growth) and, therefore, are the determinants of the growth performance and feed efficiency of farmed fish. Because protein is generally the most expensive ingredient in aqua feeds, much attention has been directed to ensure that dietary protein feedstuff is of high quality and cost-effective for feeding fish, crustaceans, and other aquatic animals worldwide. Due to the rapid development of aquaculture worldwide and a limited source of fishmeal (the traditionally sole or primary source of AAs for aquatic animals), alternative protein sources must be identified to feed aquatic animals. Plant-sourced feedstuffs for aquatic animals include soybean meal, extruded soybean meal, fermented soybean meal, soybean protein concentrates, soybean protein isolates, leaf meal, hydrolyzed plant protein, wheat, wheat hydrolyzed protein, canola meal, cottonseed meal, peanut meal, sunflower meal, peas, rice, dried brewers grains, and dried distillers grains. Animal-sourced feedstuffs include fishmeal, fish paste, bone meal, meat and bone meal, poultry by-product meal, chicken by-product meal, chicken visceral digest, spray-dried poultry plasma, spray-dried egg product, hydrolyzed feather meal, intestine-mucosa product, peptones, blood meal (bovine or poultry), whey powder with high protein content, cheese powder, and insect meal. Microbial sources of protein feedstuffs include yeast protein and single-cell microbial protein (e.g., algae); they have more balanced AA profiles than most plant proteins for animal feeding. Animal-sourced ingredients can be used as a single source of dietary protein or in complementary combinations with plant and microbial sources of proteins. All protein feedstuffs must adequately provide functional AAs for aquatic animals.

Jia S and Li X contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Amino acid

CP:

Crude protein

EAA:

Nutritionally essential amino acid

GDH:

Glutamate dehydrogenase

GOT:

Glutamate–oxaloacetate transaminase

GPT:

Glutamate–pyruvate transaminase

HSB:

Hybrid-striped bass

LMB:

Largemouth bass

NEAA:

Nutritionally nonessential amino acid

NRC:

National Research Council

RAS:

Recirculating aquaculture system

References

  • Abdel-Tawwab M, Ahmad MH, Khattab YAE, Shalaby AME (2010) Effect of dietary protein level, initial body weight, and their interaction on the growth, feed utilization, and physiological alterations of Nile tilapia, Oreochromis niloticus (L.). Aquaculture 298:267–274

    Article  CAS  Google Scholar 

  • Ahmed N, Turchini GM (2021) Recirculating aquaculture systems (RAS): environmental solution and climate change adaptation. J Cleaner Prod 297:126604

    Google Scholar 

  • Albrecht J, Norenberg MD (2006) Glutamine: a Trojan horse in ammonia neurotoxicity. Hepatology 44:788–794

    Article  PubMed  CAS  Google Scholar 

  • Anderson RJ, Kienholz EW, Flickinger SA (1981) Protein requirements of smallmouth bass and largemouth bass. J Nutr 111:1085–1097

    Article  PubMed  CAS  Google Scholar 

  • Andersen S, Waagbø R, Espe M (2016) Functional amino acids in fish health and welfare. Front Biosci 8:143–169

    Article  Google Scholar 

  • Baeverfjord G, Krogdahl A (1996) Development and regression of soybean meal induced enteritis in Atlantic salmon, Salmo salar L., distal intestine: a comparison with the intestines of fasted fish. J Fish Dis 19:375–387

    Article  Google Scholar 

  • Bai J, Li S (2018) Development of largemouth bass (Micropterus salmoides) culture. In: Gui JF, Tang Q, Li Z, Liu Z, De Silva SS (eds) Aqualculture in China: success stories and modern trends. Wiley, Oxford, pp 421–429

    Chapter  Google Scholar 

  • Ballantyne JS (2001) Amino acid metabolism. Fish Physiol 20:77–107

    Article  CAS  Google Scholar 

  • Bartell SM, Batal AB (2007) The effect of supplemental glutamine on growth performance, development of the gastrointestinal tract, and humoral immune response of broilers. Poult Sci 86:1940–1947

    Article  PubMed  CAS  Google Scholar 

  • Berge GM, Grisdale-Helland B, Helland SJ (1999) Soy protein concentrate in diets for Atlantic halibut (Hippoglossus hippoglossus). Aquaculture 178:139–148

    Article  CAS  Google Scholar 

  • Berk Z (1992) Technology of production of edible flours and protein products from soybeans. Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  • Bhaskar M (1994) Changes in the liver protein fractions of Tilapia mossambica (Peters) during acclimation to low and high pH media. Fish Res 19:179–186

    Article  Google Scholar 

  • Blaufuss P, Trushenski J (2012) Exploring soy-derived alternatives to fish meal: using soy protein concentrate and soy protein isolate in hybrid striped bass feeds. N Am J Aquac 74:8–19

    Article  Google Scholar 

  • Bowker JD, Trushenski JT, Gaikowski MP, Straus DL, Editors (2012) Guide to Using Drugs, Biologics, and Other Chemicals in Aquaculture. American Fisheries Society Fish Culture Section, Bethesda, MD

    Google Scholar 

  • Brander KM (2007) Global fish production and climate change. Proc Natl Acad Sci USA 104:19709–19714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brecka BJ, Wahl DH, Hooe ML (1996) Growth, survival, and body composition of largemouth bass fed various commercial diets and protein concentrations. ProgIve Fish-Cult 58:104–110

    Article  Google Scholar 

  • Bright LA, Coyle SD, Tidwell JH (2005) Effect of dietary lipid level and protein energy ratio on growth and body composition of largemouth bass Micropterus salmoides. J World Aquac Soc 36:129–134

    Article  Google Scholar 

  • Brosnan JT, Brosnan ME (2013) Glutamate: a truly functional amino acid. Amino Acids 45:413–418

    Article  PubMed  CAS  Google Scholar 

  • Brown PB, Twibell R, Jonker Y, Wilson KA (1997) Evaluation of three soybean products in diets fed to juvenile hybrid striped bass Morone saxatilis × M. chrysops. J World Aquac Soc 28:215–223

    Article  Google Scholar 

  • Buentello JA, Gatlin DM (2001) Effects of elevated dietary arginine on resistance of channel catfish to exposure to Edwardsiella ictaluri. J Aquat Anim Health 13:194–201

    Article  Google Scholar 

  • Bulak JS, Coutant CC, Rice JA (2013) Biology and management of inland striped bass and hybrid striped bass. American Fisheries Society, Bethesda, MD

    Book  Google Scholar 

  • Bush JA, Wu G, Suryawan A et al (2002) Somatotropin-induced amino acid conservation in pigs involves differential regulation of liver and gut urea cycle enzyme activity. J Nutr 132:59–67

    Article  PubMed  CAS  Google Scholar 

  • Caballero-Solares A, Viegas I, Salgado MC et al (2015) Diets supplemented with glutamate or glutamine improve protein retention and modulate gene expression of key enzymes of hepatic metabolism in gilthead seabream (Sparus aurata) juveniles. Aquaculture 444:79–87

    Article  CAS  Google Scholar 

  • Cai ZN, Qian XQ, Xie SQ (2020) Optimal dietary protein concentrations for largemouth bass (Micropterus salmoides) of different sizes (10–500 g). Aquacult Int 28:831–840

    Article  CAS  Google Scholar 

  • Campbell JW, Aster PL, Vorhaben JE (1983) Mitochondrial ammoniagenesis in liver of the channel catfish Ictalurus punctatus. Am J Physiol 244:R709–R717

    PubMed  CAS  Google Scholar 

  • Chae SR, Hwang EJ, Shin HS (2006) Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor. Bioresour Technol 97:322–329

    Article  PubMed  CAS  Google Scholar 

  • Chamberlin ME, Glemet HC, Ballantyne JS (1991) Glutamine metabolism in a holostean (Amia calva) and teleost fish (Salvelinus namaycush). Am J Physiol 260:R159–R166

    PubMed  CAS  Google Scholar 

  • Chan J (2016) Investigating hepatic glutamate dehydrogenase activity as a cause for the significant loss of amino acid utilization efficiency in growing rainbow trout (Oncorhynchus mykiss). The University of Guelph, Guelph, Canada

    Google Scholar 

  • Chatzifotis S, Polemitou I, Divanach P, Antonopoulou E (2008) Effect of dietary taurine supplementation on growth performance and bile salt activated lipase activity of common dentex, Dentex dentex, fed a fish meal/soy protein concentrate-based diet. Aquaculture 275:201–208

    Article  CAS  Google Scholar 

  • Chen NS, Xiao WW, Liang QL, Zhou HY, Ma XL, Zhao M (2012) Effect of dietary lipid to protein ratios on growth performance, body composition and non-specific immunity of largemouth bass Micropterus salmoides. J Fish China 36:1270–1280

    Article  Google Scholar 

  • Cheng Z, Buentello A, Gatlin DM (2011) Effects of dietary arginine and glutamine on growth performance, immune responses and intestinal structure of red drum, Sciaenops ocellatus. Aquaculture 319:247–252

    Article  CAS  Google Scholar 

  • Cheng Z, Gatlin DM, Buentello A (2012) Dietary supplementation of arginine and/or glutamine influences growth performance, immune responses and intestinal morphology of hybrid striped bass (Morone chrysops × Morone saxatilis). Aquaculture 362–363:39–43

    Article  Google Scholar 

  • Costas B, Conceição LEC, Dias J et al (2011) Dietary arginine and repeated handling increase disease resistance and modulate innate immune mechanisms of Senegalese sole (Solea senegalensis Kaup, 1858). Fish Shellfish Immunol 31:838–847

    Article  PubMed  CAS  Google Scholar 

  • Cowey CB, Walton MJ (1988) Studies on the uptake of (14C) amino acids derived from both dietary (14C) protein and dietary (14C) amino acids by rainbow trout, Salmo gairdneri Richardson. J Fish Biol 33:293–305

    Article  CAS  Google Scholar 

  • D’Abramo LR, Frinsko MO (2008) Hybrid striped bass: pond production of food fish. Southern Regional Aquaculture Center, Publication No. 303, pp 1–4

    Google Scholar 

  • D’Abramo LR, Ohs CL, Taylor JB (2000) Effects of reduced levels of dietary protein and menhaden fish meal on production, dressout, and biochemical composition of phase III sunshine bass (Morone chrysops x Morone saxatilis) cultured in earthen ponds. J World Aquac Soc 31:316–325

    Article  Google Scholar 

  • Davies SJ (1985) The role of dietary fibre in fish nutrition. In: Muir JF, Roberts RJ (eds) Recent advances in aquaculture. Springer, Boston, MA, pp 219–249

    Chapter  Google Scholar 

  • Day OJ, GonzAlez HGP (2000) Soybean protein concentrate as a protein source for turbot Scophthalmus maximus L. Aquac Nutr 6:221–228

    Article  CAS  Google Scholar 

  • Ebeling JM, Timmons MB (2012) Recirculating aquaculture systems. In: Tidwell JH (ed) Aquaculture production systems. Wiley, Oxford, pp 245–277

    Google Scholar 

  • Ende SSW, Fuchs V, Schuhn A, von der Marwitz C, Wirtz A, Henjes J, Slater M (2018) Growth performance of hybrid striped bass (Morone chrysops × M. saxatilis) fed with commercial pike perch and trout diets. Int Aquat Res 10:57–63

    Article  Google Scholar 

  • Enes P, Panserat S, Kaushik S, Oliva-Teles A (2006) Effect of normal and waxy maize starch on growth, food utilization and hepatic glucose metabolism in European sea bass (Dicentrarchus labrax) juveniles. Comp Biochem Physiol A 143:89–96

    Article  CAS  Google Scholar 

  • FAO (2018) The state of world fisheries and aquaculture 2018—meeting the sustainable development goals. Italy, Rome

    Google Scholar 

  • FAO (2020) The state of world fisheries and aquaculture 2020. Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  • Fournier V, Huelvan C, Desbruyeres E (2004) Incorporation of a mixture of plant feedstuffs as substitute for fish meal in diets of juvenile turbot (Psetta maxima). Aquaculture 236:451–465

    Article  Google Scholar 

  • French CJ, Mommsen TP, Hochachka PW (1981) Amino acid utilisation in isolated hepatocytes from rainbow trout. Eur J Biochem 113:311–317

    Article  PubMed  CAS  Google Scholar 

  • Fynn-Aikins K, Hughes SG, Vandenberg GW (1995) Protein retention and liver aminotransferase activities in Atlantic salmon fed diets containing different energy sources. Comp Biochem Physiol A 111:163–170

    Article  Google Scholar 

  • Gallagher ML (1994) The use of soybean meal as a replacement for fish meal in diets for hybrid striped bass (Morone saxatilis × M. chrysops). Aquaculture 126:119–127

    Article  Google Scholar 

  • Gatlin DM III, Barrows FT, Brown P, Dabrowski K, Gaylord TG, Hardy RW et al (2007) Expanding the utilization of sustainable plant products in aquafeeds—a review. Aquaculture Res 38:551–579

    Article  CAS  Google Scholar 

  • Gaylord TG, Barrows FT, Overturf K et al (2010) An overview of progress toward developing an all plant-based diet for rainbow trout. Bull Fish Res Agency 31:9–14

    Google Scholar 

  • Gaylord TG, Rawles SD (2007) The Modification of poultry by-product meal for use in hybrid striped bass Morone chrysops × M. saxatilis diets. J World Aquac Soc 36:363–374

    Article  Google Scholar 

  • Glencross B, Rutherford N, Jones B (2011) Evaluating options for fishmeal replacement in diets for juvenile barramundi (Lates calcarifer). Aquac Nutr 17:e722–e732

    Article  Google Scholar 

  • Glencross BD, Booth M, Allan GL (2007) A feed is only as good as its ingredients ? a review of ingredient evaluation strategies for aquaculture feeds. Aquac Nutr 13:17–34

    Article  CAS  Google Scholar 

  • Hansen AC, Rosenlund G, Karlsen Ø et al (2007) Total replacement of fish meal with plant proteins in diets for Atlantic cod (Gadus morhua L.) I—effects on growth and protein retention. Aquaculture 272:599–611

    Article  CAS  Google Scholar 

  • Hardy RW (2010) Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquac Res 41:770–776

    Article  CAS  Google Scholar 

  • Harrell R (2016) Cultured aquatic species information programme—Morone hybrid (genus Morone, hybrids). In: Fisheries and aquaculture. FAO, Rome, Italy

    Google Scholar 

  • Haynes TE, Li P, Li X et al (2009) L-glutamine or L-alanyl-L-glutamine prevents oxidant- or endotoxin-induced death of neonatal enterocytes. Amino Acids 37:131–142

    Article  PubMed  CAS  Google Scholar 

  • Haÿs SP, Ordonez JM, Burrin DG, Sunehag AL (2007) Dietary glutamate is almost entirely removed in its first pass through the splanchnic bed in premature infants. Pediatr Res 62:353–356

    Article  PubMed  Google Scholar 

  • He WL, Li P, Wu G (2021) Amino acid nutrition and metabolism in chickens. Adv Exp Med Biol 1285:109–131

    Article  PubMed  Google Scholar 

  • Hemre GI, Mommsen TP, Krogdahl Å (2002) Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes. Aquac Nutr 8:175–194

    Article  CAS  Google Scholar 

  • Hill JC, Alam MS, Watanabe WO et al (2019) Replacement of Menhaden fish meal by poultry by-product meal in the diet of juvenile red porgy. N Am J Aquac 81:81–93

    Article  Google Scholar 

  • Hodson RG (1989) Hybrid striped bass: biology and history. e-Southern Regional Aquaculture Center, Publication No. 300, pp 1–4

    Google Scholar 

  • Hopkins KD (1992) Reporting fish growth: a review of the basics. J World Aquac Soc 23:173–179

    Article  Google Scholar 

  • Hou Y, Wu G (2018) L-glutamate nutrition and metabolism in swine. Amino Acids 50:1497–1510

    Article  PubMed  CAS  Google Scholar 

  • Hou Y, Yin Y, Wu G (2015) Dietary essentiality of nutritionally non-essential amino acids for animals and humans. Exp Biol Med 240:997–1007

    Article  CAS  Google Scholar 

  • Hou YQ, He WL, Hu SD, Wu G (2019) Composition of polyamines and amino acids in plant-source foods for human consumption. Amino Acids 51:1153–1165

    Article  PubMed  CAS  Google Scholar 

  • Huang D, Wu Y, Lin Y, Chen J, Karrow N, Ren X, Wang Y (2017) Dietary protein and lipid requirements for juvenile largemouth bass, Micropterus salmoides. J World Aquac Soc 48:782–790

    Article  CAS  Google Scholar 

  • Hughes SG, Rumsey GL, Nesheim MC (1983) Branched-chain amino acid aminotransferase activity in the tissues of lake trout. Comp Biochem Physiol 76B:429–431

    CAS  Google Scholar 

  • Ip YK, Chew SF (2010) Ammonia production, excretion, toxicity, and defense in fish: a review. Front Physiol 1:134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jia S (2019) Nutritional roles of glutamate and glutamine in the growth of juvenile hybrid striped bass. M.S. thesis. Texas A&M University, College Station, TX, USA

    Google Scholar 

  • Jia S, Li X, Zheng S, Wu G (2017) Amino acids are major energy substrates for tissues of hybrid striped bass and zebrafish. Amino Acids 49:2053–2063

    Article  PubMed  CAS  Google Scholar 

  • Jia S, Li XY, He WL, Wu G (2021) Oxidation of energy substrates in tissues of fish: metabolic significance and implications for gene expression and carcinogenesis. Adv Exp Med Biol 1332:67–83

    Article  PubMed  Google Scholar 

  • Jobgen WS, Fried SK, Fu WJ et al (2006) Regulatory role for the arginine–nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17:571–588

    Article  PubMed  CAS  Google Scholar 

  • Jobling M, Gomes E, Dias J (2001) Feed types, manufacture and ingredients. In: Boujard T, Jobling M (eds) Food intake in fish (Houlihan D. Blackwell Science, Oxford, UK, pp 25–48

    Chapter  Google Scholar 

  • Jürss K, Bastrop R (1995) Amino acid metabolism in fish. Amino acid metabolism in fish. Biochem Mol Biol Fishes 4:159–189

    Article  Google Scholar 

  • Kats LJ, Laurin JL, Tokach MD et al (1992) Comparison of spray-dried blood meal and fish by-products in the phase II starter pig diet. Kansas Agric Exp Stn Res Reports 37–40

    Google Scholar 

  • Kaushik SJ, Cravedi JP, Lalles JP et al (1995) Partial or total replacement of fish meal by soybean protein on growth, protein utilization, potential estrogenic or antigenic effects, cholesterolemia and flesh quality in rainbow trout, Oncorhynchus mykiss. Aquaculture 133:257–274

    Article  CAS  Google Scholar 

  • Kaushik SJ, Seiliez I (2010) Protein and amino acid nutrition and metabolism in fish: current knowledge and future needs. Aquac Res 41:322–332

    Article  CAS  Google Scholar 

  • Krogdahl Å, Penn M, Thorsen J et al (2010) Important antinutrients in plant feedstuffs for aquaculture: an update on recent findings regarding responses in salmonids. Aquac Res 41:333–344

    Article  CAS  Google Scholar 

  • Laale HW (1977) The biology and use of zebrafish, Brachydanio rerio in fisheries research a literature review. J Fish Biol 10:121–173

    Article  Google Scholar 

  • Latshaw JD, Bishop BL (2001) Estimating body weight and body composition of chickens by using noninvasive measurements. Poult Sci 80:868–873

    Article  PubMed  CAS  Google Scholar 

  • Lee DJW, McNab JM, Shannon DWF, Blair R (1972) Enzyme studies with the livers of chicks fed semi-synthetic diets containing crystalline amino acids and diammonium citrate. Br Poult Sci 13:229–235

    Article  PubMed  CAS  Google Scholar 

  • Li P, Wu G (2018) Roles of dietary glycine, proline and hydroxyproline in collagen synthesis and animal growth. Amino Acids 50:29–38

    Article  PubMed  CAS  Google Scholar 

  • Li P, Wu G (2020) Composition of amino acids and related nitrogenous nutrients in feedstuffs for animal diets. Amino Acids 52:523–542

    Article  PubMed  CAS  Google Scholar 

  • Li P, Wu G, Gatlin DM (2007) Nucleotide supplementation may offer health benefits in cultured fish, but more study needed. Glob Aquac Advocate 10:74–75

    Google Scholar 

  • Li P, Mai K, Trushenski J, Wu G (2009) New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds. Amino Acids 37:43–53

    Article  PubMed  Google Scholar 

  • Li X, Rezaei R, Li P, Wu G (2011) Composition of amino acids in feed ingredients for animal diets. Amino Acids 40:1159–1168

    Article  PubMed  CAS  Google Scholar 

  • Li XL, Zheng SX, Jia SC, Song F, Zhou CP, Wu G (2020a) Oxidation of energy substrates in tissues of largemouth bass (Micropterus salmoides). Amino Acids 52:1017–1032

    Article  PubMed  CAS  Google Scholar 

  • Li XY, Zheng SX, Han T, Song F, Wu G (2020b) Effects of dietary protein intake on the oxidation of glutamate, glutamine, glucose and palmitate in tissues of largemouth bass (Micropterus salmoides) Amino Acids 52:1491–1503

    Google Scholar 

  • Li XL, Zheng SX, Wu G (2020c) Nutrition and metabolism of glutamate and glutamine in fish. Amino Acids 52:671–691

    Article  PubMed  CAS  Google Scholar 

  • Li XY, Zheng SX, Ma XK, Cheng KM, Wu G (2020d) Effects of dietary starch and lipid levels on the protein retention and growth of largemouth bass (Micropterus salmoides). Amino Acids 52:999–1016

    Article  PubMed  CAS  Google Scholar 

  • Li XY, Zheng SX, Ma XK, Cheng KM, Wu G (2020e) Effects of dietary protein and lipid levels on growth performance, feed utilization, and liver histology of largemouth bass (Micropterus salmoides). Amino Acids 52:1043–1061

    Article  PubMed  CAS  Google Scholar 

  • Li XY, Zheng SX, Wu G (2020f) Amino acid metabolism in the kidneys: nutritional and physiological significance. Adv Exp Med Biol 1265:71–95

    Article  PubMed  CAS  Google Scholar 

  • Li SL, Zhang YC, Liu N, Chen JQ, Guo LN, Dai ZL, Wang C, Wu ZL, Wu G (2020g) Dietary L-arginine supplementation reduces lipid accretion by regulating fatty acid metabolism in Nile tilapia (Oreochromis niloticus). J Anim Sci Biotechnol 11:82

    Article  PubMed  PubMed Central  Google Scholar 

  • Li XY, Zheng SX, Ma XK, Cheng KM, Wu G (2021a) Use of alternative protein sources for fishmeal replacement in the diet of largemouth bass (Micropterus salmoides). Part I: effects of poultry by-product meal and soybean meal on growth, feed utilization, and health. Amino Acids 53:33–47

    Article  PubMed  CAS  Google Scholar 

  • Li XY, Zheng SX, Cheng KM, Ma XK, Wu G (2021b) Use of alternative protein sources for fishmeal replacement in the diet of largemouth bass (Micropterus salmoides). Part II: effects of supplementation with methionine or taurine on growth, feed utilization, and health. Amino Acids 53:49–62

    Article  PubMed  CAS  Google Scholar 

  • Li XY, Zheng SX, Wu G (2021c) Nutrition and functions of amino acids in fish. Adv Exp Med Biol 1285:133–168

    Article  PubMed  Google Scholar 

  • Li XY, Han T, Zheng SX, Wu G (2021d) Nutrition and functions of amino acids in aquatic crustaceans. Adv Exp Med Biol 1285:169–198

    Article  PubMed  Google Scholar 

  • Li P, He WL, Wu G (2021e) Composition of amino acids in foodstuffs for humans and animals. Adv Exp Med Biol 1332:189–209

    Article  PubMed  Google Scholar 

  • Li P, Wu G (2022) Functional molecules of intestinal mucosal products in animal nutrition and health. Adv Exp Med Biol 1354:263–277

    Google Scholar 

  • Lin S-M, Zhou X-M, Zhou Y-L, Kuang W-M, Chen Y-J (2020) Intestinal morphology, immunity and microbiota response to dietary fibers in largemouth bass, Micropterus salmoide. Fish Shellfish Immunol 103:135–142

    Article  PubMed  CAS  Google Scholar 

  • Liu FG, Liao IC (1999) Effect of feeding regimen on the food consumption, growth, and body composition in hybrid striped bass Morone saxatilis × M. chrysops. Fish Sci 65:513–519

    Article  CAS  Google Scholar 

  • Liu J, Mai K, Xu W et al (2015) Effects of dietary glutamine on survival, growth performance, activities of digestive enzyme, antioxidant status and hypoxia stress resistance of half-smooth tongue sole (Cynoglossus semilaevis Günther) post larvae. Aquaculture 446:48–56

    Article  CAS  Google Scholar 

  • Liu XD, Wu X, Yin YL et al (2012) Effects of dietary l-arginine or N-carbamylglutamate supplementation during late gestation of sows on the miR-15b/16, miR-221/222, VEGFA and eNOS expression in umbilical vein. Amino Acids 42:2111–2119

    Article  PubMed  CAS  Google Scholar 

  • Lobley GE, Milne V, Lovie JM et al (1980) Whole body and tissue protein synthesis in cattle. Br J Nutr 43:491–502

    Article  PubMed  CAS  Google Scholar 

  • Lougheed M, Nelson B (2001) Hybrid striped bass production. Michigan State University, East Lansing, Michigan, Markets and Marketing

    Google Scholar 

  • Lunger AN, McLean E, Gaylord TG et al (2007) Taurine supplementation to alternative dietary proteins used in fish meal replacement enhances growth of juvenile cobia (Rachycentron canadum). Aquaculture 271:401–410

    Article  CAS  Google Scholar 

  • MacLennan PA, Brown RA, Rennie MJ (1987) A positive relationship between protein synthetic rate and intracellular glutamine concentration in perfused rat skeletal muscle. FEBS Lett 215:187–191

    Article  PubMed  CAS  Google Scholar 

  • Mambrini M, Kaushik SJ (1995) Indispensable amino acid requirements of fish: correspondence between quantitative data and amino acid profiles of tissue proteins. J Appl Ichthyol 11:240–247

    Article  CAS  Google Scholar 

  • Mambrini M, Roem AJ, Carvèdi JP et al (1999) Effects of replacing fish meal with soy protein concentrate and of DL-methionine supplementation in high-energy, extruded diets on the growth and nutrient utilization of rainbow trout, Oncorhynchus mykiss. J Anim Sci 77:2990–2999

    Article  PubMed  CAS  Google Scholar 

  • Mateo RD, Wu G, Moon HK et al (2008) Effects of dietary arginine supplementation during gestation and lactation on the performance of lactating primiparous sows and nursing piglets1. J Anim Sci 86:827–835

    Article  PubMed  CAS  Google Scholar 

  • McGinty AS, Hodson RG (2008) Hybrid striped bass: hatchery phase. Southern Regional Aquaculture Center. Publication No. 300, pp 1–6

    Google Scholar 

  • Merino G, Barange M, Blanchard JL et al (2012) Can marine fisheries and aquaculture meet fish demand from a growing human population in a changing climate? Glob Environ Chang 22:795–806

    Article  Google Scholar 

  • National Research Council (NRC) (2000) Nutrient requirements of beef cattle. National Academies Press, Washington DC

    Google Scholar 

  • National Research Council (NRC) (2011) Nutrient requirements of fish and shrimp. National Academies Press, Washington DC

    Google Scholar 

  • National Research Council (NRC) (2012) Nutrient requirements of swine. National Academies Press, Washington DC

    Google Scholar 

  • Nengas I, Alexis MN, Davies SJ (1999) High inclusion levels of poultry meals and related byproducts in diets for gilthead seabream Sparus aurata L. Aquaculture 179:13–23

    Article  Google Scholar 

  • Nixey C (2010) Nutrition and feeding of organic poultry by robert blair. Br Poult Sci 51:309–309

    Article  Google Scholar 

  • Oliva-Teles A, Enes P, Peres H (2015) Replacing fishmeal and fish oil in industrial aquafeeds for carnivorous fish. In: Feed and feeding practices in aquaculture. Elsevier, pp 203–233

    Google Scholar 

  • Olsen RL, Hasan MR (2012) A limited supply of fishmeal: impact on future increases in global aquaculture production. Trends Food Sci Technol 27:120–128

    Article  CAS  Google Scholar 

  • Perez-Velazquez M, Gatlin DM III, González-Félixa ML, García-Ortega A, de Cruz CR, Juárez-Gómez ML, Chen K (2019) Effect of fishmeal and fish oil replacement by algal meals on biological performance and fatty acid profile of hybrid striped bass (Morone chrysops ♀ × M. saxatilis ♂). Aquaculture 507:83–90

    Article  CAS  Google Scholar 

  • Perry JR, Ying W (2016) A review of physiological effects of soluble and insoluble dietary fibers. J Nutr Food Sci 6:476

    Google Scholar 

  • Pine HJ, Daniels WH, Davis DA et al (2008) Replacement of fish meal with poultry by-product meal as a protein source in pond-raised sunshine bass, Morone chrysops ♀ × M. saxatlis ♂ diets. J World Aquac Soc 39:586–597

    Article  Google Scholar 

  • Portz L, Cyrino JEP, Martino RC (2001) Growth and body composition of juvenile largemouth bass Micropterus salmoides in response to dietary protein and energy levels. Aquac Nutr 7:247–254

    Article  CAS  Google Scholar 

  • Qiyou X, Qing Z, Hong X et al (2011) Dietary glutamine supplementation improves growth performance and intestinal digestion/absorption ability in young hybrid sturgeon (Acipenser schrenckii ♀ × Huso dauricus♂). J Appl Ichthyol 27:721–726

    Article  CAS  Google Scholar 

  • Quagrainie K (2015) Profitability of hybrid striped bass cage aquaculture in the midwest. Purdue University Extension, West Lafayette, IN

    Google Scholar 

  • Rawles SD, Gaylord TG, McEntire ME, Freeman DW (2009) Evaluation of poultry by-product meal in commercial diets for hybrid striped bass, Morone chrysops ♀ × Morone saxatilis ♂, in pond production. J World Aquac Soc 40:141–156

    Article  Google Scholar 

  • Rawles SD, Riche M, Gaylord TG et al (2006) Evaluation of poultry by-product meal in commercial diets for hybrid striped bass (Morone chrysops ♀× M. saxatilis ♂) in recirculated tank production. Aquaculture 259:377–389

    Article  Google Scholar 

  • Refstie S, Storebakken T, Baeverfjord G, Roem AJ (2001) Long-term protein and lipid growth of Atlantic salmon (Salmo salar) fed diets with partial replacement of fish meal by soy protein products at medium or high lipid level. Aquaculture 193:91–106

    Article  CAS  Google Scholar 

  • Ritala A, Häkkinen ST, Toivari M, Wiebe MG (2017) Single cell protein—state-of-the-art, industrial landscape and patents 2001–2016. Front Microbiol 8:2009

    Article  PubMed  PubMed Central  Google Scholar 

  • Rønnestad I, Fyhn HJ (1993) Metabolic aspects of free amino acids in developing marine fish eggs and larvae. Rev Fish Sci 1:239–259

    Article  Google Scholar 

  • Rønnestad I, Thorsen A, Finn RN (1999) Fish larval nutrition: a review of recent advances in the roles of amino acids. Aquaculture 177:201–216

    Article  Google Scholar 

  • Rossi W, Tomasso JT, Gatlin DM III (2015) Performance of cage-raised, overwintered hybrid striped bass fed fishmeal- or soybean-based diets. North Am J Aquac 77:178–185

    Article  Google Scholar 

  • Rossignol O, Dodson JJ, Guderley H (2011) Relationship between metabolism, sex and reproductive tactics in young Atlantic salmon (Salmo salar L.). Comp Biochem Physiol A 159:82–91

    Article  CAS  Google Scholar 

  • Salze GP, Davis DA (2015) Taurine: a critical nutrient for future fish feeds. Aquaculture 437:215–229

    Article  CAS  Google Scholar 

  • Smits CHM, Moughan PJ, Smith WC (1988) Chemical whole-body composition of the 20 kg liveweight growing pig. New Zeal J Agric Res 31:155–157

    Article  Google Scholar 

  • Stickney RR, Hardy RW, Koch K et al (1996) The effects of substituting selected oilseed protein concentrates for fish meal in rainbow trout Oncorhynchus mykiss diets. J World Aquac Soc 27:57–63

    Article  Google Scholar 

  • Stone DAJJ (2003) Dietary carbohydrate utilization by fish. Rev Fish Sci 11:337–369

    Article  CAS  Google Scholar 

  • Stoner GR, Allee GL, Nelssen JL et al (1990) Effect of select menhaden fish meal in starter diets for pigs. J Anim Sci 68:2729–2735

    Article  PubMed  CAS  Google Scholar 

  • Storebakken S, Roem (2000) Growth, uptake and retention of nitrogen and phosphorus, and absorption of other minerals in Atlantic salmon Salmo salar fed diets with fish meal and soy-protein concentrate as the main sources of protein. Aquac Nutr 6:103–108

    Article  CAS  Google Scholar 

  • Stuber RJ, Gebhart G, Maughan OE (1982) Habit suitability index models: largemouth bass. U.S. Fish and Wildlife Service, Washington, DC. Publication FWS/OBS-82/10.16

    Google Scholar 

  • Tacon AGJ, Metian M (2008) Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture 285:146–158

    Article  CAS  Google Scholar 

  • Tacon AGJ, Hasan MR, Metian M (2011) Demand and supply of feed ingredients for farmed fish and crustaceans: trends and prospects. FAO Fisheries and Aquaculture Technical Paper No. 564, Rome, Italy

    Google Scholar 

  • Tidwell JH, Webster CD, Coyle SD (1996) Effects of dietary protein level on second year growth and water quality for largemouth bass (Micropterus salmoides) raised in ponds. Aquaculture 145:213–223

    Article  CAS  Google Scholar 

  • Tidwell JH, Coyle SD, Bright LA (2019) Largemouth bass aquaculture Largemouth bass production in China. 5M Published Ltd., Sheffield, pp 37–47

    Google Scholar 

  • Treece GD (2017) The Texas aquaculture industry–2017. Texas Aquaculture Association, Austin, Texas

    Google Scholar 

  • Troell M, Naylor RL, Metian M et al (2014) Does aquaculture add resilience to the global food system? Proc Natl Acad Sci USA 111:13257–13263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trushenski J, Gause B (2013) Comparative value of fish meal alternatives as protein sources in feeds for hybrid striped bass. N Am J Aquac 75:329–341

    Article  Google Scholar 

  • Turchini GM, Trushenski JT, Glencross BD (2019) Thoughts for the future of aquaculture nutrition: realigning perspectives to reflect contemporary issues related to judicious use of marine resources in aquafeeds. North Am J Aquaculture 81:13–39

    Article  Google Scholar 

  • Twibell RG, Griffin ME, Martin B et al (2003) Predicting dietary essential amino acid requirements for hybrid striped bass. Aquac Nutr 9:373–381

    Article  CAS  Google Scholar 

  • USDA (2019a) USDA/ARS national program 106 aquaculture action plan 2020–2024. www.ars.usda.gov/ARSUserFiles/np106/NP106%20Aquaculture

  • USDA (2019b) Aquaculture: results from the 2018 census of aquaculture. https://www.nass.usda.gov/Publications/Highlights/2019/2017Census_Aquaculture_in_2018.pdf

  • U.S. Soybean Export Councel (USSEC 2008) soy protein concentrate technical bulletin. Chesterfield, MO

    Google Scholar 

  • van den Thillart G (1986) Energy metabolism of swimming trout (Salmo gairdneri)—Oxidation rates of palmitate, glucose, lactate, alanine, leucine and glutamate. J Comp Physiol B 156:511–520

    Article  Google Scholar 

  • Van Waarde A (1983) Aerobic and anaerobic ammonia production by fish. Comp Biochem Physiol 74b:675–684

    Google Scholar 

  • Van Waarde A, Kesbeke F (1982) Nitrogen metabolism in goldfish, Carassius auratus L. activities of amidases and amide synthetases in goldfish tissues. Comp Biochem Physiol B 71:599–603

    Article  PubMed  Google Scholar 

  • Watford M, Wu G (2005) Glutamine metabolism in uricotelic species: variation in skeletal muscle glutamine synthetase, glutaminase, glutamine levels and rates of protein synthesis. Comp Biochem Physiol B 140:607–614

    Article  PubMed  Google Scholar 

  • Weber JM, Haman F (1996) Pathways for metabolic fuels and oxygen in high performance fish. Comp Biochem Physiol A 113:33–38

    Article  Google Scholar 

  • Wilson RP (2002) Amino acids and proteins. In: Halver JE, Hardy RW (eds) Fish nutrition. Academic Press, New York, pp 143–179

    Google Scholar 

  • Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128:1249–1252

    Article  PubMed  CAS  Google Scholar 

  • Wu G (2010) Functional amino acids in growth, reproduction, and health. Adv Nutr 1:31–37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu G (2013a) Amino acids: biochemistry and nutrition. CRC Press, Boca Raton, Florida,

    Book  Google Scholar 

  • Wu G (2013b) Functional amino acids in nutrition and health. Amino Acids 45:407–411

    Article  PubMed  CAS  Google Scholar 

  • Wu G (2014) Dietary requirements of synthesizable amino acids by animals: a paradigm shift in protein nutrition. J Anim Sci Biotechnol 5:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu G (2018) Principles of animal nutrition. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Wu G (2021) Amino acids: biochemistry and nutrition, 2nd edn. CRC Press, Boca Raton, Florida

    Book  Google Scholar 

  • Wu G (2022) Nutrition and metabolism: Foundations for animal growth, development, reproduction, and health. Adv Exp Med Biol 1354:1–24

    Google Scholar 

  • Wu G, Bazer FW, Burghardt RC et al (2011) Proline and hydroxyproline metabolism: implications for animal and human nutrition. Amino Acids 40:1053–1063

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Dai Z et al (2014) Amino acid nutrition in animals: protein synthesis and beyond. Annu Rev Anim Biosci 2:387–417

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Johnson GA, Hou Y (2018) Arginine nutrition and metabolism in growing, gestating, and lactating swine. J Anim Sci 96:5035–5051

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu G, Bazer FW, Satterfield MC et al (2013a) Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids 45:241–256

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Meier SA, Knabe DA (1996) Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J Nutr 126:2578–2584

    Google Scholar 

  • Wu G, Wu Z, Dai Z et al (2013b) Dietary requirements of “nutritionally non-essential amino acids” by animals and humans. Amino Acids 44:1107–1113

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Thompson JR (1990) The effect of ketone bodies on protein turnover in isolated skeletal muscle from the fed and fasted chick. Int J Biochem 22:263–268

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Zhou XQ (2006) Dietary glutamine supplementation improves structure and function of intestine of juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture 256:389–394

    Article  CAS  Google Scholar 

  • Yoshida C, Maekawa M, Bannai M, Yamamoto T (2016) Glutamate promotes nucleotide synthesis in the gut and improves availability of soybean meal feed in rainbow trout. SpringerPlus 5:1021

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Hou YQ, Bazer FW, He WL, Posey EA, Wu G (2021) Amino acids in swine nutrition and production. Adv Exp Med Biol 1285:81–107

    Article  PubMed  Google Scholar 

  • Zhou YL, Guo JL, Tang RJ, Ma HJ, Chen YJ, Lin SM (2020) High dietary lipid level alters the growth, hepatic metabolism enzyme, and anti-oxidative capacity in juvenile largemouth bass Micropterus salmoides. Fish Physiol Biochem 46:125–134

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Texas A&M AgriLife Research (H-8200). The authors thank students and research assistants in our laboratory for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jia, S., Li, X., He, W., Wu, G. (2022). Protein-Sourced Feedstuffs for Aquatic Animals in Nutrition Research and Aquaculture. In: Wu, G. (eds) Recent Advances in Animal Nutrition and Metabolism. Advances in Experimental Medicine and Biology, vol 1354. Springer, Cham. https://doi.org/10.1007/978-3-030-85686-1_12

Download citation

Publish with us

Policies and ethics