Skip to main content

Lipid Antioxidants: More than Just Lipid Radical Quenchers

  • Chapter
  • First Online:
Lipid Oxidation in Food and Biological Systems

Abstract

Phenolic antioxidants are well-known to inhibit lipid oxidation by quenching radicals. This slows propagation and is a key component of antioxidant action. However, total antioxidant effects reach far beyond early radicals. Phenolic compounds also inhibit initiation by binding metals and quenching singlet oxygen, cause shifts in oxidation pathways by blocking some reactions of lipid radicals, and alter product distributions by diverting hydroperoxides and complexing with lipid oxidation products. To complicate matters further, phenolic compounds modify total system oxidation by reacting with proteins that themselves quench lipid radicals and complex lipid products, and it is not currently known whether this action interferes with or augments lipid oxidation. Both phenol and quinone forms are active. Importantly, these multiple interventions of phenolic antioxidants are missed when only lipid hydroperoxides are analyzed. This chapter looks beyond radical quenching and outlines antioxidant effects at all three stages of lipid oxidation—initiation, propagation, and termination—and on total system oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcock LJ, Perkins MV, Chalker JM (2018) Chemical methods for mapping cysteine oxidation. Chem Soc Rev 47(1):231–268

    Article  CAS  PubMed  Google Scholar 

  • Altwicker ER (1967) The chemistry of stable phenoxy radicals. Chem Rev 67(5):475–531

    Article  CAS  Google Scholar 

  • Amorati R, Baschieri A, Morroni G, Gambino R, Valgimigli L (2016) Peroxyl radical reactions in water solution: a gym for proton-coupled electron-transfer theories. Chemistry 22(23):7924–7934

    Article  CAS  PubMed  Google Scholar 

  • Amorati R, Baschieri A, Cowden A, Valgimigli L (2017) The antioxidant activity of quercetin in water solution. Biomimetics 2(3):9

    Article  PubMed Central  Google Scholar 

  • Arora A, Valcic S, Cornejo S, Nair M, Timmermann B, Liebler D (2000) Reactions of genistein with alkylperoxyl radicals. Chem Res Toxicol 13:638–645

    Article  CAS  PubMed  Google Scholar 

  • Bakhouche K, Dhaouadi Z, Jaidane N, Hammoutène D (2015) Comparative antioxidant potency and solvent polarity effects on HAT mechanisms of tocopherols. Computat Theoret Chem 1060:58–65

    Article  CAS  Google Scholar 

  • Bassil D, Makris DP, Kefalas P (2005) Oxidation of caffeic acid in the presence of l-cysteine: isolation of 2-S-cysteinylcaffeic acid and evaluation of its antioxidant properties. Food Res Int 38(4):395–402

    Article  CAS  Google Scholar 

  • Bittner S (2006) When quinones meet amino acids: chemical, physical and biological consequences. Amino Acids 30(3):205–224

    Article  CAS  PubMed  Google Scholar 

  • Boozer CE, Hammond GS, Hamilton CE, Sen JN (1955) Air oxidation of hydrocarbons. II. The stoichiometry and fate of inhibitors in benzene and chlorobenzene. J Amer Chem Soc 77(12):3233–3237

    Article  CAS  Google Scholar 

  • Bors W, Michel C (1999) Antioxidant capacity of flavanols and gallate esters: pulse radiolysis studies. Free Radical Biol Med 27(11/12):1413–1426

    Article  CAS  Google Scholar 

  • Campbell TW, Coppinger GM (1952) The reaction of t-butyl hydroperoxide with some phenols. J Amer Chem Soc 74(6):1469–1471

    Article  CAS  Google Scholar 

  • Chrysochoou M, Reeves K (2017) Reduction of hexavalent chromium by green tea polyphenols and green tea nano zero-valent iron (GT-nZVI). Bull Environ Contam Toxicol 98(3):353–358

    Article  CAS  PubMed  Google Scholar 

  • Cilliers JJL, Singleton VL (1990) Caffeic acid autoxidation and the effects of thiols. J Agric Food Chem 38(9):1789–1796

    Article  CAS  Google Scholar 

  • Citterio A, Arnoldi A, Minisci F (1979) Nucleophilic character of alkyl radicals. 18. Absolute rate constants for the addition of primary alkyl radicals to conjugated olefins and 1,4-benzoquinone. J Org Chem 44(15):2674–2682

    Article  CAS  Google Scholar 

  • Cordero-Morales JF, Vásquez V (2018) How lipids contribute to ion channel function, a fat perspective on direct and indirect interactions. Curr Opin Struct Biol 51:92–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies KAJ (1987) Protein damage and degradation by oxygen radicals. I. General aspects. J Biol Chem 262(20):9895–9901

    Article  CAS  PubMed  Google Scholar 

  • Denisov ET (2006) Reactivity of quinones as alkyl radical acceptors. Kinet Catal 47(5):662–671

    Article  CAS  Google Scholar 

  • Di Meo F, Lemaur V, Cornil J, Lazzaroni R, Duroux J-L, Olivier Y et al (2013) Free radical scavenging by natural polyphenols: atom versus electron transfer. J Phys Chem A 117(10):2082–2092

    Article  PubMed  Google Scholar 

  • Dimitrić Marković JM, Marković ZS, Brdarić TP, Pavelkić VM, Jadranin MB (2011) Iron complexes of dietary flavonoids: combined spectroscopic and mechanistic study of their free radical scavenging activity. Food Chem 129(4):1567–1577

    Article  Google Scholar 

  • Erben-Russ M, Bors W, Saran M (1987) Reactions of linoleic acid peroxyl radicals with phenolic antioxidants: a pulse radiolysis study. Int J Rad Biol 52(3):393–412

    CAS  Google Scholar 

  • Es-Safi NE, Cheynier V, Moutounet M (2002) Role of aldehydic derivatives in the condensation of phenolic compounds with emphasis on the sensorial properties of fruit-derived foods. J Agric Food Chem 50(20):5571–5585

    Article  CAS  PubMed  Google Scholar 

  • Fahrenholtz SR, Doleiden FH, Trozzolo AM, Lamola AA (1974) On the quenching of singlet oxygen by α-tocopherol. Photochem Photobiol 20(6):505–509

    Article  CAS  PubMed  Google Scholar 

  • Foote CS, Denny RW (1968) Chemistry of singlet oxygen. VII. Quenching by Beta-carotene. J Am Chem Soc 90(22):6233–6235

    Article  CAS  Google Scholar 

  • Foti MC, Daquino C, Geraci C (2004) Electron-transfer reaction of cinnamic acids and their methyl esters with the DPPH• radical in alcoholic solution. J Org Chem 69(7):2309–2314

    Article  CAS  PubMed  Google Scholar 

  • Franchi P, Lucarini M, Pedulli GF, Valgimigli L, Lunelli B (1999) Reactivity of substituted phenols toward alkyl radicals. J Amer Chem Soc 121(3):507–514

    Article  CAS  Google Scholar 

  • Fujimoto A, Masuda T (2012) Chemical interaction between polyphenols and a cysteinyl thiol under radical oxidation conditions. J Agric Food Chem 60(20):5142–5151

    Article  CAS  PubMed  Google Scholar 

  • Gardner HW, Eskins K, Grams GW, Inglett GR (1972) Radical addition of linoleic hydroperoxides to α-tocopherol or the analogous hydroxychroman. Lipids 7(5):324–334

    Article  CAS  Google Scholar 

  • Hasni I, Bourassa P, Hamdani S, Samson G, Carpentier R, Tajmir-Riahi H-A (2011) Interaction of milk α- and β-caseins with tea polyphenols. Food Chem 126(2):630–639

    Article  CAS  Google Scholar 

  • Hidalgo FJ, Zamora R (2014) 2-Alkenal-scavenging ability of m-diphenols. Food Chem 160:118–126

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo FJ, Zamora R (2019) Characterization of carbonyl–phenol adducts produced by food phenolic trapping of 4-hydroxy-2-hexenal and 4-hydroxy-2-nonenal. J Agric Food Chem 67(7):2043–2051

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo FJ, Aguilar I, Zamora R (2017a) Model studies on the effect of aldehyde structure on their selective trapping by phenolic compounds. J Agric Food Chem 65(23):4736–4743

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo FJ, Delgado RM, Zamora R (2017b) Protective effect of phenolic compounds on carbonyl-amine reactions produced by lipid-derived reactive carbonyls. Food Chem 229:388–395

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo FJ, Aguilar I, Zamora R (2018) Phenolic trapping of lipid oxidation products 4-oxo-2-alkenals. Food Chem 240:822–830

    Article  CAS  PubMed  Google Scholar 

  • Hider R, Liu Z, Khodr H (2001) Metal chelation of polyphenols. Methods Enzymol 335:190–203

    Article  CAS  PubMed  Google Scholar 

  • Horswill EC, Ingold KU (1966) The oxidation of phenols: I. The oxidation of 2,6-di-t-butyl-4-methylphenol, 2,6-di-t-butylphenol, and 2,6-dimethylphenol with peroxy radicals. Can J Chem 44(3):263–268

    Article  CAS  Google Scholar 

  • Horswill EC, Howard JA, Ingold KU (1966) The oxidation of phenols: III. The stoichiometries for the oxidation of some substituted phenols with peroxy radicals. Can J Chem 44(9):985–991

    Article  CAS  Google Scholar 

  • Jiang C, Garg S, Waite TD (2015) Hydroquinone-mediated redox cycling of iron and concomitant oxidation of hydroquinone in oxic waters under acidic conditions: comparison with iron–natural organic matter interactions. Environ Sci Technol 49(24):14076–14084

    Article  CAS  PubMed  Google Scholar 

  • Jovanovic SV, Jankovic I, Josimovic L (1992) Electron-transfer reactions of alkylperoxy radicals. J Amer Chem Soc 114(23):9018–9021

    Article  CAS  Google Scholar 

  • Jovanovic SV, Simic MG, Steenken S, Hara Y (1998) Iron complexes of gallocatechins. Antioxidant action or iron regulation? J Chem Soc Perkin Trans 2:2365–2369

    Article  Google Scholar 

  • Kalyanaraman B, Felix CC, Sealy RC (1985) Semiquinone anion radicals of catechol(amine)s, catechol estrogens, and their metal ion complexes. Environ Health Perspect 64:185–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamal-Eldin A, Appelqvist LA (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31(7):671–701

    Article  CAS  PubMed  Google Scholar 

  • Kanakis CD, Hasni I, Bourassa P, Tarantilis PA, Polissiou MG, Tajmir-Riahi H-A (2011) Milk β-lactoglobulin complexes with tea polyphenols. Food Chem 127(3):1046–1055

    Article  CAS  PubMed  Google Scholar 

  • Kumli E, Montermini F, Renaud P (2006) Radical addition to 1,4-benzoquinones: addition at O- versus C-atom. Org Lett 8(25):5861–5864

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Yim D, Lee D, Kim OY, Kang HJ, Kim HS et al (2020) Overview of the effect of natural products on reduction of potential carcinogenic substances in meat products. Trends Food Sci Technol 99(May):568–579

    Article  CAS  Google Scholar 

  • Lemanska K, Szymusiak H, Tyrakowska B, Zielinski R, Soffer AEMF, Rietjens IMCM (2001) The influence of pH on the antioxidant properties and the mechanisms of antioxidant action of hydroxyflavones. Free Radical Biol Med 31:869–881

    Article  CAS  Google Scholar 

  • Leopoldini M, Marino T, Russo N, Toscano M (2004) Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism. J Phys Chem 108:4916–4922

    Article  CAS  Google Scholar 

  • Leopoldini M, Russo N, Chiodo S, Toscano M (2006) Iron chelation by the powerful antioxidant flavonoid quercetin. J Agric Food Chem 54(17):6343–6351

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhu T, Zhao J, Xu B (2012) Interactive enhancements of ascorbic acid and iron in hydroxyl radical generation in quinone redox cycling. Environ Sci Technol 46(18):10302–10309

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Jongberg S, Andersen ML, Davies MJ, Lund MN (2016) Quinone-induced protein modifications: kinetic preference for reaction of 1,2-benzoquinones with thiol groups in proteins. Free Radical Biol Med 97:148–157

    Article  CAS  Google Scholar 

  • Liebler DC, Kaysen KL, Burr JA (1991) Peroxyl radical trapping and autoxidation reactions of alpha-tocopherol in lipid bilayers. Chem Res Toxicol 4(1):89–93

    Article  CAS  PubMed  Google Scholar 

  • Litwinienko G, Ingold KU (2003) Abnormal solvent effects on hydrogen atom abstractions. 1. The reactions of phenols with 2,2-diphenyl-1-picrylhydrazyl (DPPH•) in alcohols. J Org Chem 68(9):3433–3438

    Article  CAS  PubMed  Google Scholar 

  • Litwinienko G, Ingold KU (2004) Abnormal solvent effects on hydrogen atom abstraction. 2. Resolution of the curcumin antioxidant controversy. The role of sequential proton loss electron transfer. J Org Chem 69(18):5888–5896

    Article  CAS  PubMed  Google Scholar 

  • Litwinienko G, Ingold KU (2005) Abnormal solvent effects on hydrogen atom abstraction. 3. Novel kinetics in sequential proton loss electron transfer chemistry. J Org Chem 70(22):8982–8990

    Article  CAS  PubMed  Google Scholar 

  • Litwinienko G, Ingold KU (2007) Solvent effects on the rates and mechanisms of reaction of phenols with free radicals. Acc Chem Res 40(3):222–230

    Article  CAS  PubMed  Google Scholar 

  • Lucarini M, Pedulli GF, Valgimigli L (1998) Do peroxyl radicals obey the principle that kinetic solvent effects on H-atom abstraction are independent of the nature of the abstracting radical? J Org Chem 63(13):4497–4499

    Article  CAS  Google Scholar 

  • Mahal HS, Kapoor S, Satpati AK, Mukherjee T (2005) Radical scavenging and catalytic activity of metal-phenolic complexes. J Phys Chem B 109(50):24197–24202

    Article  CAS  PubMed  Google Scholar 

  • Mäkinen EM, Hopia AI (2000) Effects of alpha-tocopherol and ascorbyl palmitate on the isomerization and decomposition of methyl linoleate hydroperoxides. Lipids 35(11):1215–1223

    Article  PubMed  Google Scholar 

  • Maroz A, Brede O (2003) Reaction of radicals with benzoquinone – addition or electron transfer? Rad Phys Chem 67(3):275–278

    Article  CAS  Google Scholar 

  • Mayer JM (2004) Proton-coupled electron transfer: a reaction chemist's view. Ann Rev Phys Chem 55:363–390

    Article  CAS  Google Scholar 

  • Md V, Kerman K, Tamiya E (2005) An electrochemical approach for detecting copper-chelating properties of flavonoids using disposable pencil graphite electrodes: possible implications in copper-mediated illnesses. Analyt Chim Acta 538(1):273–281

    Google Scholar 

  • Medina I, Gallardo JM, Gonzalez MJ, Lois S, Hedges N (2007) Effect of molecular structure of phenolic families as hydroxycinnamic acids and catechins on their antioxidant effectiveness in minced fish muscle. J Agric Food Chem 55(10):3889–3895

    Article  CAS  PubMed  Google Scholar 

  • Mellors A, Tappel AL (1966) Quinones and quinols as inhibitors of lipid peroxidation. Lipids 1(4):282–284

    Article  CAS  PubMed  Google Scholar 

  • Metodiewa D, Jaiswal AK, Cenas N, DickancaitĂ© E, Segura-Aguilar J (1999) Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radical Biol Med 26(1-2):107–116

    Article  CAS  Google Scholar 

  • Musialik M, Kuzmicz R, Paw Å‚Owski TS, Litwinienko G (2009) Acidity of hydroxyl groups: an overlooked influence on antiradical properties of flavonoids. J Org Chem 74(7):2699-2709.

    Article  CAS  PubMed  Google Scholar 

  • Muzolf M, Szymusiak H, GliszczyĹ„ska-ĹšwigĹ‚o A, Rietjens IMCM, Tyrakowski B (2008) pH-Dependent radical scavenging capacity of green tea catechins. J Agric Food Chem 56(3):816–823

    Article  CAS  PubMed  Google Scholar 

  • Ozdal T, Capanoglu E, Altay F (2013) A review on protein–phenolic interactions and associated changes. Food Res Int 51(2):954–970

    Article  CAS  Google Scholar 

  • Perron NR, Brumaghim JL (2009) A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys 53(2):75–100

    Article  CAS  PubMed  Google Scholar 

  • Porter NA, Wujek JS (1987) Allylic hydroperoxide rearrangement: β-scission or concerted pathway? J Org Chem 52:5085–5089

    Article  CAS  Google Scholar 

  • Porter WL, Levasseur LA, Henick AS (1971) An addition compound of oxidized tocopherol and linoleic acid. Lipids 6(1):1–8

    Article  PubMed  Google Scholar 

  • Porter NA, Lehman LS, Weber BA, Smith KJ (1981) Unified mechanism for polyunsaturated fatty acid autoxidation. Competition of peroxy radical hydrogen atom abstraction, β-scission, and cyclization. J Am Chem Soc 103:6447–6455

    Article  CAS  Google Scholar 

  • Rabbani N, Thornalley PJ (2015) Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease. Biochem Biophys Res Commun 458(2):221–226

    Article  CAS  PubMed  Google Scholar 

  • Rawel HM, Kroll J, Hohl UC (2001a) Model studies on reactions of plant phenols with whey proteins. Food/Nahrung 45(2):72–81

    Article  CAS  PubMed  Google Scholar 

  • Rawel HM, Kroll J, Rohn S (2001b) Reactions of phenolic substances with lysozyme — physicochemical characterisation and proteolytic digestion of the derivatives. Food Chem 72(1):59–71

    Article  CAS  Google Scholar 

  • Rawel HM, Meidtner K, Kroll J (2005) Binding of selected phenolic compounds to proteins. J Agric Food Chem 53(10):4228–4235

    Article  CAS  PubMed  Google Scholar 

  • Ren J, Meng S, Lekka CE, Kaxiras E (2008) Complexation of flavonoids with iron: structure and optical signatures. J Phys Chem B 112(6):1845–1850

    Article  CAS  PubMed  Google Scholar 

  • Rohn S (2014) Possibilities and limitations in the analysis of covalent interactions between phenolic compounds and proteins. Food Res Int 65:13–19

    Article  CAS  Google Scholar 

  • Schaich KM (2005) Lipid oxidation in fats and oils: theoretical aspects. In: Shahidi F (ed) Bailey’s industrial fats and oil products, 6th edn. John Wiley, New York, pp 2681–2767

    Google Scholar 

  • Schaich KM (2008) Co-oxidations of oxidizing lipids: reactions with proteins. In: Kamal-Eldin A, Min DB (eds) Lipid oxidation pathways, vol 2. CRC Press, Boca Raton, FL, pp 183–274

    Google Scholar 

  • Schaich K (2020) Lipid oxidation: new perspectives on an old reaction. In: Shahidi F (ed) Bailey’s industrial fats and oil products 7th edit edible oil and fat products: chemistry, properties, and safety aspects. John Wiley & Sons, Hoboken, NJ, pp 1–72

    Google Scholar 

  • Schaich KM, Tian X, Xie J (2015) Hurdles and pitfalls in measuring antioxidant efficacy: a critical evaluation of ABTS, DPPH, and ORAC assays. J Funct Foods 14:111–125

    Article  CAS  Google Scholar 

  • Schwarz K, Frankel EN, German JB (1996) Partition behaviour of antioxidative phenolic compounds in heterophasic systems. Eur J Lipid Sci 98(3):115–121

    CAS  Google Scholar 

  • Shendrik AN, Odaryuk ID, Kanibolotska LV, Kalinichenko EA, Tsyapalo AS, Beznos VV et al (2012) Radical formation during phenol oxidation in aqueous media. Int J Chem Kinet 44(6):414–422

    Article  CAS  Google Scholar 

  • Simic MG (1981) Free radical mechanisms in autoxidation processes. J Chem Ed 58(2):125

    Article  CAS  Google Scholar 

  • Skrt M, Benedik E, Podlipnik ÄŚ, Ulrih NP (2012) Interactions of different polyphenols with bovine serum albumin using fluorescence quenching and molecular docking. Food Chem 135(4):2418–2424

    Article  CAS  PubMed  Google Scholar 

  • Snelgrove DW (2000) Kinetic and mechanistic studies on some one-electron and two-electron reactions. PhD Dissertation, Carleton University, Ottawa, CA.

    Google Scholar 

  • Steenken S, Neta P (1982) One-electron redox potentials of phenols. Hydroxy- and aminophenols and related compounds of biological interest. J Phys Chem 86(18):3661–3667

    Article  CAS  Google Scholar 

  • Totlani VM, Peterson DG (2006) Epicatechin carbonyl-trapping reactions in aqueous Maillard systems: identification and structural elucidation. J Agric Food Chem 54(19):7311–7318

    Article  CAS  PubMed  Google Scholar 

  • Tournaire C, Croux S, Maurette MT, Beck I, Hocquaux M, Braun AM et al (1993) Antioxidant activity of flavonoids: efficiency of singlet oxygen (1 delta g) quenching. J Photochem Photobiol B 19(3):205–215

    Article  CAS  PubMed  Google Scholar 

  • Trebst A (2003) Function of β-carotene and tocopherol in photosystem II. Zeitschrift fĂĽr Naturforschung C, J Biosci 58:609–620

    Article  CAS  Google Scholar 

  • Tsuchiya J, Niki E, Kamiya Y (1983) Oxidation of lipids. IV. Formation and reaction of chromanoxyl radicals as studied by electron spin resonance. Bull Chem Soc Jpn 56(1):229–232

    Article  CAS  Google Scholar 

  • Urano S, Matsuo M (1976) A radical scavenging reaction of α-tocopherol with methyl radicals. Lipids 11(5):380–383

    Article  CAS  PubMed  Google Scholar 

  • Urano S, Yamanoi S, Hattori Y, Matsui M (1977) Radical scavenging reactions of alpha-tocopherol. II. The reaction with some alkyl radicals. Lipids 12(1):105–108

    Article  CAS  PubMed  Google Scholar 

  • Valgimigli L, Banks JT, Ingold KU, Lusztyk J (1995) Kinetic solvent effects on hydroxylic hydrogen atom abstractions are independent of the nature of the abstracting radical. Two extreme tests using vitamin E and phenol. J Am Chem Soc 117:9971

    Article  Google Scholar 

  • Valgimigli L, Banks JT, Lusztyk J, Ingold KU (1999) Solvent effects on the antioxidant activity of vitamin E. J Org Chem 64(9):3381–3383

    Article  CAS  PubMed  Google Scholar 

  • Valgimigli L, Amorati R, Petrucci S, Pedulli GF, Hu D, Hanthorn JJ et al (2009) Unexpected acid catalysis in reactions of peroxyl radicals with phenols. Angew Chem Int Edit 48(44):8348–8351

    Article  CAS  Google Scholar 

  • Wardman P (1990) Bioreductive activation of quinones: redox properties and thiol reactivity. Free Radical Res Commun 8(4-6):219–229

    Article  CAS  Google Scholar 

  • Warren JJ, Mayer JM (2010) Predicting organic hydrogen atom transfer rate constants using the Marcus cross relation. Proc Natl Acad Sci U S A 107(12):5282–5287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weenan H, Porter NA (1982) Autoxidation of model membrane systems: cooxidation of polyunsaturated lecithins with steroids, fatty acids, and α-tocopherol. J Am Chem Soc 104:5216–5221

    Article  Google Scholar 

  • Wehrer C, Bindler F, Laugel P (1984) Interactions between polyphenols and stannous ions in canned fruits and vegetables: a quantitative approach. Dtsch Lebensm Rundsch 80(9):273–279

    CAS  Google Scholar 

  • Wright JS, Johnson ER, DiLabio GA (2001) Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc 123:1173–1183

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi R (2007) Addition products of alpha-tocopherol with lipid-derived free radicals. Vitam Horm 76:309–327

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi R, Matsui T, Kato K, Ueno Y (1990a) Reaction products of Îł-tocopherol with an alkylperoxyl radical in benzene. Agric Biol Chem 54(10):2703–2709

    CAS  Google Scholar 

  • Yamauchi R, Matsui T, Miyake N, Kato K, Ueno Y (1990b) Reaction of δ-tocopherol with an alkylperoxyl radical. Agric Biol Chem 54(11):2993–2999

    CAS  Google Scholar 

  • Yamauchi R, Kato K, Ueno Y (1995) Free-radical scavenging reactions of α-tocopherol during the autoxidation of methyl linoleate in bulk phase. J Agric Food Chem 43(6):1455–1461

    Article  CAS  Google Scholar 

  • Yamauchi R, Yagi Y, Kato K (1996) Oxidation of alpha-tocopherol during the peroxidation of dilinoleoylphosphatidylcholine in liposomes. Biosci Biotechnol Biochem 60(4):616–620

    Article  CAS  PubMed  Google Scholar 

  • Yong H, Bai R, Bi F, Liu J, Qin Y, Liu J (2020) Synthesis, characterization, antioxidant and antimicrobial activities of starch aldehyde-quercetin conjugate. Intl J Biol Macromol 156:462–470

    Article  CAS  Google Scholar 

  • Zamora R, Hidalgo FJ (2005) Coordinate contribution of lipid oxidation and Maillard reaction to the nonenzymatic food browning. Crit Rev Food Sci Nutr 45(1):49–59

    Article  CAS  PubMed  Google Scholar 

  • Zamora R, Hidalgo FJ (2011) The Maillard reaction and lipid oxidation. Lipid Technol 23(3):59–62

    Google Scholar 

  • Zamora R, Hidalgo FJ (2016) The triple defensive barrier of phenolic compounds against the lipid oxidation-induced damage in food products. Trends Food Sci Technol 54:165–174

    Article  CAS  Google Scholar 

  • Zamora R, Hidalgo FJ (2018) Carbonyl–phenol adducts: an alternative sink for reactive and potentially toxic lipid oxidation products. J Agric Food Chem 66(6):1320–1324

    Article  CAS  PubMed  Google Scholar 

  • Zamora R, AlcĂłn E, Hidalgo FJ (2013) Strecker-type degradation of phenylalanine initiated by 4-oxo-2-alkenals in comparison to that initiated by 2,4-alkadienals, 4,5-epoxy-2-alkenals, or 4-hydroxy-2-nonenal. J Agric Food Chem 61(43):10231–10237

    Article  CAS  PubMed  Google Scholar 

  • Zamora R, Aguilar I, Granvogl M, Hidalgo FJ (2016) Toxicologically relevant aldehydes produced during the frying process are trapped by food phenolics. J Agric Food Chem 64(27):5583–5589

    Article  CAS  PubMed  Google Scholar 

  • Zamora R, Aguilar I, Hidalgo FJ (2017) Epoxyalkenal-trapping ability of phenolic compounds. Food Chem 237:444–452

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Liu R, Gung BW, Tindall S, Gonzalez JM, Halvorson JJ et al (2016) Polyphenol–aluminum complex formation: implications for aluminum tolerance in plants. J Agric Food Chem 64(15):3025–3033

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Zheng ZP, Cheng KW, Wu JJ, Zhang S, Tang YS et al (2009a) Natural polyphenols as direct trapping agents of lipid peroxidation-derived acrolein and 4-hydroxy-trans-2-nonenal. Chem Res Toxicol 22(10):1721–1727

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Liang C-P, Cheng K-W, Peng X, Lo C-Y, Shahidi F et al (2009b) Trapping effects of green and black tea extracts on peroxidation-derived carbonyl substances of seal blubber oil. J Agric Food Chem 57(3):1065–1069

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by USDA National Institute of Food and Agriculture Hatch Project 1008424 through the New Jersey Agricultural Experiment Station, Hatch Project NJ10157, and in part by USDA-NIFA grant 2017-67017-26465.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Schaich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schaich, K.M. (2022). Lipid Antioxidants: More than Just Lipid Radical Quenchers. In: Bravo-Diaz, C. (eds) Lipid Oxidation in Food and Biological Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-87222-9_7

Download citation

Publish with us

Policies and ethics